首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

Attention deficit hyperactivity disorder (ADHD) in adults has been associated with disturbances of attention and executive functions. Furthermore, impairments of verbal and figural retrospective memory were reported. However, little is known about the effects of ADHD on prospective memory, the execution of delayed intentions in the future.

Methods

The present study compared the performance of 45 adult patients with ADHD not treated with stimulant medication with the performance of 45 matched healthy individuals on a paradigm of complex prospective memory which measured task planning, plan recall, self-initiation and execution. Furthermore, the contribution of other cognitive functions to prospective memory functioning was assessed, including measures of attention, executive functions and memory.

Results

A large-scale impairment could be observed in task planning abilities in patients with ADHD. Only negligible to small effects were found for plan recall, self-initiation and execution. Inhibition was identified to contribute significantly to performance on task planning.

Conclusions

The present findings suggest that four cognitive components contribute to the performance of prospective memory. Impairments of prospective memory mainly emerged from deficient planning abilities in adults with ADHD. Implications on behavioral based intervention strategies are discussed.  相似文献   

2.

Background

The aim of this study was investigating how women with a history of childhood maltreatment (CM) process non-threatening and non-trauma related olfactory stimuli. The focus on olfactory perception is based on the overlap of brain areas often proposed to be affected in CM patients and the projection areas of the olfactory system, including the amygdala, orbitofrontal cortex, insula and hippocampus.

Methods

Twelve women with CM and 10 controls participated in the study. All participants were, or have been, patients in a psychosomatic clinic. Participants underwent a fMRI investigation during olfactory stimulation with a neutral (coffee) and a pleasant (peach) odor. Furthermore, odor threshold and odor identification (Sniffin'' Sticks) were tested.

Principal Findings

Both groups showed normal activation in the olfactory projection areas. However, in the CM-group we found additionally enhanced activation in multiple, mainly neocortical, areas that are part of those involved in associative networks. These include the precentral frontal lobe, inferior and middle frontal structures, posterior parietal lobe, occipital lobe, and the posterior cingulate cortex.

Conclusions

The results indicate that in this group of patients, CM was associated with an altered processing of olfactory stimuli, but not development of a functional olfactory deficit. This complements other studies on CM insofar as we found the observed pattern of enhanced activation in associative and emotional regions even following non-traumatic olfactory cues.  相似文献   

3.

Background

Research on multisensory integration during natural tasks such as reach-to-grasp is still in its infancy. Crossmodal links between vision, proprioception and audition have been identified, but how olfaction contributes to plan and control reach-to-grasp movements has not been decisively shown. We used kinematics to explicitly test the influence of olfactory stimuli on reach-to-grasp movements.

Methodology/Principal Findings

Subjects were requested to reach towards and grasp a small or a large visual target (i.e., precision grip, involving the opposition of index finger and thumb for a small size target and a power grip, involving the flexion of all digits around the object for a large target) in the absence or in the presence of an odour evoking either a small or a large object that if grasped would require a precision grip and a whole hand grasp, respectively. When the type of grasp evoked by the odour did not coincide with that for the visual target, interference effects were evident on the kinematics of hand shaping and the level of synergies amongst fingers decreased. When the visual target and the object evoked by the odour required the same type of grasp, facilitation emerged and the intrinsic relations amongst individual fingers were maintained.

Conclusions/Significance

This study demonstrates that olfactory information contains highly detailed information able to elicit the planning for a reach-to-grasp movement suited to interact with the evoked object. The findings offer a substantial contribution to the current debate about the multisensory nature of the sensorimotor transformations underlying grasping.  相似文献   

4.

Purpose

The aim of this study was to assess whether migration of thallium-201 (201Tl) to the olfactory bulb were reduced in patients with olfactory impairments in comparison to healthy volunteers after nasal administration of 201Tl.

Procedures

10 healthy volunteers and 21 patients enrolled in the study (19 males and 12 females; 26–71 years old). The causes of olfactory dysfunction in the patients were head trauma (n = 7), upper respiratory tract infection (n = 7), and chronic rhinosinusitis (n = 7). 201TlCl was administered unilaterally to the olfactory cleft, and SPECT-CT was conducted 24 h later. Separate MRI images were merged with the SPECT images. 201Tl olfactory migration was also correlated with the volume of the olfactory bulb determined from MRI images, as well as with odor recognition thresholds measured by using T&T olfactometry.

