首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3Z‐3‐[(1H‐pyrrol‐2‐yl)‐methylidene]‐1‐(1‐piperidinylmethyl)‐1,3‐2H‐indol‐2‐one (Z24), a synthetic anti‐angiogenic compound, inhibits the growth and metastasis of certain tumors. Previous works have shown that Z24 induces hepatotoxicity in rodents. We examined the hepatotoxic mechanism of Z24 at the protein level and looked for potential biomarkers. We used 2‐DE and MALDI‐TOF/TOF MS to analyze alternatively expressed proteins in rat liver and plasma after Z24 administration. We also examined apoptosis in rat liver and measured levels of intramitochondrial ROS and NAD(P)H redox in liver cells. We found that 22 nonredundant proteins in the liver and 11 in the plasma were differentially expressed. These proteins were involved in several important metabolic pathways, including carbohydrate, lipid, amino acid, and energy metabolism, biotransformation, apoptosis, etc. Apoptosis in rat liver was confirmed with the terminal deoxynucleotidyl transferase dUTP‐nick end labeling assay. In mitochondria, Z24 increased the ROS and decreased the NAD(P)H levels. Thus, inhibition of carbohydrate aerobic oxidation, fatty acid β‐oxidation, and oxidative phosphorylation is a potential mechanism of Z24‐induced hepatotoxicity, resulting in mitochondrial dysfunction and apoptosis‐mediated cell death. In addition, fetub protein and argininosuccinate synthase in plasma may be potential biomarkers of Z24‐induced hepatotoxicity.  相似文献   

2.
Nicotinamide N‐methyltransferase (NNMT) plays a central role in cellular metabolism, regulating pathways including epigenetic regulation, cell signalling, and energy production. Our previous studies have shown that the expression of NNMT in the human neuroblastoma cell line SH‐SY5Y increased complex I activity and subsequent ATP synthesis. This increase in ATP synthesis was lower than the increase in complex I activity, suggesting uncoupling of the mitochondrial respiratory chain. We, therefore, hypothesised that pathways that reduce oxidative stress are also increased in NNMT‐expressing SH‐Y5Y cells. The expression of uncoupling protein‐2 messenger RNA and protein were significantly increased in NNMT‐expressing cells (57% ± 5.2% and 20.1% ± 1.5%, respectively; P = .001 for both). Total GSH (22 ± 0.3 vs 35.6 ± 1.1 nmol/mg protein), free GSH (21.9 ± 0.2 vs 33.5 ± 1 nmol/mg protein), and GSSG (0.6 ± 0.02 vs 1 ± 0.05 nmol/mg protein; P = .001 for all) concentrations were significantly increased in NNMT‐expressing cells, whereas the GSH:GSSG ratio was decreased (39.4 ± 1.8 vs 32.3 ± 2.5; P = .02). Finally, reactive oxygen species (ROS) content was decreased in NNMT‐expressing cells (0.3 ± 0.08 vs 0.12 ± 0.03; P = .039), as was the concentration of 8‐isoprostane F2α (200 ± 11.5 vs 45 ± 2.6 pg/mg protein; P = .0012). Taken together, these results suggest that NNMT expression reduced ROS generation and subsequent lipid peroxidation by uncoupling the mitochondrial membrane potential and increasing GSH buffering capacity, most likely to compensate for increased complex I activity and ATP production.  相似文献   

