首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Reactive oxygen species (ROS) and pro-inflammatory cytokines are crucial in ventricular remodelling, such as inflammation-associated myocarditis. We previously reported that tumour necrosis factor-α (TNF-α)-induced ROS in human aortic smooth muscle cells is mediated by NADPH oxidase subunit Nox4. In this study, we investigated whether TNF-α-induced ventricular remodelling was mediated by Nox2 and/or Nox4. An intravenous injection of murine TNF-α was administered to a group of mice and saline injection was administered to controls. Echocardiography was performed on days 1, 7 and 28 post-injection. Ventricular tissue was used to determine gene and protein expression of Nox2, Nox4, ANP, interleukin (IL)-1β, IL-2, IL-6, TNF-α and to measure ROS. Nox2 and Nox4 siRNA were used to determine whether or not Nox2 and Nox4 mediated TNF-α-induced ROS and upregulation of IL-1β and IL-6 in adult human cardiomyocytes. Echocardiography showed a significant increase in left ventricular end-diastolic and left ventricular end-systolic diameters, and a significant decrease in the ejection fraction and fractional shortening in mice 7 and 28 days after TNF-α injection. These two groups of mice showed a significant increase in ventricular ROS, ANP, IL-1β, IL-2, IL-6 and TNF-α proteins. Nox2 and Nox4 mRNA and protein levels were also sequentially increased. ROS was significantly decreased by inhibitors of NADPH oxidase, but not by inhibitors of other ROS production systems. Nox2 and Nox4 siRNA significantly attenuated TNF-α-induced ROS and upregulation of IL-1β and IL-6 in cardiomyocytes. Our study highlights a novel TNF-α-induced chronic ventricular remodelling mechanism mediated by sequential regulation of Nox2 and Nox4 subunits.  相似文献   

2.
3.
4.
Critical and major operations are often accompanied by brain ischemic complications. Previous studies found that propofol post-conditioning provided neuroprotective functions through upregulating the expression of potassium chloride cotransporter 2 (KCC2) in gamma-aminobutyric acid (GABA) interneurons. Membrane expression and phosphorylation represents KCC2 activity, which were modulated by a protein kinase C (PKC)-dependent mechanism. However, the role of propofol in increasing KCC2 phosphorylation and the involvement of protein kinase Mζ (PKMζ), a major subtype of PKC, in the KCC2 pathway remained unclear. In this study, we established middle cerebral artery occlusion model in rats to evaluate the long-term recovery of brain functions using behavioral experiments. KCC2 and PKMζ were assessed via western blot. We used the selective inhibitor, zeta inhibitory peptide (ZIP), to investigate the relationship between KCC2 and PKMζ. Intracellular chloride concentration in the hippocampal CA1 area was measured to determine KCC2 activity. We found that propofol, infused at a speed of 20 mg kg?1 h?1 for 2 h at the onset of reperfusion, improved neurological deficits and cognitive dysfunction following ischemia/reperfusion injury. PKMζ expression was significantly upregulated, which improved KCC2 membrane expression and phosphorylation in the ischemic hippocampal CA1 area, and these effects could last up to 28 days. But ZIP inhibited this process. Ultimately, we showed that propofol increased KCC2 phosphorylation and PKMζ was the upstream of KCC2. Propofol led to long-term recovery of brain functions by upregulating the activity of the PKMζ/KCC2 pathway.  相似文献   

5.
Rac is an activating factor for Nox1, an O2-generating NADPH oxidase, expressed in the colon and other tissues. Rac requires a GDP-GTP exchange factor for activation. Nox1 activation by βPix has been demonstrated in cell lines. We examined the effects of βPix and its phosphomimetic mutant on endogenous Nox1 in Caco-2 cells transfected with Noxo1 and Noxa1. βPix expression enhanced O2 production in resting cells and cells stimulated with EGF or phorbol ester. βPix(S340E) further enhanced O2 production, while βPix(S340A) eliminated the βPix effect. βPix(S340E), but not βPix(S340A), had higher affinity and GEF activity for Rac than wild-type βPix. These results suggest that βPix phosphorylation at Ser-340 upregulates Nox1 through Rac activation, confirming Rac as a trigger for acute Nox1-dependent ROS production.  相似文献   

6.
Nitrite was recognized as a potent vasodilator >130 years and has more recently emerged as an endogenous signaling molecule and modulator of gene expression. Understanding the molecular mechanisms that regulate nitrite metabolism is essential for its use as a potential diagnostic marker as well as therapeutic agent for cardiovascular diseases. In this study, we have identified human cystathionine ß-synthase (CBS) as a new player in nitrite reduction with implications for the nitrite-dependent control of H2S production. This novel activity of CBS exploits the catalytic property of its unusual heme cofactor to reduce nitrite and generate NO. Evidence for the possible physiological relevance of this reaction is provided by the formation of ferrous-nitrosyl (FeII-NO) CBS in the presence of NADPH, the human diflavin methionine synthase reductase (MSR) and nitrite. Formation of FeII-NO CBS via its nitrite reductase activity inhibits CBS, providing an avenue for regulating biogenesis of H2S and cysteine, the limiting reagent for synthesis of glutathione, a major antioxidant. Our results also suggest a possible role for CBS in intracellular NO biogenesis particularly under hypoxic conditions. The participation of a regulatory heme cofactor in CBS in nitrite reduction is unexpected and expands the repertoire of proteins that can liberate NO from the intracellular nitrite pool. Our results reveal a potential molecular mechanism for cross-talk between nitrite, NO and H2S biology.  相似文献   