Results

Nasal 201Tl migration to the olfactory bulb was significantly lower in the olfactory-impaired patients than in healthy volunteers. The migration of 201Tl to the olfactory bulb was significantly correlated with odor recognition thresholds obtained with T&T olfactometry and correlated with the volume of the olfactory bulb determined from MRI images when all subjects were included.

Conclusions

Assessment of the 201Tl migration to the olfactory bulb was the new method for the evaluation of the olfactory nerve connectivity in patients with impaired olfaction.  相似文献   

5.

Background

Autistic perception is characterized by atypical and sometimes exceptional performance in several low- (e.g., discrimination) and mid-level (e.g., pattern matching) tasks in both visual and auditory domains. A factor that specifically affects perceptive abilities in autistic individuals should manifest as an autism-specific association between perceptual tasks. The first purpose of this study was to explore how perceptual performances are associated within or across processing levels and/or modalities. The second purpose was to determine if general intelligence, the major factor that accounts for covariation in task performances in non-autistic individuals, equally controls perceptual abilities in autistic individuals.

Methods

We asked 46 autistic individuals and 46 typically developing controls to perform four tasks measuring low- or mid-level visual or auditory processing. Intelligence was measured with the Wechsler''s Intelligence Scale (FSIQ) and Raven Progressive Matrices (RPM). We conducted linear regression models to compare task performances between groups and patterns of covariation between tasks. The addition of either Wechsler''s FSIQ or RPM in the regression models controlled for the effects of intelligence.

Results

In typically developing individuals, most perceptual tasks were associated with intelligence measured either by RPM or Wechsler FSIQ. The residual covariation between unimodal tasks, i.e. covariation not explained by intelligence, could be explained by a modality-specific factor. In the autistic group, residual covariation revealed the presence of a plurimodal factor specific to autism.

Conclusions

Autistic individuals show exceptional performance in some perceptual tasks. Here, we demonstrate the existence of specific, plurimodal covariation that does not dependent on general intelligence (or “g” factor). Instead, this residual covariation is accounted for by a common perceptual process (or “p” factor), which may drive perceptual abilities differently in autistic and non-autistic individuals.  相似文献   

6.

Background

Based on introspectionist, semantic, and psychophysiological experimental frameworks, it has long been assumed that all affective states derive from two independent basic dimensions, valence and arousal. However, until now, no study has investigated whether valence and arousal are also dissociable at the level of affect-related changes in cognitive processing.

Methodology/Principal Findings

We examined how changes in both valence (negative vs. positive) and arousal (low vs. high) influence performance in tasks requiring executive control because recent research indicates that two dissociable cognitive components are involved in the regulation of task performance: amount of current control (i.e., strength of filtering goal-irrelevant signals) and control adaptation (i.e., strength of maintaining current goals over time). Using a visual pop-out distractor task, we found that control is exclusively modulated by arousal because interference by goal-irrelevant signals was largest in high arousal states, independently of valence. By contrast, control adaptation is exclusively modulated by valence because the increase in control after trials in which goal-irrelevant signals were present was largest in negative states, independent of arousal. A Monte Carlo simulation revealed that differential effects of two experimental factors on control and control adaptation can be dissociated if there is no correlation between empirical interference and conflict-driven modulation of interference, which was the case in the present data. Consequently, the observed effects of valence and arousal on adaptive executive control are indeed dissociable.

Conclusions/Significance

These findings indicate that affective influences on cognitive processes can be driven by independent effects of variations in valence and arousal, which may resolve several heterogeneous findings observed in previous studies on affect-cognition interactions.  相似文献   

7.

Objective

Using multidisciplinary treatment modalities the majority of children with cancer can be cured but we are increasingly faced with therapy-related toxicities. We studied brain morphology and neurocognitive functions in adolescent and young adult survivors of childhood acute, low and standard risk lymphoblastic leukemia (ALL), which was successfully treated with chemotherapy. We expected that intravenous and intrathecal chemotherapy administered in childhood will affect grey matter structures, including hippocampus and olfactory bulbs, areas where postnatal neurogenesis is ongoing.

