首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A novel yellow-green leaf mutant yellow-green leaf-1 (ygl-1) was isolated in self-pollinated progenies from the cross of maize inbred lines Ye478 and Yuanwu02. The mutant spontaneously showed yellow-green character throughout the lifespan. Meanwhile, the mutant reduced contents of chlorophyll and Car, arrested chloroplast development and lowered the capacity of photosynthesis compared with the wild-type Lx7226. Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. The ygl-1 locus was initially mapped to an interval of about 0.86 Mb in bin 1.01 on the short arm of chromosome 1 using 231 yellow-green leaf individuals of an F2 segregating population from ygl-1/Lx7226. Utilizing four new polymorphic SSR markers, the ygl-1 locus was narrowed down to a region of about 48 kb using 2930 and 2247 individuals of F2 and F3 mapping populations, respectively. Among the three predicted genes annotated within this 48 kb region, GRMZM2G007441, which was predicted to encode a cpSRP43 protein, had a 1-bp nucleotide deletion in the coding region of ygl-1 resulting in a frame shift mutation. Semi-quantitative RT-PCR analysis revealed that YGL-1 was constitutively expressed in all tested tissues and its expression level was not significantly affected in the ygl-1 mutant from early to mature stages, while light intensity regulated its expression both in the ygl-1 mutant and wild type seedlings. Furthermore, the mRNA levels of some genes involved in chloroplast development were affected in the six-week old ygl-1 plants. These findings suggested that YGL-1 plays an important role in chloroplast development of maize.  相似文献   

2.
Plant growth, leaf protein and chlorophyll content, and chloroplastultrastructure as affected by nitrogen (N) were examined infour rice (Oryza sativa L.) cultivars grown in culture solutionunder controlled conditions. Increasing N concentration generallyincreased height and shoot dry weight of all cultivars. Cultivardifferences were significant at normal N level (40 ppm). Amongcultivars, IR8 was most responsive to increasing N, having thesignificantly highest shoot dry weight and protein content.Total chlorophyll and protein contents varied with cultivarand N, but chlorophyll a/b ratio remained constant. At the ultrastructurallevel, chloroplasts had generally well-developed grana and stromalamellae at 40 ppm.N. Chloroplasts at high N had from one tofour times as many grana as the N-deficient chloroplasts. Nitrogendeficiency reduced the size of the chloroplast, grana-stromalamellae and resulted in fewer poorly stacked grana. Increasingthe N level (120 ppm) above the normal level did not significantlyaffect chloroplast size of any cultivar, except for IR8 whichhad the largest chloroplast. A reduction in the number of starchgrains was observed in IR8, but more were present in ER36 underN-deficient conditions. The size of starch grains was not affectedby N and did not differ among cultivars. Plastoglobuli appearedto be larger under N-deficient conditions. Nitrogen had no effecton the number of plastoglobuli but cultivar differences existed.The highly N-responsive IR8 (based on dry weight) had the largestchloroplast which increased with N level. The increase in chloroplastsize accounted for the increase in both chlorophyll and proteincontents and, consequently, dry weight. Key words: Oryza sativa L., chloroplast, chlorophyll, protein  相似文献   

3.
The seed of an excellent indica restorer line Jinhui10 (Oryza sativa L. ssp. indica) was treated by ethyl methanesulfonate (EMS); a leaf-color mutant displaying distinct phenotype throughout development grown in paddy field was identified from the progeny. The mutant leaf showed white-yellow at seedling stage and then turned to yellow-green at tillering stage, after that, virescent color appeared until to maturity. The mutant was thus temporarily designed as wyv1. The chlorophyll contents decreased significantly and the changing was consistent with the chlorotic level of wyv1 leaves. Chlorophyll fluorescence kinetic parameters measured at the seedling stage showed that co-efficiency of photochemical quenching (qP), actual photosystem II efficiency (ΦPS II), electron transport rate (ETR) and initial chlorophyll fluorescence level (Fo), net photosynthetic rate (Pn) and maximum photochemical efficiency (Fv / Fm) significantly decreased in severe chlorotic leaf of the mutant compared with that of wild type. However, no significant differences were observed for Pn and Fv/Fm between virescent leaf and normal green leaf. Genetic analysis suggested that the mutant phenotype was controlled by a single recessive nuclear gene which was finally mapped between SSR marker Y7 and Y6 on rice chromosome 3 based on F2 population of Xinong1A / wyv1. Genetic distances were 0.06 cM and 0.03 cM respectively, and the physical distance was 84 kb according to the sequence of indica rice 9311. The results must facilitate map-based cloning and functional analysis of WYV1 gene.  相似文献   