7.
8.
Uptake through the Dopamine Transporter (DAT) is the primary mechanism of terminating dopamine signaling within the brain, thus playing an essential role in neuronal homeostasis. Deregulation of DAT function has been linked to several neurological and psychiatric disorders including ADHD, schizophrenia, Parkinson’s disease, and drug addiction. Over the last 15 years, several studies have revealed a plethora of mechanisms influencing the activity and cellular distribution of DAT; suggesting that fine-tuning of dopamine homeostasis occurs via an elaborate interplay of multiple pathways. Here, we show for the first time that the βγ subunits of G proteins regulate DAT activity. In heterologous cells and brain tissue, a physical association between Gβγ subunits and DAT was demonstrated by co-immunoprecipitation. Furthermore, in vitro pull-down assays using purified proteins established that this association occurs via a direct interaction between the intracellular carboxy-terminus of DAT and Gβγ. Functional assays performed in the presence of the non-hydrolyzable GTP analog GTP-γ-S, Gβγ subunit overexpression, or the Gβγ activator mSIRK all resulted in rapid inhibition of DAT activity in heterologous systems. Gβγ activation by mSIRK also inhibited dopamine uptake in brain synaptosomes and dopamine clearance from mouse striatum as measured by high-speed chronoamperometry in vivo. Gβγ subunits are intracellular signaling molecules that regulate a multitude of physiological processes through interactions with enzymes and ion channels. Our findings add neurotransmitter transporters to the growing list of molecules regulated by G-proteins and suggest a novel role for Gβγ signaling in the control of dopamine homeostasis.  相似文献   

9.
10.
11.
Nox(phagocyte-like NADPH oxidase)是吞噬细胞NADPH氧化酶催化亚基 gp91phox的一系列同源物,广泛分布于体内多种非吞噬细胞.与NADPH氧化酶类似, Nox激活后可产生ROS,Nox产生的ROS是线粒体外ROS的主要来源.Nox产生的ROS,在控制新陈代谢,调节葡萄糖刺激的胰岛素分泌(glucose-stimulated insulin secretion,GSIS),促使胰岛β细胞凋亡、胰岛功能障碍和糖尿病及其并发症的发 生、发展中,发挥着重要作用.调节Nox的活性,改善机体内氧化应激水平,有望成为治疗糖尿病及其并发症的有效新途径.  相似文献   

12.
13.
Djungarian hamsters (Phodopus sungorus) exhibit pronounced winter acclimatization with changes in body mass, gonads, fur, and thermogenic capacity induced by decreasing daylength. To determine whether the annual activity pattern reflects the crucial role of the photoperiod for the hamsters' seasonality, animals with and without access to a running wheel (RW) were exposed to natural lighting conditions (~52°N) and ambient temperatures. Registration of locomotion in hamsters with a RW revealed a clear activity pattern closely related to dusk and dawn throughout the year. In contrast, animals without RW access showed a less stable phase relationship between the activity and the day‐night cycle in autumn and winter. During these seasons, the activity phase either exceeded the dark phase or even became indistinguishable from the rest phase. This correlated not only with increased locomotion during the light phase but also over the whole 24 h period, especially in autumn. In RW hamsters, a similar but attenuated trend was found that possibly reflects foraging due to increased food hoarding before winter. The more stable correlation between activity time and night length in RW hamsters might be explained by a suppressing effect of light on wheel‐running behavior (negative masking) and/or a stabilizing effect of running exercise on rhythmicity. In a further experiment, the phase‐reference points lights‐off and lights‐on within artificial light‐dark (LD) cycles were compared to sunset and sunrise in an intermediate ratio of light and dark and in long days. With respect to the defined phase‐reference points of the zeitgeber, the phase relation between activity and the LD cycle was similar in natural and corresponding artificial lighting conditions, and dependent on the LD ratio.  相似文献   

14.
Herbivory activates the synthesis of allelochemicals that can mediate plant-plant interactions. There is an inverse relationship between the activity of xylophages and the abundance of epiphytes on Ipomoea murucoides. Xylophagy may modify the branch chemical constitution, which also affects the liberation of allelochemicals with defense and allelopathic properties. We evaluated the bark chemical content and the effect of extracts from branches subjected to treatments of exclusion, mechanical damage and the presence/absence of epiphytes, on the seed germination of the epiphyte Tillandsia recurvata. Principal component analysis showed that branches without any treatment separate from branches subjected to treatments; damaged and excluded branches had similar chemical content but we found no evidence to relate intentional damage with allelopathy; however 1-hexadecanol, a defense volatile compound correlated positively with principal component (PC) 1. The chemical constitution of branches subject to exclusion plus damage or plus epiphytes was similar among them. PC2 indicated that palmitic acid (allelopathic compound) and squalene, a triterpene that attracts herbivore enemies, correlated positively with the inhibition of seed germination of T. recurvata. Inhibition of seed germination of T. recurvata was mainly correlated with the increment of palmitic acid and this compound reached higher concentrations in excluded branches treatments. Then, it is likely that the allelopathic response of I. murucoides would increase to the damage (shade, load) that may be caused by a high load of epiphytes than to damage caused by the xylophages.  相似文献   