Methods

We examined 27 ALL-survivors and 27 age-matched healthy controls, ages 15–22 years. ALL-survivors developed disease prior to their 11th birthday without central nervous system involvement, were treated with intrathecal and systemic chemotherapy and received no radiation. Volumes of grey, white matter and olfactory bulbs were measured on T1 and T2 magnetic resonance images manually, using FIRST (FMRIB’s integrated Registration and Segmentation Tool) and voxel-based morphometry (VBM). Memory, executive functions, attention, intelligence and olfaction were assessed.

Results

Mean volumes of left hippocampus, amygdala, thalamus and nucleus accumbens were smaller in the ALL group. VBM analysis revealed significantly smaller volumes of the left calcarine gyrus, both lingual gyri and the left precuneus. DTI data analysis provided no evidence for white matter pathology. Lower scores in hippocampus-dependent memory were measured in ALL-subjects, while lower figural memory correlated with smaller hippocampal volumes.

Interpretation

Findings demonstrate that childhood ALL, treated with chemotherapy, is associated with smaller grey matter volumes of neocortical and subcortical grey matter and lower hippocampal memory performance in adolescence and adulthood.  相似文献   

8.

Objective

The aim of this study is to clarify the symptomatology of the eating disorders examining the prefrontal function and activity associated with self-regulation among participants with or without eating disorders.

Methods

Ten patients with anorexia nervosa, fourteen with bulimia nervosa, and fourteen healthy control participants performed two cognitive tasks assessing self-regulatory functions, an auditorily distracted word fluency task and a rock-paper-scissors task under the measurements on prefrontal oxyhemoglobin concentration with near infrared spectroscopy. The psychiatric symptoms of patient groups were assessed with several questionnaires.

Results

Patients with bulimia nervosa showed decreased performances and prefrontal hyper activation patterns. Prefrontal activities showed a moderate negative correlation with task performances not in the patient groups but only in the healthy participants. The prefrontal activities of the patient groups showed positive correlations with some symptom scale aspects.

Conclusions

The decreased cognitive abilities and characteristic prefrontal activation patterns associated with self-regulatory functions were shown in patients with bulimia nervosa, which correlated with their symptoms. These findings suggest inefficient prefrontal self-regulatory function of bulimia nervosa that associate with its symptoms.  相似文献   

9.

Background

Impairments in executive function characterize offenders with antisocial personality disorder (ASPD) and offenders with psychopathy. However, the extent to which those impairments are associated with ASPD, psychopathy, or both is unknown.

Methods

The present study examined 17 violent offenders with ASPD and psychopathy (ASPD+P), 28 violent offenders with ASPD without psychopathy (ASPD−P), and 21 healthy non-offenders on tasks assessing cool (verbal working memory and alteration of motor responses to spatial locations) and hot (reversal learning, decision-making under risk, and stimulus-reinforcement-based decision-making) executive function.

Results

In comparison to healthy non-offenders, violent offenders with ASPD+P and those with ASPD−P showed similar impairments in verbal working memory and adaptive decision-making. They failed to learn from punishment cues, to change their behaviour in the face of changing contingencies, and made poorer quality decisions despite longer periods of deliberation. Intriguingly, the two groups of offenders did not differ significantly from the non-offenders in terms of their alteration of motor responses to spatial locations and their levels of risk-taking, indicated by betting, and impulsivity, measured as delay aversion. The performance of the two groups of offenders on the measures of cool and hot executive function did not differ, indicating shared deficits.

Conclusions

These documented impairments may help to explain the persistence of antisocial behaviours despite the known risks of the negative consequences of such behaviours.  相似文献   

10.

Background

So far, an overall view of olfactory structures activated by natural biologically relevant odors in the awake rat is not available. Manganese-enhanced MRI (MEMRI) is appropriate for this purpose. While MEMRI has been used for anatomical labeling of olfactory pathways, functional imaging analyses have not yet been performed beyond the olfactory bulb. Here, we have used MEMRI for functional imaging of rat central olfactory structures and for comparing activation maps obtained with odors conveying different biological messages.

Methodology/Principal Findings

Odors of male fox feces and of chocolate flavored cereals were used to stimulate conscious rats previously treated by intranasal instillation of manganese (Mn). MEMRI activation maps showed Mn enhancement all along the primary olfactory cortex. Mn enhancement elicited by male fox feces odor and to a lesser extent that elicited by chocolate odor, differed from that elicited by deodorized air. This result was partly confirmed by c-Fos immunohistochemistry in the piriform cortex.

