首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Hantavirus pulmonary syndrome (HPS) is a severe respiratory disease characterized by pulmonary edema, with fatality rates of 35 to 45%. Disease occurs following infection with pathogenic New World hantaviruses, such as Andes virus (ANDV), which targets lung microvascular endothelial cells. During replication, the virus scavenges 5′-m7G caps from cellular mRNA to ensure efficient translation of viral proteins by the host cell cap-dependent translation machinery. In cells, the mammalian target of rapamycin (mTOR) regulates the activity of host cap-dependent translation by integrating amino acid, energy, and oxygen availability signals. Since there is no approved pharmacological treatment for HPS, we investigated whether inhibitors of the mTOR pathway could reduce hantavirus infection. Here, we demonstrate that treatment with the FDA-approved rapamycin analogue temsirolimus (CCI-779) blocks ANDV protein expression and virion release but not entry into primary human microvascular endothelial cells. This effect was specific to viral proteins, as temsirolimus treatment did not block host protein synthesis. We confirmed that temsirolimus targeted host mTOR complex 1 (mTORC1) and not a viral protein, as knockdown of mTORC1 and mTORC1 activators but not mTOR complex 2 components reduced ANDV replication. Additionally, primary fibroblasts from a patient with tuberous sclerosis exhibited increased mTORC1 activity and increased ANDV protein expression, which were blocked following temsirolimus treatment. Finally, we show that ANDV glycoprotein Gn colocalized with mTOR and lysosomes in infected cells. Together, these data demonstrate that mTORC1 signaling regulates ANDV replication and suggest that the hantavirus Gn protein may modulate mTOR and lysosomal signaling during infection, thus bypassing the cellular regulation of translation.  相似文献   

2.
The human papillomavirus (HPV) type 16 (HPV16) E6 protein can stimulate mechanistic target of rapamycin complex 1 (mTORC1) signaling and cap-dependent translation through activation of the PDK1 and mTORC2 kinases. Here we report that HPV18 E6 also enhances cap-dependent translation. The integrity of LXXLL and PDZ protein binding domains is important for activation of cap-dependent translation by high-risk mucosal HPV E6 proteins. Consistent with this model, low-risk mucosal HPV6b and HPV11 E6 proteins, which do not contain a PDZ protein binding motif, also activate cap-dependent translation and mTORC1, albeit at a lower efficiency than high-risk HPV E6 proteins. In contrast, cutaneous HPV5 and HPV8 E6 proteins, which lack LXXLL and PDZ motif protein binding, do not enhance cap-dependent translation. Mutagenic analyses of low-risk HPV E6 proteins revealed that association with the LXXLL motif containing ubiquitin ligase E6AP (UBE3A) correlates with activation of cap-dependent translation. Hence, activation of mTORC1 and cap-dependent translation may be important for the viral life cycle in specific epithelial tissue types and contribute to cellular transformation in cooperation with other biological activities of high-risk HPV E6-containing proteins.  相似文献   

3.

Background

Chikungunya virus (CHIKV) is a re-emerging alphavirus that causes chikungunya fever and persistent arthralgia in humans. Currently, there is no effective vaccine or antiviral against CHIKV infection. Therefore, this study evaluates whether RNA interference which targets at viral genomic level may be a novel antiviral strategy to inhibit the medically important CHIKV infection.

Methods

Plasmid-based small hairpin RNA (shRNA) was investigated for its efficacy in inhibiting CHIKV replication. Three shRNAs designed against CHIKV Capsid, E1 and nsP1 genes were transfected to establish stable shRNA-expressing cell clones. Following infection of stable shRNA cells clones with CHIKV at M.O.I. 1, viral plaque assay, Western blotting and transmission electron microscopy were performed. The in vivo efficacy of shRNA against CHIKV replication was also evaluated in a suckling murine model of CHIKV infection.

Results

Cell clones expressing shRNAs against CHIKV E1 and nsP1 genes displayed significant inhibition of infectious CHIKV production, while shRNA Capsid demonstrated a modest inhibitory effect as compared to scrambled shRNA cell clones and non-transfected cell controls. Western blot analysis of CHIKV E2 protein expression and transmission electron microscopy of shRNA E1 and nsP1 cell clones collectively demonstrated similar inhibitory trends against CHIKV replication. shRNA E1 showed non cell-type specific anti-CHIKV effects and broad-spectrum silencing against different geographical strains of CHIKV. Furthermore, shRNA E1 clones did not exert any inhibition against Dengue virus and Sindbis virus replication, thus indicating the high specificity of shRNA against CHIKV replication. Moreover, no shRNA-resistant CHIKV mutant was generated after 50 passages of CHIKV in the stable cell clones. More importantly, strong and sustained anti-CHIKV protection was conferred in suckling mice pre-treated with shRNA E1.

