首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Primary open‐angle glaucoma (POAG) is one of the most common causes for blindness worldwide. Although an elevated intraocular pressure (IOP) is the main risk factor, the exact pathology remained indistinguishable. Therefore, it is necessary to have appropriate models to investigate these mechanisms. Here, we analysed a transgenic glaucoma mouse model (βB1‐CTGF) to elucidate new possible mechanisms of the disease. Therefore, IOP was measured in βB1‐CTGF and wildtype mice at 5, 10 and 15 weeks of age. At 5 and 10 weeks, the IOP in both groups were comparable (P > 0.05). After 15 weeks, a significant elevated IOP was measured in βB1‐CTGF mice (P < 0.001). At 15 weeks, electroretinogram measurements were performed and both the a‐ and b‐wave amplitudes were significantly decreased in βB1‐CTGF retinae (both P < 0.01). Significantly fewer Brn‐3a+ retinal ganglion cells (RGCs) were observed in the βB1‐CTGF group on flatmounts (P = 0.02), cross‐sections (P < 0.001) and also via quantitative real‐time PCR (P = 0.02). Additionally, significantly more cleaved caspase 3+ RGCs were seen in the βB1‐CTGF group (P = 0.002). Furthermore, a decrease in recoverin+ cells was observable in the βB1‐CTGF animals (P = 0.004). Accordingly, a significant down‐regulation of Recoverin mRNA levels were noted (P < 0.001). Gfap expression, on the other hand, was higher in βB1‐CTGF retinae (P = 0.023). Additionally, more glutamine synthetase signal was noted (P = 0.04). Although no alterations were observed regarding photoreceptors via immunohistology, a significant decrease of Rhodopsin (P = 0.003) and Opsin mRNA (P = 0.03) was noted. We therefore assume that the βB1‐CTGF mouse could serve as an excellent model for better understanding the pathomechanisms in POAG.  相似文献   

2.
Like all cells, neurons adapt to stress by transient alterations in phenotype, an epigenetic response that forms the basis for preconditioning against acute ischemic injury in the central nervous system. We recently showed that a modified repetitive hypoxic preconditioning (RHP) regimen significantly extends the window of ischemic tolerance to acute retinal ischemic injury from days to months. The present study was undertaken to determine if this uniquely protracted neuroprotective phenotype would also confer resistance to glaucomatous neurodegeneration. Retinal ganglion cell death at somatic and axonal levels was assessed after both 3 and 10 wks of sustained intraocular hypertension in an adult mouse model of inducible, open-angle glaucoma, with or without RHP before intraocular pressure elevation. Loss of brn3-positive ganglion cell soma after 3 wks of experimental glaucoma, along with increases in several apoptotic endpoints, were all significantly and robustly attenuated in mice subjected to RHP. Soma protection by RHP was also confirmed after 10 wks of intraocular hypertension by brn3 and SMI32 immunostaining. In addition, quantification of axon density in the postlaminar optic nerve documented robust preservation in RHP-treated mice, and neurofilament immunostaining also revealed preconditioning-induced improvements in axon integrity/survival in both retina and optic nerve after 10 wks of experimental glaucoma. This uniquely protracted period of phenotypic change, established in retinal ganglion cells by the activation of latent antiapoptotic, prosurvival mechanisms at both somatic and axonal levels, reflects a novel form of inducible neuronal plasticity that may provide innovative therapeutic targets for preventing and treating glaucoma and other neurodegenerative diseases.  相似文献   

3.
The carbocyanine dye, DiI, has been used to study the retinal origin of the uncrossed retinofugal component of the mouse and to show the course taken by these fibres through the optic nerve and chiasm during development. Optic axons first arrive at the chiasm at embryonic day 13 (E13) but do not cross the midline until E14. After this stage, fibres taking an uncrossed course can be selectively labelled by unilateral tract implants of DiI. The earliest ipsilaterally projecting ganglion cells are located in the dorsal central retina. The first sign of the adult pattern of distribution of ganglion cells with uncrossed axons located mainly in the ventrotemporal retina is seen on embryonic day 16.5, thus showing that the adult line of decussation forms early in development. A small number of labelled cells continue to be found in nasal and dorsal retina at all later stages. At early stages (E14-15), retrogradely labelled uncrossed fibres are found in virtually all fascicles of the developing nerve, intermingling with crossed axons throughout the length of the nerve. At later stages of development (E16-17), although uncrossed fibres pass predominantly within the temporal part of the stalk, they remain intermingled with crossed axons. A significant number of uncrossed axons also lie within the nasal part of the optic stalk. The position of uncrossed fibres throughout the nerve in the later developmental stages is comparable to that seen in the adult rodent (Baker and Jeffery, 1989). The distribution of uncrossed axons thus indicates that positional cues are not sufficient to account for the choice made by axons when they reach the optic chiasm.  相似文献   