Conclusion/Significance

By providing an overall image of brain structures activated in awake rats by odorous stimulation, and by showing that Mn enhancement is differently sensitive to different stimulating odors, the present results demonstrate the interest of MEMRI for functional studies of olfaction in the primary olfactory cortex of laboratory small animals, under conditions close to natural perception. Finally, the factors that may cause the variability of the MEMRI signal in response to different odor are discussed.  相似文献   

11.

Background

Patients with schizophrenia perform significantly worse on emotion recognition tasks than healthy participants across several sensory modalities. Emotion recognition abilities are correlated with the severity of clinical symptoms, particularly negative symptoms. However, the relationships between specific deficits of emotion recognition across sensory modalities and the presentation of psychotic symptoms remain unclear. The current study aims to explore how emotion recognition ability across modalities and neurocognitive function correlate with clusters of psychotic symptoms in patients with schizophrenia.

Methods

111 participants who met the DSM-IV diagnostic criteria for schizophrenia and 70 healthy participants performed on a dual-modality emotion recognition task, the Diagnostic Analysis of Nonverbal Accuracy 2-Taiwan version (DANVA-2-TW), and selected subscales of WAIS-III. Of all, 92 patients received neurocognitive evaluations, including CPT and WCST. These patients also received the PANSS for clinical evaluation of symptomatology.

Results

The emotion recognition ability of patients with schizophrenia was significantly worse than healthy participants in both facial and vocal modalities, particularly fearful emotion. An inverse correlation was noted between PANSS total score and recognition accuracy for happy emotion. The difficulty of happy emotion recognition and earlier age of onset, together with the perseveration error in WCST predicted total PANSS score. Furthermore, accuracy of happy emotion and the age of onset were the only two significant predictors of delusion/hallucination. All the associations with happy emotion recognition primarily concerned happy prosody.

Discussion

Deficits in emotional processing in specific categories, i.e. in happy emotion, together with deficit in executive function, may reflect dysfunction of brain systems underlying severity of psychotic symptoms, in particular the positive dimension.  相似文献   

12.
13.

Introduction

Metacognition, i.e. critically reflecting on and monitoring one’s own reasoning, has been linked behaviorally to the emergence of delusions and is a focus of cognitive therapy in patients with schizophrenia. However, little is known about the neural processing underlying metacognitive function. To address this issue, we studied brain activity during a modified beads task which has been used to measure a “Jumping to Conclusions” (JTC) bias in schizophrenia patients.

Methods

We used functional magnetic resonance imaging to identify neural systems active in twenty-five healthy subjects when solving a modified version of the “beads task”, which requires a probabilistic decision after a variable amount of data has been requested by the participants. We assessed brain activation over the duration of a trial and at the time point of decision making.

Results

Analysis of activation during the whole process of probabilistic reasoning showed an extended network including the prefronto-parietal executive functioning network as well as medial parieto-occipital regions. During the decision process alone, activity in midbrain and ventral striatum was detected, as well as in thalamus, medial occipital cortex and anterior insula.

Conclusions

Our data show that probabilistic reasoning shares neural substrates with executive functions. In addition, our finding that brain regions commonly associated with salience processing are active during probabilistic reasoning identifies a candidate mechanism that could underlie the behavioral link between dopamine-dependent aberrant salience and JTC in schizophrenia. Further studies with delusional schizophrenia patients will have to be performed to substantiate this link.  相似文献   

14.

Background

Intranasal olfactory drug delivery provides a non-invasive method that bypasses the Blood-Brain-Barrier and directly delivers medication to the brain and spinal cord. However, a device designed specifically for olfactory delivery has not yet been found.

Methods

In this study, a new delivery method was proposed that utilized electrophoretic forces to guide drug particles to the olfactory region. The feasibility of this method was numerically evaluated in both idealized 2-D and anatomically accurate 3-D nose models. The influence of nasal airflow, electrode strength, and drug release position were also studied on the olfactory delivery efficiency.