3.
Penehyclidine hydrochloride (PHC) can protect against myocardial ischemia/reperfusion (I/R) injury. However, the possible mechanisms of PHC in anoxia/reoxygenation (A/R)‐induced injury in H9c2 cells remain unclear. In the present study, H9c2 cells were pretreated with PI3K/Akt inhibitor LY294002, ATP‐sensitive K+ (KATP) channel blocker 5‐hydroxydecanoate (5‐HD), PHC, or KATP channel opener diazoxide (DZ) before subjecting to A/R injury. Cell viability and cell apoptosis were determined by cell counting kit‐8 assay and annexin V/PI assay, respectively. Myocardial injury was evaluated by measuring creatine kinase (CK) and lactate dehydrogenase (LDH) activities. Intracellular Ca2+ levels, reactive oxygen species (ROS) generation, mitochondrial membrane potential (ΔΨm), and mitochondrial permeability transition pore (mPTP) were measured. The levels of cytoplasmic/mitochondrial cytochrome c (Cyt‐C), Bax, Bcl‐2, cleaved caspase‐3, KATP channel subunits (Kir6.2 and SUR2A), and the members of the Akt/GSK‐3β and Akt/mTOR signaling pathways were determined by western blotting. We found that PHC preconditioning alleviated A/R‐induced cell injury by increasing cell viability, reducing CK and LDH activities, and inhibiting cell apoptosis. In addition, PHC preconditioning ameliorated intracellular Ca2+ overload and ROS production, accompanied by inhibition of both mPTP opening and Cyt‐C release into cytoplasm, and maintenance of ΔΨm. Moreover, PHC preconditioning activated mitochondrial KATP channels, and modulated the Akt/GSK‐3β and Akt/mTOR signaling pathways. Similar effects were observed upon treatment with DZ. Pretreatment with LY294002 or 5‐HD blocked the beneficial effects of PHC. These results suggest that the protective effects of PHC preconditioning on A/R injury may be related to mitochondrial KATP channels, as well as the Akt/GSK‐3β and Akt/mTOR signaling pathways.  相似文献   

4.
Pyrrolizidine alkaloid (PA) clivorine, isolated from traditional Chinese medicinal plant Ligularia hodgsonii Hook, has been shown to induce apoptosis in hepatocytes via mitochondrial‐mediated apoptotic pathway in our previous research. The present study was designed to observe the protection of N‐acetyl‐cysteine (NAC) on clivorine‐induced hepatocytes apoptosis. Our results showed that 5 mM NAC significantly reversed clivorine‐induced cytotoxicity via MTT and Trypan Blue staining assay. DNA apoptotic fragmentation analysis and Western‐blot results showed that NAC decreased clivorine‐induced apoptotic DNA ladder and caspase‐3 activation. Further results showed that NAC inhibited clivorine‐induced Bcl‐xL decrease, mitochondrial cytochrome c release and caspase‐9 activation. Intracellular glutathione (GSH) is an important ubiquitous redox‐active reducing sulfhydryl (? SH) tripeptide, and our results showed that clivorine (50 µM) decreased cellular GSH amounts and the ratio of GSH/GSSG in the time‐dependent manner, while 5 mM NAC obviously reversed this depletion. Further results showed that GSH synthesis inhibitor BSO augmented clivorine‐induced cytotoxicity, while exogenous GSH reversed its cytotoxicity on hepatocytes. Clivorine (50 µM) significantly induced cellular reactive oxygen species (ROS) generation. Further results showed that 50 µM Clivorine decreased glutathione peroxidase (GPx) activity and increased glutathione S transferase (GST) activity, which are both GSH‐related antioxidant enzymes. Thioredoxin‐1 (Trx) is also a ubiquitous redox‐active reducing (? SH) protein, and clivorine (50 µM) decreased cellular expression of Trx in a time‐dependent manner, while 5 mM NAC reversed this decrease. Taken together, our results demonstrate that the protection of NAC is major via maintaining cellular reduced environment and thus prevents clivorine‐induced mitochondrial‐mediated hepatocytes apoptosis. J. Cell. Biochem. 108: 424–432, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Numerous reports have shown that mitochondrial dysfunctions play a major role in apoptosis of Leishmania parasites, but the endoplasmic reticulum (ER) stress-induced apoptosis in Leishmania remains largely unknown. In this study, we investigate ER stress-induced apoptotic pathways in Leishmania major using tunicamycin as an ER stress inducer. ER stress activates the expression of ER-localized chaperone protein BIP/GRP78 (binding protein/identical to the 78-kDa glucose-regulated protein) with concomitant generation of intracellular reactive oxygen species. Upon exposure to ER stress, the elevation of cytosolic Ca(2+) level is observed due to release of Ca(2+) from internal stores. Increase in cytosolic Ca(2+) causes mitochondrial membrane potential depolarization and ATP loss as ablation of Ca(2+) by blocking voltage-gated cation channels with verapamil preserves mitochondrial membrane potential and cellular ATP content. Furthermore, ER stress-induced reactive oxygen species (ROS)-dependent release of cytochrome c and endonuclease G from mitochondria to cytosol and subsequent translocation of endonuclease G to nucleus are observed. Inhibition of caspase-like proteases with the caspase inhibitor benzyloxycarbonyl-VAD-fluoromethyl ketone or metacaspase inhibitor antipain does not prevent nuclear DNA fragmentation and phosphatidylserine exposure. Conversely, significant protection in tunicamycin-induced DNA degradation and phosphatidylserine exposure was achieved by either pretreatment of antioxidants (N-acetyl-L-cysteine, GSH, and L-cysteine), chemical chaperone (4-phenylbutyric acid), or addition of Ca(2+) chelator (1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid-acetoxymethyl ester). Taken together, these data strongly demonstrate that ER stress-induced apoptosis in L. major is dependent on ROS and Ca(2+)-induced mitochondrial toxicity but independent of caspase-like proteases.  相似文献   