4.
Retinal ganglion cell (RGC) degeneration is an important cause of visual impairment, and results in part from microglia-mediated inflammation. Numerous experimental studies have focused on identifying drug targets to rescue these neurons. We recently showed that KV1.1 and KV1.3 channels are expressed in adult rat RGCs and that siRNA -mediated knockdown of either channel reduces RGC death after optic nerve transection. Earlier we found that KV1.3 channels also contribute to microglial activation and neurotoxicity; raising the possibility that these channels contribute to neurodegeneration through direct roles in RGCs and through inflammatory mechanisms. Here, RGC survival was increased by combined siRNA-mediated knockdown of KV1.1 and KV1.3 in RGCs, but survival was much greater when knockdown of either channel was combined with intraocular injection of a KV1.3 channel blocker (agitoxin-2 or margatoxin). After axotomy, increased expression of several inflammation-related molecules preceded RGC loss and, consistent with a dual mechanism, their expression was differentially affected when channel knockdown in RGCs was combined with KV1.3 blocker injection. KV1.3 blockers reduced activation of retinal microglia and their tight apposition along RGC axon fascicles after axotomy, but did not prevent their migration from the inner plexiform to the damaged ganglion cell layer. Expression of several growth factors increased after axotomy; and again, there were differences following blocker injection compared with RGC-selective channel knockdown. These results provide evidence that KV1.3 channels play important roles in apoptotic degeneration of adult RGCs through cell-autonomous mechanisms mediated by channels in the neurons, and non-autonomous mechanisms mediated by microglia and inflammation.Key words: neurotrauma, axotomy, optic nerve transection, microglial activation, apoptosis, KV1.1, KV1.3, siRNA in vivo, agitoxin-2, margatoxin  相似文献   

5.
Mitochondrial abnormality has been implicated in various models of retinal ganglion cell (RGC) degeneration. We investigated modulation of mitochondrial membrane permeability and apoptosis-inducing factor (AIF) translocation in a rat experimental glaucoma model. A decrease in MitoTracker-labeled mitochondria around the lamina area of the optic nerve was observed in the glaucomatous eye. Immunoblot analysis for axonal motor proteins showed that a significant decrease in kinesin 1 and myosin Va levels in the glaucomatous optic nerve. A significant decrease in mitochondrial thioredoxin 2 (Trx2) level was observed in the optic nerve after intraocular pressure (IOP) elevation. Translocation of AIF from the mitochondria to the axoplasm and nucleus was observed in the axon and cell body, respectively. Trx2 over-expression in the mitochondrial membrane of RGC-5 cells inhibited AIF translocation, resulting in cytoprotective effect against neurotoxicity induced by TNF-α/buthionine sulfoximine treatment. In vivo transfection was performed with EGFP-Trx2 plasmid and electroporation. Over-expression of Trx2 in the retina and optic nerve indicated the protective effect against high IOP induced axonal degeneration. Thus, the decreased mitochondrial membrane potential and subsequent AIF translocation were involved in the glaucomatous neurodegeneration. Furthermore, modulation of mitochondria through the inhibition of AIF translocation may become a new treatment strategy for neurodegenerative disease, such as glaucoma.  相似文献   

6.
7.
In this study,the role of melanopsin-expressing retinal ganglion cells(mRGCs) in the glaucoma-induced depressive behavioral response pattern was investigated.The CFP-D2 transgenic glaucoma animal model from five age groups was used in this study.Immunohistochemical labeling,quantitative analysis of mRGC morphology,open field test(OFT),and statistical analysis were used.In comparison with C57 BL/6 mice,the age-matched CFP-D2 mice had significantly elevated intraocular pressure(IOP).We observed parallel morphological changes in the retina,including a reduction in the density of cyan fluorescent protein(CFP) expressing cells(cells mm 2 at 2 months of age,1309±26;14 months,878±30,P<0.001),mRGCs(2 months,48±3;14 months,19±4,P<0.001),Brn3b-expressing RGCs(2 months,1283±80;14 months,950±31,P<0.001),Brn-3b expressing mRGCs(5 months,50.17%±5.5%;14 months,12.61%±3.8%,P<0.001),and reduction in the dendritic field size of mRGCs(mm2 at 2 months,0.077±0.015;14 months,0.065±0.015,P<0.05).CFP-D2 mice had hyperactive locomotor activity patterns based on OFT findings of the total distance traveled,number of entries into the center,and time spent in the center of the testing apparatus.The glaucoma induced hyperactive response pattern could be associated with dysfunctional mRGCs,most likely Brn-3b-positive mRGCs in CFP-D2 mice.  相似文献   