Findings

Results showed that by applying electrophoretic forces, the dosage to the olfactory region was significantly enhanced. In both 2-D and 3-D cases, electrophoretic-guided delivery achieved olfactory dosages nearly two orders of magnitude higher than that without electrophoretic forces. Furthermore, releasing drugs into the upper half of the nostril (i.e., partial release) led to olfactory dosages two times higher than releasing drugs over the entire area of the nostril. By combining the advantages of pointed drug release and appropriate electrophoretic guidance, olfactory dosages of more than 90% were observed as compared to the extremely low olfactory dosage (<1%) with conventional inhaler devices.

Conclusion

Results of this study have important implications in developing personalized olfactory delivery protocols for the treatment of neurological disorders. Moreover, a high sensitivity of olfactory dosage was observed in relation to different pointed release positions, indicating the importance of precise particle guidance for effective olfactory delivery.  相似文献   

15.

Background

It has recently been proposed that adult-born neurons in the olfactory bulb, whose survival is modulated by learning, support long-term olfactory memory. However, the mechanism used to select which adult-born neurons following learning will participate in the long-term retention of olfactory information is unknown. We addressed this question by investigating the effect of bulbar consolidation of olfactory learning on memory and neurogenesis.

Methodology/Principal Findings

Initially, we used a behavioral ecological approach using adult mice to assess the impact of consolidation on neurogenesis. Using learning paradigms in which consolidation time was varied, we showed that a spaced (across days), but not a massed (within day), learning paradigm increased survival of adult-born neurons and allowed long-term retention of the task. Subsequently, we used a pharmacological approach to block consolidation in the olfactory bulb, consisting in intrabulbar infusion of the protein synthesis inhibitor anisomycin, and found impaired learning and no increase in neurogenesis, while basic olfactory processing and the basal rate of adult-born neuron survival remained unaffected. Taken together these data indicate that survival of adult-born neurons during learning depends on consolidation processes taking place in the olfactory bulb.

Conclusion/Significance

We can thus propose a model in which consolidation processes in the olfactory bulb determine both survival of adult-born neurons and long-term olfactory memory. The finding that adult-born neuron survival during olfactory learning is governed by consolidation in the olfactory bulb strongly argues in favor of a role for bulbar adult-born neurons in supporting olfactory memory.  相似文献   

16.

Background

Navigation based on chemosensory information is one of the most important skills in the animal kingdom. Studies on odor localization suggest that humans have lost this ability. However, the experimental approaches used so far were limited to explicit judgements, which might ignore a residual ability for directional smelling on an implicit level without conscious appraisal.

Methods

A novel cueing paradigm was developed in order to determine whether an implicit ability for directional smelling exists. Participants performed a visual two-alternative forced choice task in which the target was preceded either by a side-congruent or a side-incongruent olfactory spatial cue. An explicit odor localization task was implemented in a second experiment.

Results

No effect of cue congruency on mean reaction times could be found. However, a time by condition interaction emerged, with significantly slower responses to congruently compared to incongruently cued targets at the beginning of the experiment. This cueing effect gradually disappeared throughout the course of the experiment. In addition, participants performed at chance level in the explicit odor localization task, thus confirming the results of previous research.

Conclusion

The implicit cueing task suggests the existence of spatial information processing in the olfactory system. Response slowing after a side-congruent olfactory cue is interpreted as a cross-modal attentional interference effect. In addition, habituation might have led to a gradual disappearance of the cueing effect. It is concluded that under immobile conditions with passive monorhinal stimulation, humans are unable to explicitly determine the location of a pure odorant. Implicitly, however, odor localization seems to exert an influence on human behaviour. To our knowledge, these data are the first to show implicit effects of odor localization on overt human behaviour and thus support the hypothesis of residual directional smelling in humans.  相似文献   

17.

Background

The recording of olfactory and trigeminal chemosensory event-related potentials (ERPs) has been proposed as an objective and non-invasive technique to study the cortical processing of odors in humans. Until now, the responses have been characterized mainly using across-trial averaging in the time domain. Unfortunately, chemosensory ERPs, in particular, olfactory ERPs, exhibit a relatively low signal-to-noise ratio. Hence, although the technique is increasingly used in basic research as well as in clinical practice to evaluate people suffering from olfactory disorders, its current clinical relevance remains very limited. Here, we used a time-frequency analysis based on the wavelet transform to reveal EEG responses that are not strictly phase-locked to onset of the chemosensory stimulus. We hypothesized that this approach would significantly enhance the signal-to-noise ratio of the EEG responses to chemosensory stimulation because, as compared to conventional time-domain averaging, (1) it is less sensitive to temporal jitter and (2) it can reveal non phase-locked EEG responses such as event-related synchronization and desynchronization.