4.
Rice (Oryza sativa L.) leaf color mutants are excellent models for studying chlorophyll biosynthesis and chloroplast development. In this study, we isolated a stable genetic white and lesion mimic leaf1 (wlml1) mutant from an ethyl methanesulfonate (EMS)-mutagenized population of the indica cultivar TN1. Compared with wild-type TN1, the wlml1 mutant had lower contents of chlorophyll and carotenoids, altered chloroplast ultrastructure, and altered regulation of genes associated with chlorophyll metabolism and chloroplast development. In addition, lesions formed on the leaves of wlml1 plants grown at 20 °C and genes related to disease resistance and antioxidant functions were up-regulated; by contrast, the mutant phenotype was partially suppressed at 28 °C. These findings indicated that WLML1 might play a role in chlorophyll metabolism and chloroplast development, as well as in biotic and abiotic stress responses. Genetic analysis showed that WLML1 was controlled by a recessive nuclear gene, and map-based cloning delimited WLML1 to a 159.7-kb region on chromosome 4 that includes 30 putative open reading frames. Based on these findings, the wlml1 mutant will be a good genetic material for further studies on chlorophyll metabolism and stress responses in rice.  相似文献   

5.
6.

Key message

We identified IspF gene through yellow-green leaf mutant 505ys in rice. OsIspF was expressed in all tissues detected, and its encoded protein was targeted to the chloroplast. On expression levels of genes in this mutant, OsIspF itself and the genes encoding other enzymes of the MEP pathway and chlorophyll synthase were all up-regulated, however, among eight genes associated with photosynthesis, only psaA, psaN and psbA genes for three reaction center subunits of photosystem obviously changed.

Abstract

Isoprenoids are the most abundant natural compounds in all organisms, which originate from the basic five-carbon units isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, IPP and DMAPP are synthesized through two independent pathways, the mevalonic acid pathway in cytoplasm and the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway in plastids. The MEP pathway comprises seven enzymatic steps, in which IspF is the fifth enzyme. So far, no IspF gene has been identified in monocotyledonous plants. In this study, we isolated a leaf-color mutant, 505ys, in rice (Oryza sativa). The mutant displayed yellow-green leaf phenotype, reduced level of photosynthetic pigments, and arrested development of chloroplasts. By map-based cloning of this mutant, we identified OsIspF gene (LOC_Os02g45660) showing significant similarity to IspF gene of Arabidopsis, in which a missense mutation occurred in the mutant, resulting in an amino acid change in the encoded protein. OsIspF gene was expressed in all tissues detected, and its encoded protein was targeted to the chloroplast. Further, the mutant phenotype of 505ys was complemented by transformation with the wild-type OsIspF gene. Therefore, we successfully identified an IspF gene in monocotyledonous plants. In addition, real-time quantitative RT-PCR implied that a positive regulation could exist between the OsIspF gene and the genes encoding other enzymes of the MEP pathway and chlorophyll synthase. At the same time, it also implied that the individual genes involved in the MEP pathway might differentially regulated expression levels of the genes associated with photosynthesis.
  相似文献   