8.
Imaging has gained a key role in modern glaucoma management. Traditionally, interest was directed toward the appearance of the optic nerve head and the retinal nerve fiber layer. With the improvement of the resolution of optical coherence tomography, the ganglion cell complex has also become routinely accessible in the clinic. Further advances have been made in understanding the structure-function relationship in glaucoma. Nevertheless, direct imaging of the retinal ganglion cells in glaucoma would be advantageous. With the currently used techniques, this goal cannot be achieved, because the transversal resolution is limited by aberrations of the eye. The use of adaptive optics has significantly improved transversal resolution, and the imaging of several cell types including cones and astrocytes has become possible. Imaging of retinal ganglion cells, however, still remains a problem, because of the transparency of these cells. However, the visualization of retinal ganglion cells and their dendrites has been achieved in animal models. Furthermore, attempts have been made to visualize the apoptosis of retinal ganglion cells in vivo. Implementation of these techniques in clinical practice will probably improve glaucoma care and facilitate the development of neuroprotective strategies.  相似文献   

9.
Glaucoma is the second leading cause of blindness in the world. The ultimate cause of vision loss due to glaucoma is thought to be retinal ganglion cell (RGC) apoptosis. Neuroprotection of RGC is becoming an important approach of glaucoma therapy. Several lines of evidence suggest that estrogen has neurotrophic and neuroprotective properties. In this study, we examine the role of estrogen in preventing RGC loss in DBA/2J mouse, an in vivo model of an inherited (pigmentary) glaucoma. Two-month-old female DBA/2J mice were anesthetized and ovariectomized with or without subcutaneous 17beta-estradiol (betaE2) pellet implantation. RGC survival was evaluated from flat-mounted whole retinas by counting retrograde-labeled cells. The loss of nerve fibers and RGC were also evaluated in paraffin-fixed retinal cross sections. Biochemical alterations in the retinas of DBA/2J mice in response to systemic injection of betaE2 were also examined. We have made several important observations showing that: (1) betaE2 treatment reduced the loss of RGC and neurofibers through inhibition of ganglion cell apoptosis, (2) betaE2 activated Akt and cAMP-responsive-element-binding-protein (CREB), (3) betaE2 up-regulated thioredoxin-1 (Trx-1) expression, (4) betaE2 reduced the increased activations of mitogen-activated protein kinases (MAPK) and NF-kappaB, (5) betaE2 inhibited the increased interleukin-18 (IL-18) expression, and (6) treatment with tamoxifen, an estrogen receptor antagonist, blocked betaE2-mediated activation of Akt and inhibition of MAPK phosphorylation in the retinas of DBA/2J mice. These findings suggest the possible involvement of multiple biochemical events, including estrogen receptor/Akt/CREB/thioredoxin-1, and estrogen receptor/MAPK/NF-kappaB, in estrogen-mediated retinal ganglion cell protection.  相似文献   

10.
11.

Background  

The neural retina is a highly structured tissue of the central nervous system that is formed by seven different cell types that are arranged in layers. Despite much effort, the genetic mechanisms that underlie retinal development are still poorly understood. In recent years, large-scale genomic analyses have identified candidate genes that may play a role in retinal neurogenesis, axon guidance and other key processes during the development of the visual system. Thus, new and rapid techniques are now required to carry out high-throughput analyses of all these candidate genes in mammals. Gene delivery techniques have been described to express exogenous proteins in the retina of newborn mice but these approaches do not efficiently introduce genes into the only retinal cell type that transmits visual information to the brain, the retinal ganglion cells (RGCs).  相似文献   