Methodology/Principal Findings

EEG responses to selective trigeminal and olfactory stimulation were recorded in 11 normosmic subjects. A Morlet wavelet was used to characterize the elicited responses in the time-frequency domain. We found that this approach markedly improved the signal-to-noise ratio of the obtained EEG responses, in particular, following olfactory stimulation. Furthermore, the approach allowed characterizing non phase-locked components that could not be identified using conventional time-domain averaging.

Conclusion/Significance

By providing a more robust and complete view of how odors are represented in the human brain, our approach could constitute the basis for a robust tool to study olfaction, both for basic research and clinicians.  相似文献   

18.

Background

Fibromyalgia (FM) is a syndrome primarily characterised by chronic, widespread musculoskeletal pain. In the aetiology of this syndrome a crucial role is played by complex interactions among biological, genetic, psychological, and socio-cultural factors. Recently, researchers have started to explore emotional functioning in FM, with their attention focused on alexithymia, a personality construct that affects the regulation of a person’s own emotions. On the other hand, the detection and experience of emotional signals from other people have only been sparsely investigated in FM syndrome and no studies have investigated the ability to represent other people’s mental states (i.e. Theory of Mind, ToM) in these patients. Here we present the first study investigating a large set of social-cognitive abilities, and the possible relationships between these abilities and the performance on executive-function tasks, in a homogenous sample of patients with FM.

Methodology

Forty women with FM and forty-one healthy women matched for education and age were involved in the study. Social cognition was assessed with a set of validated experimental tasks. Measures of executive function were used to test the correlations between this dimension and the social-cognitive profile of patients with FM. Relationships between social-cognitive abilities and demographic, clinical and psychological variables were also investigated.

Principal Findings

Patients with FM have impairments both in the regulation of their own affect and in the recognition of other’s emotions, as well as in representing other people’s mental states. No significant correlations were found between social cognition tasks and the subcomponents of the executive function that were analysed.

Conclusions

The results show the presence of several impairments in social cognition skills in patients with FM, which are largely independent of both executive function deficits and symptoms of psychological distress. The impairments reported highlight the importance of adequately assessing ToM and emotional functioning in clinical practice.  相似文献   

19.
20.

Background

Parkinson''s disease (PD) disrupts temporal processing, but the neuronal sources of deficits and their response to dopamine (DA) therapy are not understood. Though the striatum and DA transmission are thought to be essential for timekeeping, potential working memory (WM) and executive problems could also disrupt timing.

Methodology/Findings

The present study addressed these issues by testing controls and PD volunteers ‘on’ and ‘off’ DA therapy as they underwent fMRI while performing a time-perception task. To distinguish systems associated with abnormalities in temporal and non-temporal processes, we separated brain activity during encoding and decision-making phases of a trial. Whereas both phases involved timekeeping, the encoding and decision phases emphasized WM and executive processes, respectively. The methods enabled exploration of both the amplitude and temporal dynamics of neural activity. First, we found that time-perception deficits were associated with striatal, cortical, and cerebellar dysfunction. Unlike studies of timed movement, our results could not be attributed to traditional roles of the striatum and cerebellum in movement. Second, for the first time we identified temporal and non-temporal sources of impaired time perception. Striatal dysfunction was found during both phases consistent with its role in timekeeping. Activation was also abnormal in a WM network (middle-frontal and parietal cortex, lateral cerebellum) during encoding and a network that modulates executive and memory functions (parahippocampus, posterior cingulate) during decision making. Third, hypoactivation typified neuronal dysfunction in PD, but was sometimes characterized by abnormal temporal dynamics (e.g., lagged, prolonged) that were not due to longer response times. Finally, DA therapy did not alleviate timing deficits.

Conclusions/Significance

Our findings indicate that impaired timing in PD arises from nigrostriatal and mesocortical dysfunction in systems that mediate temporal and non-temporal control-processes. However, time perception impairments were not improved by DA treatment, likely due to inadequate restoration of neuronal activity and perhaps corticostriatal effective-connectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号