6.
ω‐Hydroxyundec‐9‐enoic acid (ω‐HUA), a plant secondary metabolite, exhibits anti‐fungal activity. However, its effect on breast cancer cells is unknown. Here, we investigated the anti‐ breast cancer activity of ω‐HUA and its underlying mechanism. Treatment of human breast cancer cell lines, MDA‐MB‐231 and MDA‐MB‐435, with ω‐HUA induced apoptotic cell death with increased cleaved caspase‐3 and poly (ADP‐ribose) polymerase (PARP) levels, and p38 and JNK phosphorylation. Inhibition of these mitogen‐activated protein kinase (MAPK) pathways using specific inhibitors or siRNA, for p38 and JNK, respectively, blocked the ω‐HUA‐induced apoptosis in a dose‐dependent manner. Moreover, pretreatment of the cells with antioxidant N‐acetyl cysteine (NAC) inhibited ω‐HUA‐induced increased reactive oxygen species (ROS) levels, cleaved caspase‐3 and cleaved PARP, and phosphorylated JNK, phosphorylated p38, and increased cell viability and colony‐forming ability. MDA‐MB‐231 xenograft model showed that the ω‐HUA‐treated group exhibited greater tumor regression and significantly reduced tumor weight compared to that exhibited by the vehicle‐administered group. Collectively, ω‐HUA‐induced intracellular ROS generation induced breast cancer cell apoptosis through JNK and p38 signaling pathway activation, resulting in tumor regression. The results suggested that ω‐HUA is an effective supplement for inhibiting human breast cancer growth.  相似文献   

7.
IR‐783 is a kind of heptamethine cyanine dye that exhibits imaging, cancer targeting and anticancer properties. A previous study reported that its imaging and targeting properties were related to mitochondria. However, the molecular mechanism behind the anticancer activity of IR‐783 has not been well demonstrated. In this study, we showed that IR‐783 inhibits cell viability and induces mitochondrial apoptosis in human breast cancer cells. Exposure of MDA‐MB‐231 cells to IR‐783 resulted in the loss of mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) depletion, mitochondrial permeability transition pore (mPTP) opening and cytochrome c (Cyto C) release. Furthermore, we found that IR‐783 induced dynamin‐related protein 1 (Drp1) translocation from the cytosol to the mitochondria, increased the expression of mitochondrial fission proteins mitochondrial fission factor (MFF) and fission‐1 (Fis1), and decreased the expression of mitochondrial fusion proteins mitofusin1 (Mfn1) and optic atrophy 1 (OPA1). Moreover, knockdown of Drp1 markedly blocked IR‐783‐mediated mitochondrial fission, loss of MMP, ATP depletion, mPTP opening and apoptosis. Our in vivo study confirmed that IR‐783 markedly inhibited tumour growth and induced apoptosis in an MDA‐MB‐231 xenograft model in association with the mitochondrial translocation of Drp1. Taken together, these findings suggest that IR‐783 induces apoptosis in human breast cancer cells by increasing Drp1‐mediated mitochondrial fission. Our study uncovered the molecular mechanism of the anti‐breast cancer effects of IR‐783 and provided novel perspectives for the application of IR‐783 in the treatment of breast cancer.  相似文献   