12.
13.
Autophagy is reported to have important roles in relation to regulated cell death pathways and neurodegeneration. This study used chronic hypertensive glaucoma rat model to investigate whether the autophagy pathway has a role in the apoptosis of retinal ganglion cells (RGCs) after chronic intraocular pressure (IOP) elevation. Under electron microscopy, autophagosomes were markedly accumulated in the dendrites and cytoplasm of RGCs after IOP elevation. Western blot analysis showed that LC3-II/LC3-I and beclin-1 were upregulated throughout the 8-weeks period after IOP elevation. The pattern of LC3 immunostaining showed autophagy activation in the cytoplasm of RGCs to increase and peak at 4 weeks after IOP elevation. Most of these LC3B-positive RGCs underwent apoptosis by terminal deoxynucleotidyltransferase-mediated biotinylated UTP nick end labeling, and inhibition of autophagy with 3-methyladenine decreased RGC apoptosis. The activated pattern shows that autophagy is initially activated in the dendrites of the RGCs, but, thereafter autophagy is mainly activated in the cytoplasm of RGCs. This may show that autophagy is differently regulated in different compartments of the neuron. This present study showed that autophgy is activated in RGCs and has a role in autophagic cell death after chronic IOP elevation.  相似文献   

14.
Exenatide (exendin-4 analogue) is widely used in clinics and shows a neuroprotective effect. The main objectives of the present study were to prove that retinal ganglion cells (RGC-5) express GLP-1R, to ascertain whether exenatide prevents a high-glucose-induced RGC-5 impairment, to determine the appropriate concentration of exenatide to protect RGC-5 cells, and to explore the neuroprotective mechanisms of exenatide. Immunofluorescence and Western blot analyses demonstrated that RGC-5 cells express GLP-1R. We incubated RGC-5 cells with 25 mM glucose prior to incubation with either 25 mM glucose, 55 mM glucose (high), high glucose plus exenatide or high glucose plus a GLP-1R antagonist. The survival rates of the cells were measured by CCK-8, and cellular injury was detected by electron microscopy. There were statistical differences between the high-glucose group and the control group (P<0.05). Exenatide improved the survival rate of the cells and suppressed changes in the mitochondrial morphology. The optimum concentration of exenatide to protect the RGC-5 cells from high-glucose-induced RGC injury was 0.5 μg/ml, and this protective effect could be inhibited by exendin (9-39). To further study the mechanism underlying the beneficial effects of exenatide, the expression levels of cytochrome c, Bcl-2, Bax and caspase-3 were analysed by Western blot. The present study showed that treatment with exenatide significantly inhibited cytochrome c release and decreased the intracellular expression levels of Bax and caspase-3, whereas Bcl-2 was increased (P<0.05). These results suggested that GLP-1R activation can inhibit the cellular damage that is induced by high glucose. A mitochondrial mechanism might play a key role in the protective effect of exenatide on the RGC-5 cells, and exenatide might be beneficial for patients with diabetic retinopathy.  相似文献   

15.
Activity-dependent refinement of synaptic connections occurs throughout the developing nervous system, including the visual system. Retinal ganglion cells (RGCs) overproduce synapses then refine them in an activity-dependent manner that segregates RGC connections into multicellular patterns, such as eye-specific regions and retinotopic maps. Ferrets additionally segregate ON and OFF retinogeniculate pathways in an activity-dependent manner. It was unknown whether differences in ON versus OFF intrinsic and spontaneous activity occur in postnatal mouse. The work reported here measured the intrinsic properties and spontaneous activity of morphologically identified postnatal mouse RGCs, and tested the hypothesis that mouse ON and OFF RGCs develop differences in spontaneous activity. We found developmental changes in resting potential, action potential threshold, depolarization to threshold, action potential width, action potential patterns, and maximal firing rates. These results are consistent with the maturation of the intrinsic properties of RGCs extending through the first three postnatal weeks. However, there were no differences among mouse ON, OFF, and multistratified RGCs in intrinsic excitability, spontaneous synaptic drive or spontaneous action potential patterns. The absence of differences between ON and OFF activity patterns is unlike the differences that arise in ferrets. In contrast to the ferret, the ON and OFF target neurons in the mouse are organized in a random pattern, not layers. This supports the hypothesis that the absence of systematic differences in activity results in the nonlayered distribution of retinogeniculate connections.  相似文献   

