首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion-exchange chromatography is the standard technique used for plasmid DNA purification, an essential molecular biology procedure. Non-ionic detergents (NIDs) have been used for plasmid DNA purification, but it is unclear whether Hofmeister series salts (HSS) change the solubility and phase separation properties of specific NIDs, enhancing plasmid DNA purification. After scaling-up NID-mediated plasmid DNA isolation, we established that NIDs in HSS solutions minimize plasmid DNA contamination with protein. In addition, large-scale NID/HSS solutions eliminated lipopolysaccharides (LPS) contamination of plasmid DNA more effectively than Qiagen ion-exchange columns. Large-scale NID isolation/NID purification generated increased yields of high-quality DNA compared to alkali isolation/column purification. This work characterizes how HSS enhance NID-mediated plasmid DNA purification, and demonstrates that NID phase transition is not necessary for LPS removal from plasmid DNA. Specific NIDs such as IGEPAL CA-520 can be utilized for rapid, inexpensive, and efficient laboratory-based large-scale plasmid DNA purification, outperforming Qiagen-based column procedures.  相似文献   

2.
An improved procedure for isolating lambda DNA and screening lambda gt10 or lambda gt11 libraries is described. Recombinant lambda gt11 bacteriophage particles (150,000) were amplified on three agarose plates (50,000 per plate) with Escherichia coli Y1090 as plating bacteria. After confluent lysis, recombinant bacteriophage was extracted with SM buffer. Bacterial debris was removed by centrifugation. A small aliquot of amplified lambda gt11 bacteriophage was kept to rescreen the bacteriophage, should a large or full-length clone be found to be present, after analysis of the size of the cDNA inserts. The major portion of the bacteriophage particles was purified by treatment with equilibrated DEAE-cellulose, pH 7.5. Purified phage particles were precipitated with polyethylene glycol from the DEAE supernatant and extracted with phenol, phenol-chloroform, and chloroform. Such lambda gt11 DNA was readily digested with EcoRI. Liberated insert cDNA was separated on 1.2% agarose gels, transferred onto a nylon membrane, and hybridized with an alkaline phosphatase cDNA probe in an iterative procedure that allows isolation of the largest cDNA clones present in the library. We have used this procedure to isolate a full-length alkaline phosphatase cDNA. The method is quick, reliable, and less costly than conventional procedures for the isolation of full-length cDNAs.  相似文献   

3.
Experience in shotgun sequencing a 134 kilobase pair DNA molecule.   总被引:3,自引:0,他引:3  
A J Davison 《DNA sequence》1991,1(6):389-394
Until now, large DNA sequences have been obtained by cloning fragments of the target molecule into plasmid, cosmid or bacteriophage lambda vectors. The 134 kbp DNA sequence of channel catfish virus was determined with relative ease by shotgun cloning of random fragments of genomic DNA directly into a bacteriophage M13 vector, sequencing by dideoxynucleotide chain termination, and compilation of the data using Staden's database handling programs. Experience gained during this endeavour indicates that sequences substantially larger than 134 kbp may be obtained using this approach.  相似文献   

4.
Plasmids are the workhorse of contemporary molecular biology, serving as vectors in the multitude of molecular cloning approaches now available. Plasmid minipreps are a routine and essential means of extracting plasmid DNA from bacteria, such as Escherichia coli, for identification, characterization, and further manipulation. Although there have been many approaches described and miniprep kits are commercially available, traditional minipreps typically require more than 16 h, including the time needed for bacterial cell culture. Here we describe the development of a microfluidic chip (MFC)-based miniprep that uses on-chip lysis and trapping of large DNA in agarose to differentially separate plasmid DNA from the bacterial chromosome. Our approach greatly decreases both the time required for the miniprep itself and the time required for growth of the bacterial cultures because our on-chip miniprep uses 105 times fewer E. coli cells. Because the quality of the isolated plasmid is comparable to that obtained using conventional miniprep protocols, this approach allows growth of E. coli and isolation of plasmid within hours, thereby making it ideal for rapid screening approaches. This MFC-based miniprep, coupled with recently demonstrated on-chip transfection capabilities, lays the groundwork for seamless manipulation of plasmids on MFC platforms.  相似文献   

5.
S J Millar  D Dempsey  D P Dickinson 《BioTechniques》1992,13(4):554-6, 558-60, 562
Certain genomic sequences cannot be recovered efficiently in cosmid or lambda bacteriophage clones, presenting a barrier to efforts to construct a contiguous cloned library of a genome. We have encountered such sequences during our efforts to isolate cosmid and bacteriophage lambda clones carrying members of the human type 2 cystatin gene family. Several cosmid clones constructed in the pWE 15 vector did not survive purification, and using standard techniques, we were unable to obtain significant amounts of cosmid DNA from those clones we could purify. Similarly, several lambda bacteriophage clones constructed in the lambda DASH II vector could not be purified, and those lambda clones we were able to isolate gave low titers in liquid lysates. In this paper, we describe generally applicable methods for preparing high yields of recombinant DNA from such recalcitrant cosmid and lambda clones constructed in these vectors.  相似文献   