8.
Previous studies have shown that controlled deterioration treatment (CDT) induces programmed cell death in elm (Ulmus pumila L.) seeds, which undergo certain fundamental processes that are comparable to apoptosis in animals. In this study, the essential characteristics of mitochondrial physiology in elm seeds during CDT were identified by cellular ultrastructural analysis, whole‐body optical imaging, Western blotting and semi‐quantitative RT–PCR. The alteration in mitochondrial morphology was an early event during CDT, as indicated by progressive dynamic mitochondrial changes and rupture of the mitochondrial outer membrane; loss of mitochondrial transmembrane potential (Δψm) ensued, and mitochondrial ATP levels decreased. The mitochondrial permeability transition pore inhibitor cyclosporine A effectively suppressed these changes during ageing. The in situ localization of production of reactive oxygen species (ROS), and evaluation of the expression of voltage‐dependent anion‐selective channel and cyclophilin D indicated that the levels of mitochondrial permeability transition pore components were positively correlated with ROS production, leading to an imbalance of the cellular redox potential and ultimately to programmed cell death. Pre‐incubation with ascorbic acid slowed loss of mitochondrial Δψm, and decreased the effect of CDT on seed viability. However, there were no significant changes in multiple antioxidant elements or chaperones in the mitochondria during early stages of ageing. Our results indicate that CDT induces dynamic changes in mitochondrial physiology via increased ROS production, ultimately resulting in an irreversible loss of seed viability.  相似文献   

9.
Tumour necrosis factor (TNF)‐α has been considered to induce ischaemia‐reperfusion injury (IRI) of liver which is characterized by energy dysmetabolism. Peroxisome proliferator–activated receptor‐γ co‐activator (PGC)‐1α and mitofusion2 (Mfn2) are reported to be involved in the regulation of mitochondrial function. However, whether PGC‐1α and Mfn2 form a pathway that mediates liver IRI, and if so, what the underlying involvement is in that pathway remain unclear. In this study, L02 cells administered recombinant human TNF‐α had increased TNF‐α levels and resulted in down‐regulation of PGC‐1α and Mfn2 in a rat liver IRI model. This was associated with hepatic mitochondrial swelling, decreased adenosine triphosphate (ATP) production, and increased levels of reactive oxygen species (ROS) and alanine aminotransferase (ALT) activity as well as cell apoptosis. Inhibition of TNF‐α by neutralizing antibody reversed PGC‐1α and Mfn2 expression, and decreased hepatic injury and cell apoptosis both in cell culture and in animals. Treatment by rosiglitazone sustained PGC‐1α and Mfn2 expression both in IR livers, and L02 cells treated with TNF‐α as indicated by increased hepatic mitochondrial integrity and ATP production, reduced ROS and ALT activity as well as decreased cell apoptosis. Overexpression of Mfn2 by lentiviral‐Mfn2 transfection decreased hepatic injury in IR livers and L02 cells treated with TNF‐α. However, there was no up‐regulation of PGC‐1α. These findings suggest that PGC‐1α and Mfn2 constitute a regulatory pathway, and play a critical role in TNF‐α‐induced hepatic IRI. Inhibition of the TNF‐α or PGC‐1α/Mfn2 pathways may represent novel therapeutic interventions for hepatic IRI.  相似文献   

10.
Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxifying redox buffer in the cell. Here, we explored the relative importance of NADH and GSH to neurodegeneration in aging and AD neurons from nontransgenic and 3xTg‐AD mice by inhibiting their synthesis to determine whether NADH can compensate for the GSH loss to maintain redox balance. Neurons stressed by either depleting NAD(P)H or GSH indicated that NADH redox control is upstream of GSH levels. Further, although depletion of NAD(P)H or GSH correlated linearly with neuron death, compared with GSH depletion, higher neurodegeneration was observed when NAD(P)H was extrapolated to zero, especially in old age, and in the 3xTg‐AD neurons. We also observed an age‐dependent loss of gene expression of key redox‐dependent biosynthetic enzymes, NAMPT (nicotinamide phosphoribosyltransferase), and NNT (nicotinamide nucleotide transhydrogenase). Moreover, age‐related correlations between brain NNT or NAMPT gene expression and NADPH levels suggest that these genes contribute to the age‐related declines in NAD(P)H. Our data indicate that in aging and more so in AD‐like neurons, NAD(P)H redox control is upstream of GSH and an oxidative redox shift that promotes neurodegeneration. Thus, NAD(P)H generation may be a more efficacious therapeutic target upstream of GSH and ROS.  相似文献   