Conclusion

Taken together, these data suggest the promising efficacy of anti-CHIKV shRNAs, in particular, plasmid-shRNA E1, as a novel antiviral strategy against CHIKV infection.  相似文献   

4.
5.
The precursor group-specific antigen (pr55Gag) is central to HIV-1 assembly. Its expression alone is sufficient to assemble into virus-like particles. It also selects the genomic RNA for encapsidation and is involved in several important virus-host interactions for viral assembly and restriction, making its synthesis essential for aspects of viral replication. Here, we show that the initiation of translation of the HIV-1 genomic RNA is mediated through both a cap-dependent and an internal ribosome entry site (IRES)-mediated mechanisms. In support of this notion, pr55Gag synthesis was maintained at 70% when cap-dependent translation initiation was blocked by the expression of eIF4G- and PABP targeting viral proteases in two in vitro systems and in HIV-1-expressing cells directly infected with poliovirus. While our data reveal that IRES-dependent translation of the viral genomic RNA ensures pr55Gag expression, the synthesis of other HIV-1 proteins, including that of pr160Gag/Pol, Vpr and Tat is suppressed early during progressive poliovirus infection. The data presented herein implies that the unspliced HIV-1 genomic RNA utilizes both cap-dependent and IRES-dependent translation initiation to supply pr55Gag for virus assembly and production.  相似文献   

6.
Internal ribosome entry sites (IRES) are utilized by a subset of cellular and viral mRNAs to initiate translation during cellular stress and virus infection when canonical cap-dependent translation is compromised. The intergenic region (IGR) IRES of the Dicistroviridae uses a streamlined mechanism in which it can directly recruit the ribosome in the absence of initiation factors and initiates translation using a non-AUG codon. A subset of IGR IRESs including that from the honey bee viruses can also direct translation of an overlapping +1 frame gene. In this study, we systematically examined cellular conditions that lead to IGR IRES-mediated 0 and +1 frame translation in Drosophila S2 cells. Towards this, a novel bicistronic reporter that exploits the 2A “stop-go” peptide was developed to allow the detection of IRES-mediated translation in vivo. Both 0 and +1 frame translation by the IGR IRES are stimulated under a number of cellular stresses and in S2 cells infected by cricket paralysis virus, demonstrating a switch from cap-dependent to IRES-dependent translation. The regulation of the IGR IRES mechanism ensures that both 0 frame viral structural proteins and +1 frame ORFx protein are optimally expressed during virus infection.  相似文献   

7.
Tomatidine, a natural steroidal alkaloid from unripe green tomatoes has been shown to exhibit many health benefits. We recently provided in vitro evidence that tomatidine reduces the infectivity of Dengue virus (DENV) and Chikungunya virus (CHIKV), two medically important arthropod-borne human infections for which no treatment options are available. We observed a potent antiviral effect with EC50 values of 0.82 μM for DENV-2 and 1.3 μM for CHIKV-LR. In this study, we investigated how tomatidine controls CHIKV infectivity. Using mass spectrometry, we identified that tomatidine induces the expression of p62, CD98, metallothionein and thioredoxin-related transmembrane protein 2 in Huh7 cells. The hits p62 and CD98 were validated, yet subsequent analysis revealed that they are not responsible for the observed antiviral effect. In parallel, we sought to identify at which step of the virus replication cycle tomatidine controls virus infectivity. A strong antiviral effect was seen when in vitro transcribed CHIKV RNA was transfected into Huh7 cells treated with tomatidine, thereby excluding a role for tomatidine during CHIKV cell entry. Subsequent determination of the number of intracellular viral RNA copies and viral protein expression levels during natural infection revealed that tomatidine reduces the RNA copy number and viral protein expression levels in infected cells. Once cells are infected, tomatidine is not able to interfere with active RNA replication yet it can reduce viral protein expression. Collectively, the results delineate that tomatidine controls viral protein expression to exert its antiviral activity. Lastly, sequential passaging of CHIKV in presence of tomatidine did not lead to viral resistance. Collectively, these results further emphasize the potential of tomatidine as an antiviral treatment towards CHIKV infection.  相似文献   