16.
Glaucoma is an optic neuropathy, commonly associated with elevated intraocular pressure (IOP) characterized by optic nerve degeneration, cupping of the optic disc, and loss of retinal ganglion cells which could lead to loss of vision. Endothelin-1 (ET-1) is a 21-amino acid vasoactive peptide that plays a key role in the pathogenesis of glaucoma; however, the receptors mediating these effects have not been defined. In the current study, endothelin B (ET(B)) receptor expression was assessed in vivo, in the Morrison's ocular hypertension model of glaucoma in rats. Elevation of IOP in Brown Norway rats produced increased expression of ET(B) receptors in the retina, mainly in retinal ganglion cells (RGCs), nerve fiber layer (NFL), and also in the inner plexiform layer (IPL) and inner nuclear layer (INL). To determine the role of ET(B) receptors in neurodegeneration, Wistar-Kyoto wild type (WT) and ET(B) receptor-deficient (KO) rats were subjected to retrograde labeling with Fluoro-Gold (FG), following which IOP was elevated in one eye while the contralateral eye served as control. IOP elevation for 4 weeks in WT rats caused an appreciable loss of RGCs, which was significantly attenuated in KO rats. In addition, degenerative changes in the optic nerve were greatly reduced in KO rats compared to those in WT rats. Taken together, elevated intraocular pressure mediated increase in ET(B) receptor expression and its activation may contribute to a decrease in RGC survival as seen in glaucoma. These findings raise the possibility of using endothelin receptor antagonists as neuroprotective agents for the treatment of glaucoma.  相似文献   

17.
Lighting conditions may affect the development of retinal degenerative diseases such as macular degeneration. In this study, to determine whether the lighting environment affects the progression of degeneration of retinal ganglion cells (RGCs), we examined glutamate/aspartate transporter (GLAST) heterozygous (GLAST+/-) mice, a mouse model of normal tension glaucoma. GLAST+/- mice were reared under a 12-h light-dark cycle (Light/Dark) or complete darkness (Dark/Dark) condition after birth. The total RGC number in the Dark/Dark group was significantly decreased compared with the Light/Dark group at 3 weeks old, while the number of osteopontin-positive αRGCs were similar in both groups. At 6 and 12 weeks old, the total RGC number were not significantly different in both conditions. In addition, the retinal function examined by multifocal electroretinogram were similar at 12 weeks old. These results suggest that lighting conditions may regulate the progression of RGC degeneration in some types of glaucoma.  相似文献   

18.
19.
In non-mammalian vertebrates, the relatively homogeneous population of retinal ganglion cells (RGCs) differentiates and projects entirely to the contralateral side of the brain under the influence of sonic hedgehog (Shh). In mammals, by contrast, there are two different RGC types: the Zic2-positive ipsilateral projecting and the Isl2-positive contralateral projecting. We asked whether the axons of these two populations respond to Shh and if their response differs. We have also analysed whether midline- and RGC-derived Shh contributes to the growth of the axons in the proximal visual pathway. We show that these two RGC types are characterised by a differential expression of Shh signalling components and that they respond differently to Shh when challenged in vitro. In vivo blockade of Shh activity, however, alters the path and distribution mostly of the contralateral projecting RGC axons at the chiasm, indicating that midline-derived Shh participates in funnelling contralateral visual fibres in this region. Furthermore, interference with Shh signalling in the RGCs themselves causes abnormal growth and navigation of contralateral projecting axons in the proximal portion of the pathway, highlighting a novel cell-autonomous mechanism by which Shh can influence growth cone behaviour.  相似文献   

20.
Previous phenotyping of glucose homeostasis and insulin secretion in a mouse model of hereditary hemochromatosis (Hfe(-/-)) and iron overload suggested mitochondrial dysfunction. Mitochondria from Hfe(-/-) mouse liver exhibited decreased respiratory capacity and increased lipid peroxidation. Although the cytosol contained excess iron, Hfe(-/-) mitochondria contained normal iron but decreased copper, manganese, and zinc, associated with reduced activities of copper-dependent cytochrome c oxidase and manganese-dependent superoxide dismutase (MnSOD). The attenuation in MnSOD activity was due to substantial levels of unmetallated apoprotein. The oxidative damage in Hfe(-/-) mitochondria is due to diminished MnSOD activity, as manganese supplementation of Hfe(-/-) mice led to enhancement of MnSOD activity and suppressed lipid peroxidation. Manganese supplementation also resulted in improved insulin secretion and glucose tolerance associated with increased MnSOD activity and decreased lipid peroxidation in islets. These data suggest a novel mechanism of iron-induced cellular dysfunction, namely altered mitochondrial uptake of other metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号