11.
Astrocytes, the most abundant glial cell population in the central nervous system (CNS), play physiological roles in neuronal activities. Oxidative insult induced by the injury to the CNS causes neural cell death through extrinsic and intrinsic pathways. This study reports that reactive oxygen species (ROS) generated by exposure to the strong oxidizing agent, hexavalent chromium (Cr(VI)) as a chemical‐induced oxidative stress model, caused astrocytes to undergo an apoptosis‐like cell death through a caspase‐3‐independent mechanism. Although activating protein‐1 (AP‐1) and NF‐κB were activated in Cr(VI)‐primed astrocytes, the inhibition of their activity failed to increase astrocytic cell survival. The results further indicated that the reduction in mitochondrial membrane potential (MMP) was accompanied by an increase in the levels of ROS in Cr(VI)‐primed astrocytes. Moreover, pretreatment of astrocytes with N‐acetylcysteine (NAC), the potent ROS scavenger, attenuated ROS production and MMP loss in Cr(VI)‐primed astrocytes, and significantly increased the survival of astrocytes, implying that the elevated ROS disrupted the mitochondrial function to result in the reduction of astrocytic cell viability. In addition, the nuclear expression of apoptosis‐inducing factor (AIF) and endonuclease G (EndoG) was observed in Cr(VI)‐primed astrocytes. Taken together, evidence shows that astrocytic cell death occurs by ROS‐induced oxidative insult through a caspase‐3‐independent apoptotic mechanism involving the loss of MMP and an increase in the nuclear levels of mitochondrial pro‐apoptosis proteins (AIF/EndoG). This mitochondria‐mediated but caspase‐3‐independent apoptotic pathway may be involved in oxidative stress‐induced astrocytic cell death in the injured CNS. J. Cell. Biochem. 107: 933–943, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
In this study, the mitochondrial damage effect and mechanism of zearalenone (ZEA) in swine small intestine IPEC‐J2 cells in vitro were comprehensively characterized. The analyses revealed that ZEA at high doses (8 and 7 μg/mL) can significantly increase P < 0.05 the malondialdehyde levels and decrease antioxidant enzymes activities after 48 h of exposure. Meanwhile, the reactive oxygen species (ROS) accumulation increased in high dose ZEA‐treated groups after 2 h treatment, but decreased due to the ROS‐induced mitochondrial damage and the caused cell apoptosis after 48 h of high does ZEA treatment. Moreover, the decreasing of mitochondrial membrane potential (MMP; ΔΨ) in high dose ZEA exposure was observed in line with the increasing ROS production in mitochondria. Results suggest that ZEA exposure can induce mitochondrial damage by reducing antioxidant enzyme activities, accumulation of ROS, and decreasing MMP. The mitochondrial damage had a dramatic concentration–effects relationship with ZEA.  相似文献   