8.
The impact of respiratory syncytial virus (RSV) on morbidity and mortality is significant in that it causes bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and pneumonia in immunocompromised hosts. RSV activates protein kinase R (PKR), a cellular kinase relevant to limiting viral replication (Groskreutz, D. J., Monick, M. M., Powers, L. S., Yarovinsky, T. O., Look, D. C., and Hunninghake, G. W. (2006) J. Immunol. 176, 1733–1740). It is activated by autophosphorylation, likely triggered by a double-stranded RNA intermediate during replication of the virus. In most instances, ph-PKR targets the α subunit of eukaryotic translation initiation factor 2 (eIF2α) protein via phosphorylation, leading to an inhibition of translation of cellular and viral protein. However, we found that although ph-PKR increases in RSV infection, significant eIF2α phosphorylation is not observed, and inhibition of protein translation does not occur. RSV infection attenuates eIF2α phosphorylation by favoring phosphatase rather than kinase activity. Although PKR is activated, RSV sequesters PKR away from eIF2α by binding of the kinase to the RSV N protein. This occurs in conjunction with an increase in the association of the phosphatase, PP2A, with eIF2α following PKR activation. The result is limited phosphorylation of eIF2α and continued translation of cellular and viral proteins.  相似文献   

9.
10.

Background

Chikungunya virus (CHIKV) is an emerging mosquito-borne alphavirus that has caused multiple unprecedented and re-emerging outbreaks in both tropical and temperate countries. Despite ongoing research efforts, the underlying factors involved in facilitating CHIKV replication during early infection remains ill-characterized. The present study serves to identify host proteins modulated in response to early CHIKV infection using a proteomics approach.

Methodology and Principal Findings

The whole cell proteome profiles of CHIKV-infected and mock control WRL-68 cells were compared and analyzed using two-dimensional gel electrophoresis (2-DGE). Fifty-three spots were found to be differentially modulated and 50 were successfully identified by MALDI-TOF/TOF. Eight were significantly up-regulated and 42 were down-regulated. The mRNA expressions of 15 genes were also found to correlate with the corresponding protein expression. STRING network analysis identified several biological processes to be affected, including mRNA processing, translation, energy production and cellular metabolism, ubiquitin-proteasome pathway (UPP) and cell cycle regulation.

Conclusion/Significance

This study constitutes a first attempt to investigate alteration of the host cellular proteome during early CHIKV infection. Our proteomics data showed that during early infection, CHIKV affected the expression of proteins that are involved in mRNA processing, host metabolic machinery, UPP, and cyclin-dependent kinase 1 (CDK1) regulation (in favour of virus survival, replication and transmission). While results from this study complement the proteomics results obtained from previous late host response studies, functional characterization of these proteins is warranted to reinforce our understanding of their roles during early CHIKV infection in humans.  相似文献   

11.
12.
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that can cause fever and chronic arthritis in humans. CHIKV that is generated in mosquito or mammalian cells differs in glycosylation patterns of viral proteins, which may affect its replication and virulence. Herein, we compare replication, pathogenicity, and receptor binding of CHIKV generated in Vero cells (mammal) or C6/36 cells (mosquito) through a single passage. We demonstrate that mosquito cell-derived CHIKV (CHIKVmos) has slower replication than mammalian cell-derived CHIKV (CHIKVvero), when tested in both human and murine cell lines. Consistent with this, CHIKVmos infection in both cell lines produce less cytopathic effects and reduced antiviral responses. In addition, infection in mice show that CHIKVmos produces a lower level of viremia and less severe footpad swelling when compared with CHIKVvero. Interestingly, CHIKVmos has impaired ability to bind to glycosaminoglycan (GAG) receptors on mammalian cells. However, sequencing analysis shows that this impairment is not due to a mutation in the CHIKV E2 gene, which encodes for the viral receptor binding protein. Moreover, CHIKVmos progenies can regain GAG receptor binding capability and can replicate similarly to CHIKVvero after a single passage in mammalian cells. Furthermore, CHIKVvero and CHIKVmos no longer differ in replication when N-glycosylation of viral proteins was inhibited by growing these viruses in the presence of tunicamycin. Collectively, these results suggest that N-glycosylation of viral proteins within mosquito cells can result in loss of GAG receptor binding capability of CHIKV and reduction of its infectivity in mammalian cells.  相似文献   

13.

Background

Chikungunya virus (CHIKV) has reemerged as a life threatening pathogen and caused large epidemics in several countries. So far, no licensed vaccine or effective antivirals are available and the treatment remains symptomatic. In this context, development of effective and safe prophylactics and therapeutics assumes priority.