7.
Chlorophyll is an important photosynthetic pigment in the process of photosynthesis in plants and photosynthetic bacteria. Genes involved in chlorophyll biosynthesis in Arabidopsis and photosynthetic bacteria have been well documented. In rice, however, these genes have not been fully annotated. In this paper, a yellow-green leaf gene, yellow green leaf3 (ygl3) was cloned and analyzed. ygl3 encodes magnesium chelation ChlD (D) subunit, a key enzyme for chlorophyll synthesis, resulting in a yellow-green leaf phenotype in all growth stages in rice. Expression content of ygl3 is highest in the leaf blades, followed by the leaf sheaths, while there is virtually no expression of the gene in the stems and seeds. The sub-cellular structure and protein content of the photosynthetic system of the ygl3 mutant were revealed by transmission electron microscopy, BN-PAGE, and western blotting. The results show that the mutation of the ygl3 gene indirectly leads to a decrease in the protein content of the photosynthetic system and severely obstructs the formation of granum thylakoids.  相似文献   

8.
水稻叶色突变体叶绿体发育规律研究   总被引:6,自引:2,他引:4  
从温敏核不育系水稻'810S'中筛选出一个生长发育正常的淡黄绿叶色自然突变株'标810S',其叶绿素含量约为'810S'的50%,光合速率比野生型高.以'810S'为对照,对'标810S'进行叶片形态、叶肉细胞和叶绿体超微结构以及叶绿体蛋白研究.结果显示,'标810S'的叶长、宽和面积与'810S'相似;叶肉细胞和叶绿体发育稍迟缓,片层结构减少;叶绿体蛋白约为对照的55%,并初步鉴定出与光合作用相关的差异蛋白点13个,其中4个缺失蛋白,包括1个RuBP大亚基缺失.推测该水稻突变体叶色变浅与叶绿体基粒片层减少有关.  相似文献   

9.
10.
In bacteria, membrane proteins are targeted cotranslationally via a signal recognition particle (SRP). During the evolution of higher plant chloroplasts from cyanobacteria, the SRP pathway underwent striking adaptations that enable the posttranslational transport of the abundant light-harvesting chlorophyll-a/b-binding proteins (LHCPs). The conserved 54-kDa SRP subunit in higher plant chloroplasts (cpSRP54) is not bound to an SRP RNA, an essential SRP component in bacteria, but forms a stable heterodimer with the chloroplast-specific cpSRP43. This heterodimeric cpSRP recognizes LHCP and delivers it to the thylakoid membrane whereby cpSRP43 plays a central role. This study shows that the cpSRP system in the green alga Chlamydomonas reinhardtii differs significantly from that of higher plants as cpSRP43 is not complexed to cpSRP54 in Chlamydomonas and cpSRP54 is not involved in LHCP recognition. This divergence is attributed to altered residues within the cpSRP54 tail and the second chromodomain of cpSRP43 that are crucial for the formation of the binding interface in Arabidopsis. These changes are highly conserved among chlorophytes, whereas all land plants contain cpSRP proteins with typical interaction motifs. These data demonstrate that the coevolution of LHCPs and cpSRP43 occurred independently of complex formation with cpSRP54 and that the interaction between cpSRP54 and cpSRP43 evolved later during the transition from chlorophytes to land plants. Furthermore, our data show that in higher plants a heterodimeric form of cpSRP is required for the formation of a low molecular weight transit complex with LHCP.  相似文献   

11.
Differentiation from proplastids into chloroplasts is a light- and energy-dependent process. How this process is regulated is still poorly understood at the molecular level. We herein report a new putative plastidial adenine nucleotide transporter, BRITTLE1-3 (referred to as OsBT1-3), encoded by the rice (Oryza sativa) White Stripe Leaf 2 (WSL2) gene. Loss of OsBT1-3 function results in defective chloroplast biogenesis, severely reduced photosynthetic efficiency, and finally a white stripe leaf phenotype in the first four leaves. The expression levels of genes related to chlorophyll biosynthesis and photosynthesis are drastically reduced, accompanied with over accumulation of reactive oxygen species (ROS) in the wsl2 mutant. OsBT1-3 is targeted to the chloroplasts and it expresses in almost all tissues in plants, especially in young leaves. OsBT1-3 consists of 419 amino acids and exhibits features of all mitochondrial carrier proteins, including a typical transmembrane-spanning domain and a highly conserved sequence motif designated as the ‘mitochondrial energy transfer signatures’. Phylogenetic analysis shows that OsBT1-3 is a putative plastidial adenine nucleotide transporter and is most closely related to ZmBT1-2. Together, these observations suggest that the new putative adenine nucleotide transporter, OsBT1-3, plays an essential role in regulating chloroplast biogenesis and maintenance of ROS homeostasis during rice seedling de-etiolation.  相似文献   