13.
Although methane sulfonate compounds are widely used for the protein modification for their selectivity of thiol groups in proteins, their intracellular signaling events have not yet been clearly documented. This study demonstrated the methane sulfonate chemical 1,4‐butanediyl‐bismethanethiosulfonate (BMTS)‐induced cascades of signals that ultimately led to apoptosis of Jurkat cells. BMTS induced apoptosis through fragmentation of DNA, activation of caspase‐9 and caspase‐3, and downregulation of Bcl‐2 protein with reduction of mitochondrial membrane potential. Moreover, BMTS intensely and transiently induced intracellular reactive oxygen species (ROS) production and ROS produced by BMTS was mediated through mitochondria. We also found that a reducing agent dithiothreitol (DTT) and an anti‐oxidant N‐acetyl cysteine (NAC) inhibited BMTS‐mediated caspase‐9 and ‐3 activation, ROS production and induction of Annexin V/propidium iodide double positive cells, suggesting the involvement of ROS in the apoptosis process. Therefore, this study further extends our understanding on the basic mechanism of redox‐linked apoptosis induced by sulfhydryl‐reactive chemicals. J. Cell. Biochem. 108: 1059–1065, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Genistein is an isoflavone that has estrogen (E2)‐like activity and is beneficial for follicular development, but little is known regarding its function in oxidative stress (OS)‐mediated granulosa cell (GC) injury. Here, we found that after exposure to H2O2, Genistein weakened the elevated levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), which were regarded as the biomarkers for OS, and rescued glutathione (GSH) content and GSH/GSSG ratio accompanying with a simultaneous increase in cyclic adenosine monophosphate (cAMP) level, whereas addition of protein kinase A (PKA) inhibitor H89 impeded the effects of Genistein on the levels of ROS and MDA. Further analysis evidenced that Genistein enhanced the activities of antioxidant enzymes superoxide dismutase (SOD), GSH‐peroxidase (GSH‐Px), and catalase (CAT) in H2O2‐treated GCs, but this enhancement was attenuated by H89. Under OS, Genistein improved cell viability and lessened the apoptotic rate of GCs along with a reduction in the activity of Casp3 and levels of Bax and Bad messenger RNA (mRNA), while H89 reversed the above effects. Moreover, Genistein treatment caused an obvious elevation in mitochondrial membrane potential (MMP) followed by a decline in the levels of intracellular mitochondrial superoxide, but H89 inhibited the regulation of Genistein on MMP and mitochondrial superoxide. Supplementation of Genistein promoted the secretion of E2 and increased the expression of Star and Cyp19a1 mRNA, whereas suppressed the level of progesterone (P4) accompanied with a decline in the level of Hsd3b1 mRNA expression. H89 blocked the regulation of Genistein on the secretion of E2 and P4, and alleviated the ascending of Star and Cyp19a1 elicited by Genistein. Collectively, Genistein protects GCs from OS via cAMP‐PKA signaling.  相似文献   

15.
Mitochondrial respiration is the predominant source of ATP. Excessive rates of electron transport cause a higher production of harmful reactive oxygen species (ROS). There are two regulatory mechanisms known. The first, according to Mitchel, is dependent on the mitochondrial membrane potential that drives ATP synthase for ATP production, and the second, the Kadenbach mechanism, is focussed on the binding of ATP to Cytochrome c Oxidase (CytOx) at high ATP/ADP ratios, which results in an allosteric conformational change to CytOx, causing inhibition. In times of stress, ATP‐dependent inhibition is switched off and the activity of CytOx is exclusively determined by the membrane potential, leading to an increase in ROS production. The second mechanism for respiratory control depends on the quantity of electron transfer to the Heme aa3 of CytOx. When ATP is bound to CytOx the enzyme is inhibited, and ROS formation is decreased, although the mitochondrial membrane potential is increased.  相似文献   

16.
Andrographolide‐lipoic acid conjugate (AL‐1) is a new in‐house synthesized chemical entity, which was derived by covalently linking andrographolide with lipoic acid. However, its anti‐cancer effect and cytotoxic mechanism remains unknown. In this study, we found that AL‐1 could significantly inhibit cell viability of human leukemia K562 cells by inducing G2/M arrest and apoptosis in a dose‐dependent manner. Thirty‐one AL‐1‐regulated protein alterations were identified by proteomics analysis. Gene ontology and ingenuity pathway analysis revealed that a cluster of proteins of oxidative redox state and apoptotic cell death‐related proteins, such as PRDX2, PRDX3, PRDX6, TXNRD1, and GLRX3, were regulated by AL‐1. Functional studies confirmed that AL‐1 induced apoptosis of K562 cells through a ROS‐dependent mechanism, and anti‐oxidant, N‐acetyl‐l ‐cysteine, could completely block AL‐1‐induced cytotoxicity, implicating that ROS generation played a vital role in AL‐1 cytotoxicity. Accumulated ROS resulted in oxidative DNA damage and subsequent G2/M arrest and mitochondrial‐mediated apoptosis. The current work reveals that a novel andrographolide derivative AL‐1 exerts its anticancer cytotoxicity through a ROS‐dependent DNA damage and mitochondrial‐mediated apoptosis mechanism.  相似文献   