15.
《Molecular cell》2014,53(4):663-671
  1. Download : Download high-res image (85KB)
  2. Download : Download full-size image
  相似文献   

16.
17.
The effect of esterification at the 2'-position of desosamine on the antibacterial activity of erythromycin was investigated by determining the bacteriostatic and bactericidal activities of erythromycin and a number of its 2'-esters on S. aureus and relating these activities to the hydrolysis rates of the esters. These studies, together with comparison of the inhibition of protein synthesis in a cell-free system isolated from S. aureus, lead to the conclusion that 2'-esters of erythromycin are inactive until hydrolyzed. Loss of activity appears to result from inability of erythromycin esters to bind to bacterial ribosomes and thus inhibit synthesis of protein.  相似文献   

18.

Background Purpose

Photocatalytic water splitting for hydrogen evolution is a potential way to solve many energy and environmental issues. Developing visible-light-active photocatalysts to efficiently utilize sunlight and finding proper ways to improve photocatalytic activity for H2 evolution have always been hot topics for research. This study attempts to expand the use of sunlight and to enhance the photocatalytic activity of TiO2 by N doping and Au loading.

Methods

Au/N-doped TiO2 photocatalysts were synthesized and successfully used for photocatalytic water splitting for H2 evolution under irradiation of UV and UV–vis light, respectively. The samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and photoelectrochemical characterizations.

Results

DRS displayed an extension of light absorption into the visible region by doping of N and depositing with Au, respectively. PL analysis indicated electron-hole recombination due to N doping and an efficient inhibition of electron-hole recombination due to the loaded Au particles. Under the irradiation of UV light, the photocatalytic hydrogen production rate of the as-synthesized samples followed the order Au/TiO2 > Au/N-doped TiO2 > TiO2 > N-doped TiO2. While under irradiation of UV–vis light, the N-TiO2 and Au/N-TiO2 samples show higher H2 evolution than their corresponding nitrogen-free samples (TiO2 and Au/TiO2). This inconsistent result could be attributed to the doping of N and the surface plasmonic resonance (SPR) effect of Au particles extending the visible light absorption. The photoelectrochemical characterizations further indicated the enhancement of the visible light response of Au/N-doped TiO2.

Conclusion

Comparative studies have shown that a combination of nitrogen doping and Au loading enhanced the visible light response of TiO2 and increased the utilization of solar energy, greatly boosting the photocatalytic activity for hydrogen production under UV–vis light.  相似文献   

19.
4,4′-dithiocyanatostilbene-2,2′-disulfonic acid (DIDS), an inhibitor of the volume-sensitive anion channel, was used to investigate the role of this channel in the stimulation of rat pancreatic β-cells by glucose and by tolbutamide. Glucose-stimulated electrical activity in β-cells was markedly and reversibly inhibited by DIDS. The increase in cytosolic [Ca2+] and stimulated insulin release evoked by glucose were also inhibited by DIDS. In contrast to its inhibitory effect on glucose-induced β-cell activity, DIDS had no effect on electrical activity, the rise in [Ca2+] i or insulin release induced by tolbutamide. DIDS failed to increase β-cell input conductance, an index of whole-cell K ATP channel activity, or the rate of efflux of 86Rb+ from perifused islets, a measure of net K+ permeability. Furthermore, DIDS had no effect on intracellular pH or on regulatory volume increase following exposure of cells to hypertonic solutions, indicating that the effects of DIDS were not the result of inhibition of Cl transport systems. It is suggested that the DIDS-induced repolarization is caused by inactivation of the volume-sensitive anion channel. The stimulation of β-cell electrical and secretory activity by glucose, but not tolbutamide, may therefore involve activation of the anion channel. Received: 30 November 1999/Revised: 23 June 2000  相似文献   

20.
We investigated the antioxidant activity of supramolecular water-soluble fullerenes, polyvinylpyrrolidone (PVP)-entrapped C60, and γ-cyclodextrin (CD)-bicapped C60, based on comparable β-carotene bleaching assay. Antioxidant activity against reactive oxygen species (ROS) generated by three different methods, (i) autoxidation of linoleic acid, (ii) hydrogen peroxide promoter, and (iii) photoirradiation, was evaluated as percent of inhibition relative to a control experiment in view of the bleaching rate constant (k obs) as well as the persistent absorbancy of β-carotene. Water-soluble fullerenes exhibit significant inhibitory effects on the oxidative discoloration of β-carotene in any system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号