12.
The main objectives of this study were to elucidate the roles of silicon (Si) in alleviating the effects of 2 mM zinc (high Zn) stress on photosynthesis and its related gene expression levels in leaves of rice (Oryza sativa L.) grown hydroponically with high-Zn stress. The results showed that photosynthetic parameters, including net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration, chlorophyll concentration and the chlorophyll fluorescence, were decreased in rice exposed to high-Zn treatment. The leaf chloroplast structure was disordered under high-Zn stress, including uneven swelling, disintegrated and missing thylakoid membranes, and decreased starch granule size and number, which, however, were all counteracted by the addition of 1.5 mM Si. Furthermore, the expression levels of Os08g02630 (PsbY), Os05g48630 (PsaH), Os07g37030 (PetC), Os03g57120 (PetH), Os09g26810 and Os04g38410 decreased in Si-deprived plants under high-Zn stress. Nevertheless, the addition of 1.5 mM Si increased the expression levels of these genes in plants under high-Zn stress at 72 h, and the expression levels were higher in Si-treated plants than in Si-deprived plants. Therefore, we conclude that Si alleviates the Zn-induced damage to photosynthesis in rice. The decline of photosynthesis in Zn-stressed rice was attributed to stomatal limitation, and Si activated and regulated some photosynthesis-related genes in response to high-Zn stress, consequently increasing photosynthesis.  相似文献   

13.
14.
15.
High nitrogen (N) supply frequently results in a decreased photosynthetic N-use efficiency (PNUE), which indicates a less efficient use of accumulated Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). Chloroplasts are the location of Rubisco and the endpoint of CO2 diffusion, and they play a vital important role in photosynthesis. However, the effects of chloroplast development on photosynthesis are poorly explored. In the present study, rice seedlings (Oryza sativa L., cv. ‘Shanyou 63’, and ‘Yangdao 6’) were grown hydroponically with three different N levels, morphological characteristics, photosynthetic variables and chloroplast size were measured. In Shanyou 63, a negative relationship between chloroplast size and PNUE was observed across three different N levels. Here, plants with larger chloroplasts had a decreased ratio of mesophyll conductance (gm) to Rubisco content (gm/Rubisco) and a lower Rubisco specific activity. In Yangdao 6, there was no change in chloroplast size and no decline in PNUE or gm/Rubisco ratio under high N supply. It is suggested that large chloroplasts under high N supply is correlated with the decreased Rubisco specific activity and PNUE.  相似文献   

16.
An early senescence (es) mutant of rice Oryza sativa L. with progressing death of most of leaves before heading stage was identified in the field in Hainan province. After tillering stage, the brown striations were found in the base of green leaves randomly, and then expanded to whole leaves. No fungi, bacteria, and viruses were detected in the brown striations suggesting that it was a genetic mutant. The ultrastructure of leaf cells at the site of brown striations showed breakdown of chloroplast thylakoid membrane structures and other organelles, and condensation of the cytoplasm at severe senescence stage. The photosynthetic activity and chlorophyll (Chl) contents decreased irreversibly along with leaf senescence process.  相似文献   