Methods

We evaluated the efficacy of the siRNAs against ns1 and E2 genes of CHIKV both in vitro and in vivo. Four siRNAs each, targeting the E2 (Chik-1 to Chik-4) and ns1 (Chik-5 to Chik-8) genes were designed and evaluated for efficiency in inhibiting CHIKV growth in vitro and in vivo. Chik-1 and Chik-5 siRNAs were effective in controlling CHIKV replication in vitro as assessed by real time PCR, IFA and plaque assay.

Conclusions

CHIKV replication was completely inhibited in the virus-infected mice when administered 72 hours post infection. The combination of Chik-1 and Chik-5 siRNAs exhibited additive effect leading to early and complete inhibition of virus replication. These findings suggest that RNAi capable of inhibiting CHIKV growth might constitute a new therapeutic strategy for controlling CHIKV infection and transmission.  相似文献   

14.
The efficient transmission of alphaviruses requires the establishment of a persistent infection in the arthropod vector; however, the nature of the virus-arthropod host interaction is not well understood. The phosphatidylinositol 3-kinase (PI3K)-Akt-TOR pathway is a signaling pathway with which viruses interact to manipulate cellular functions. The viral activation of this pathway can enhance translation and inhibit apoptosis, potentially promoting viral replication; conversely, repression can enhance cell death. Using a system to study Sindbis virus RNA replication in Drosophila melanogaster, we found that the overexpression of Akt enhanced Sindbis virus replication. In contrast, a decrease in viral replication was observed for flies hypomorphic for the Akt gene. Infection of cultured Drosophila cells led to the phosphorylation and activation of Akt. The chemical inhibition of PI3K, Akt, and TOR in mosquito cells reduced virus replication, suggesting that this pathway is proviral. Early after infection, there was an increase in the TOR-dependent phosphorylation of 4E-BP1 in mosquito cells and a consequent increase in the translation of a capped reporter mRNA. In contrast, no change in 4E-BP1 phosphorylation was seen in mammalian cells, and the level of translation of the reporter decreased following infection. Finally, we found that the increase in the phosphorylation of 4E-BP1 was stimulated by replicon RNA but not by UV-inactivated virus. Our data indicate that Sindbis virus replication complex formation in mosquito cells activates the PI3K-Akt-TOR pathway, causing the phosphorylation of 4E-BP1 and increasing the formation of eukaryotic initiation factor 4F (eIF4F), which promote cap-dependent translation. This virus-induced increase in cap-dependent translation allows the efficient translation of viral mRNA while minimizing the burden on the cell.  相似文献   

15.
Proteolytic cleavage of translation initiation factors is a means to interfere with mRNA circularization and to induce translation arrest during picornaviral replication or apoptosis. It was shown that the regulated cleavages of eukaryotic initiation factor (eIF) 4G and poly(A)-binding protein (PABP) by viral proteinases correlated with early and late arrest of host cap-dependent and viral internal ribosome entry site (IRES)-dependent translation, respectively. Here we show that in contrast to coxsackievirus, eIF4G is not a substrate of proteinase 3C of hepatitis A virus (HAV 3Cpro). However, PABP is cleaved by HAV 3Cpro in vitro and in vivo, separating the N-terminal RNA-binding domain (NTD) of PABP from the C-terminal protein-interaction domain. In vitro, NTD has a dominant negative effect on HAV IRES-dependent translation and an enhanced binding affinity to the RNA structural element pY1 in the 5′ nontranslated region of the HAV RNA that is essential for viral genome replication. The results point to a regulatory role of PABP cleavage in RNA template switching of viral translation to RNA synthesis.  相似文献   

16.
Lack of vaccine and effective antiviral drugs against chikungunya virus (CHIKV) outbreaks have led to significant impact on health care in the developing world. Here, we evaluated the antiviral effects of tetracycline (TETRA) derivatives and other common antiviral agents against CHIKV. Our results showed that within the TETRA derivatives group, Doxycycline (DOXY) exhibited the highest inhibitory effect against CHIKV replication in Vero cells. On the other hand, in the antiviral group Ribavirin (RIBA) showed higher inhibitory effects against CHIKV replication compared to Aciclovir (ACIC). Interestingly, RIBA inhibitory effects were also higher than all but DOXY within the TETRA derivatives group. Docking studies of DOXY to viral cysteine protease and E2 envelope protein showed non-competitive interaction with docking energy of -6.6±0.1 and -6.4±0.1 kcal/mol respectively. The 50% effective concentration (EC50) of DOXY and RIBA was determined to be 10.95±2.12 μM and 15.51±1.62 μM respectively, while DOXY+RIBA (1:1 combination) showed an EC50 of 4.52±1.42 μM. When compared, DOXY showed higher inhibition of viral infectivity and entry than RIBA. In contrast however, RIBA showed higher inhibition against viral replication in target cells compared to DOXY. Assays using mice as animal models revealed that DOXY+RIBA effectively inhibited CHIKV replication and attenuated its infectivity in vivo. Further experimental and clinical studies are warranted to investigate their potential application for clinical intervention of CHIKV disease.  相似文献   