17.
Abamectin (ABA) is one of the most widely used compounds in agriculture and veterinary medicine. However, the cytotoxicity of ABA in human gastric cells is utterly unknown. In this study, ABA suppressed the proliferation of MGC803 cells by arresting the cell cycle at the G0/G1‐phase. Moreover, ABA induced mitochondrial‐mediated apoptosis by inducing the loss of mitochondrial membrane potential, upregulation of Bax/Bcl‐2, and activation of caspase‐3. ABA significantly improved the LC3‐II/LC3‐I ratio and reduced P62 protein expression in a dose‐dependent manner. Through detection of the reactive oxygen species (ROS) levels, we found ABA induced the accumulation of intracellular ROS and then reduced PI3K/AKT signaling activation related to MGC803 cell apoptosis and autophagy. Our results indicate that ABA exerts cytotoxic effects on human MGC803 cells through apoptosis and autophagy by inhibiting ROS‐mediated PI3K/AKT signaling. Furthermore, ABA may be a potential risk to human gastric health.  相似文献   

18.
19.
Cerebral ischemia/reperfusion (I/R) injuries are common and often cause severe complications. Ozone has been applied for protecting I/R injury in animal models of several organs including cerebra, but the detailed mechanism remains unclear. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase measurement were used to determine the influence of ozone on cell activity and damage of SH‐SY5Y cells. Some redox items such as catalase (CAT), malondialdehyde (MDA), glutathione peroxidase (GSH‐Px), and superoxide dismutase (SOD) were measured by enzyme‐linked immunosorbent assay. The mitochondrial membrane potential (ΔΨm) was determined by JC‐1 assay. Cytochrome‐c (cyt‐c) level in the cytoplasm and mitochondrion was measured by western blotting. Apoptosis was determined by flow cytometry, and some apoptosis‐related molecules were detected by quantitative real‐time polymerase chain reaction and western blotting. Ozone alleviated oxidative damage by increasing GSH‐Px, SOD, CAT, and decreasing MDA. Ozone decreased mitochondrial damage caused by I/R injury and inhibited the release of cyt‐c from mitochondrion to cytoplasm in SH‐SY5Y cells. The cell apoptosis caused by I/R was inhibited by ozone, and ozone could decrease apoptosis by increasing the ratio of Bcl‐2/Bax and inhibiting caspase signaling pathway in SH‐SY5Y cells. Ozone has the ability of maintaining redox homeostasis, decreasing mitochondrion damage, and inhibiting neurocytes apoptosis induced by I/R. Therefore, ozone may be a promising protective strategy against cerebral I/R injury.  相似文献   

20.
Fatty acid oxidation (FAO) dysfunction is one of the important mechanisms of renal fibrosis. Sirtuin 3 (Sirt3) has been confirmed to alleviate acute kidney injury (AKI) by improving mitochondrial function and participate in the regulation of FAO in other disease models. However, it is not clear whether Sirt3 is involved in regulating FAO to improve the prognosis of AKI induced by cisplatin. Here, using a murine model of cisplatin‐induced AKI, we revealed that there were significantly FAO dysfunction and extensive lipid deposition in the mice with AKI. Metabolomics analysis suggested reprogrammed energy metabolism and decreased ATP production. In addition, fatty acid deposition can increase reactive oxygen species (ROS) production and induce apoptosis. Our data suggested that Sirt3 deletion aggravated FAO dysfunction, resulting in increased apoptosis of kidney tissues and aggravated renal injury. The activation of Sirt3 by honokiol could improve FAO and renal function and reduced fatty acid deposition in wide‐type mice, but not Sirt3‐defective mice. We concluded that Sirt3 may regulate FAO by deacetylating liver kinase B1 and activating AMP‐activated protein kinase. Also, the activation of Sirt3 by honokiol increased ATP production as well as reduced ROS and lipid peroxidation through improving mitochondrial function. Collectively, these results provide new evidence that Sirt3 is protective against AKI. Enhancing Sirt3 to improve FAO may be a potential strategy to prevent kidney injury in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号