17.
The chloroplast signal recognition particle (cpSRP) and its receptor, chloroplast FtsY (cpFtsY), form an essential complex with the translocase Albino3 (Alb3) during post-translational targeting of light-harvesting chlorophyll-binding proteins (LHCPs). Here, we describe a combination of studies that explore the binding interface and functional role of a previously identified cpSRP43-Alb3 interaction. Using recombinant proteins corresponding to the C terminus of Alb3 (Alb3-Cterm) and various domains of cpSRP43, we identify the ankyrin repeat region of cpSRP43 as the domain primarily responsible for the interaction with Alb3-Cterm. Furthermore, we show Alb3-Cterm dissociates a cpSRP·LHCP targeting complex in vitro and stimulates GTP hydrolysis by cpSRP54 and cpFtsY in a strictly cpSRP43-dependent manner. These results support a model in which interactions between the ankyrin region of cpSRP43 and the C terminus of Alb3 promote distinct membrane-localized events, including LHCP release from cpSRP and release of targeting components from Alb3.  相似文献   

18.
The insertion of light-harvesting chlorophyll proteins (LHCPs) into the thylakoid membrane of the chloroplast is cpSRP-dependent, and requires the stromal components cpSRP54 and cpSRP43, the membrane-bound SRP receptor cpFtsY and the integral membrane protein Alb3. Previous studies demonstrated that the Arabidopsis mutant lacking both cpSRP54 and cpSRP43 had pale yellow leaves, but was viable, whereas the mutants lacking Alb3 exhibit an albino phenotype that is more severe and seedling lethality. We previously showed that a maize mutant lacking cpFtsY had a pale yellow-green phenotype and was seedling lethal. To compare the in vivo requirements of cpFtsY and Alb3 in thylakoid biogenesis in greater detail, we isolated Arabidopsis null mutants of cpftsY, and performed biochemical comparisons with the Arabidopsis alb3 mutant. Both cpftsY and alb3 null mutants were seedling lethal on a synthetic medium lacking sucrose, whereas on a medium supplemented with sucrose, they were able to grow to later developmental stages, but were mostly infertile. cpftsY mutant plants had yellow leaves in which the levels of LHCPs were reduced to 10-33% compared with wild type. In contrast, alb3 had yellowish white leaves, and the LHCP levels were less than or equal to 10% of those of wild type. Intriguingly, whereas accumulation of the Sec and Tat machineries were normal in both mutants, the Sec pathway substrate Cyt f was more severely decreased in the cpftsY mutant than in alb3, which may indicate a functional link between cpFtsY and Sec translocation machinery. These results suggest that cpFtsY and Alb3 have essentially similar, but slightly distinct, contributions to thylakoid biogenesis.  相似文献   

19.
A recessive mutation in Arabidopsis, named chaos (for chlorophyll a/b binding protein harvesting-organelle specific; designated gene symbol CAO), was isolated by using transposon tagging. Characterization of the phenotype of the chaos mutant revealed a specific reduction of pigment binding antenna proteins in the thylakoid membrane. These nuclear-encoded proteins utilize a chloroplast signal recognition particle (cpSRP) system to reach the thylakoid membrane. Both prokaryotes and eukaryotes possess a cytoplasmic SRP containing a 54-kD protein (SRP54) and an RNA. In chloroplasts, the homolog of SRP54 was found to bind a 43-kD protein (cpSRP43) rather than to an RNA. We cloned the CAO gene, which encodes a protein identified as Arabidopsis cpSRP43. The product of the CAO gene does not resemble any protein in the databases, although it contains motifs that are known to mediate protein-protein interactions. These motifs include ankyrin repeats and chromodomains. Therefore, CAO encodes an SRP component that is unique to plants. Surprisingly, the phenotype of the cpSRP43 mutant (i.e., chaos) differs from that of the Arabidopsis cpSRP54 mutant, suggesting that the functions of the two proteins do not strictly overlap. This difference also suggests that the function of cpSRP43 is most likely restricted to protein targeting into the thylakoid membrane, whereas cpSRP54 may be involved in an additional process(es), such as chloroplast biogenesis, perhaps through chloroplast-ribosomal association with chloroplast ribosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号