17.
Inhibitors of the phosphatidylinositol 3-kinase (PI3 kinase)–FKBP-rapamycin-associated protein (FRAP) pathway, such as rapamycin and wortmannin, induce dephosphorylation and activation of the suppressor of cap-dependent translation, 4E-BP1. Encephalomyocarditis virus (EMCV) infection leads to activation of 4E-BP1 at the time of host translation shutoff. Consistent with these data, rapamycin mildly enhances the synthesis of viral proteins and the shutoff of host cell protein synthesis after EMCV infection. In this study, two defective EMCV strains were generated by deleting portions of the 2A coding region of an infectious cDNA clone. These deletions dramatically decreased the efficiency of viral protein synthesis and abolished the virus-induced shutoff of host translation after infection of BHK-21 cells. Both translation and processing of the P1-2A capsid precursor polypeptide are impaired by the deletions in 2A. The translation and yield of mutant viruses were increased significantly by the presence of rapamycin and wortmannin during infection. Thus, inhibition of the PI3 kinase-FRAP signaling pathway partly complements mutations in 2A protein and reverses a slow-virus phenotype.  相似文献   

18.

Background

Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place.

Methodology and Principal Findings

Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification.

Conclusion/Significance

Our study constitutes the first analysis of the protein response of Aedes aegypti''s midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by the arboviruses.  相似文献   

19.
In this study, we used a systems biology approach to investigate changes in the proteome and metabolome of shrimp hemocytes infected by the invertebrate virus WSSV (white spot syndrome virus) at the viral genome replication stage (12 hpi) and the late stage (24 hpi). At 12 hpi, but not at 24 hpi, there was significant up-regulation of the markers of several metabolic pathways associated with the vertebrate Warburg effect (or aerobic glycolysis), including glycolysis, the pentose phosphate pathway, nucleotide biosynthesis, glutaminolysis and amino acid biosynthesis. We show that the PI3K-Akt-mTOR pathway was of central importance in triggering this WSSV-induced Warburg effect. Although dsRNA silencing of the mTORC1 activator Rheb had only a relatively minor impact on WSSV replication, in vivo chemical inhibition of Akt, mTORC1 and mTORC2 suppressed the WSSV-induced Warburg effect and reduced both WSSV gene expression and viral genome replication. When the Warburg effect was suppressed by pretreatment with the mTOR inhibitor Torin 1, even the subsequent up-regulation of the TCA cycle was insufficient to satisfy the virus''s requirements for energy and macromolecular precursors. The WSSV-induced Warburg effect therefore appears to be essential for successful viral replication.  相似文献   

20.
Chikungunya virus (CHIKV) is primarily transmitted by Aedes spp. mosquitoes. The present study investigated vector competence for CHIKV in Aedes aegypti and Aedes albopictus mosquitoes found in Madurai, South India. The role of receptor proteins on midguts contributing to permissiveness of CHIKV to Aedes spp. mosquitoes was also undertaken. Mosquitoes were orally infected with CHIKV DRDE‐06. Infection of midguts and dissemination to heads was confirmed by immunofluorescence assay at different time points. A plaque assay was performed from mosquito homogenates at different time points to study CHIKV replication. Presence of putative CHIKV receptor proteins on mosquito midgut epithelial cells was detected by virus overlay protein binding assay (VOPBA). The identity of these proteins was established using mass spectrometry. CHIKV infection of Ae. aegypti and Ae. albopictus midguts and dissemination to heads was observed to be similar. A plaque assay performed with infected mosquito homogenates revealed that CHIKV replication dynamics was similar in Aedes sp. mosquitoes until 28 days post infection. VOPBA performed with mosquito midgut membrane proteins revealed that prohibitin could serve as a putative CHIKV receptor on Aedes mosquito midguts, whereas an absence of CHIKV binding protein/s on Culex quinquefasciatus midguts can partially explain the non‐permissiveness of these mosquitoes to infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号