6.
A set of plasmid cloning vectors has been constructed, allowing the integration of any DNA fragment into the bacteriophage lambda attachment site attB of the Escherichia coli chromosome. The system is based upon two components: (i) a number of cloning vectors containing the lambda attachment site attP and (ii) a helper plasmid, bearing the lambda int gene, transcribed from the lambda PR promoter under the control of the temperature-sensitive repressor cI857. The DNA fragment of interest is cloned into the multicloning site of one of the attP-harboring plasmids. Subsequently, the origin of the plasmid, located on a cloning cassette, is cut out and the DNA becomes newly ligated, resulting in a circular DNA molecule without replication ability. The strain of choice, containing the int gene carrying helper plasmid, is transformed with this DNA molecule and incubated at 42 degrees C to induce int gene expression. Additionally, the temperature shift leads to the loss of the helper plasmid after a few cell generations, because the replication ability of its replicon is blocked at 42 degrees C. These vectors have been successfully used for integration of several promoter-lacZ fusions into the chromosome. The ratio between integration due to homologous recombination and Int protein-mediated integration has been determined.  相似文献   

7.
K Geider  C Hohmeyer  R Haas  T F Meyer 《Gene》1985,33(3):341-349
DNA cloning vectors were developed which utilize the replication origin (ori) of bacteriophage fd for their propagation. These vectors depend on the expression of viral gene 2 that was inserted into phage lambda, which in turn was integrated into the host genome. The constitutive expression of gene 2 in the host cells is sufficient for the propagation of at least 100 pfd plasmids per cell. In addition to the fd ori, the pfd vectors carry various antibiotic-resistance genes and unique restriction sites. Some of these vectors have no homologies to commonly used pBR plasmids or to lambda DNA. The nucleotide sequence of the vectors can be deduced from published sequences. Large DNA inserts can be stably propagated in pfd vectors; these are more stable than similar DNA fragments cloned in intact genomes of filamentous bacteriophage. Inclusion of phage sequences required for efficient phage packaging and infection with a helper phage resulted in formation of phage particles containing single-stranded plasmid genomes. Growth at 42 degrees C without selective pressure results in loss of pfd plasmids.  相似文献   

8.
We have developed a novel ex vivo system for the rapid one-step targeted modification of large eucaryotic DNA sequences. The highly recombinant environment resulting from infection of rabbit cornea cells with the Shope fibroma virus was exploited to mediate precise modifications of the complete chicken lysozyme gene domain (21.5 kb). Homologous recombination was designed to occur between target DNA (containing the complete lysozyme gene domain) maintained in a lambda bacteriophage vector and modified targeting DNA maintained in a plasmid. The targeting plasmids were designed to transfer exogenous sequences (for example, beta-galactosidase alpha-complement, green fluorescent protein, and hydrophobic tail coding sequences) to specific sites within the lysozyme gene domain. Cotransfection of the target phage and a targeting plasmid into Shope fibroma virus infected cells resulted in the poxvirus-mediated transfer of the modified sequences from plasmid to phage. Phage DNA (recombinant and nonrecombinant) was then harvested from the total cellular DNA by packaging into lambda phage particles and correct recombinants were identified. Four different gene-targeting pairings were carried out, and from 3% to 11% of the recovered phages were recombinant. Using this poxvirus-mediated targeting system, four different regions of the chicken lysozyme gene domain have been modified precisely by our research group overall with a variety of inserts (6-971 bp), deletions (584-3000 bp), and replacements. We have never failed to obtain the desired recombinant. Poxvirus-mediated recombination thus constitutes a routine, rapid, and remarkably efficient genetic engineering system for the precise modification of large eucaryotic gene domains when compared with traditional practices.  相似文献   

9.
Earlier, we reported that the bacteriophage lambda P gene product is lethal to Escherichia coli, and the E. coli rpl mutants are resistant to this lambda P gene-mediated lethality. In this paper, we show that under the lambda P gene-mediated lethal condition, the host DNA synthesis is inhibited at the initiation step. The rpl8 mutation maps around the 83 min position in the E. coli chromosome and is 94 % linked with the dnaA gene. The rpl8 mutant gene has been cloned in a plasmid. This plasmid clone can protect the wild-type E. coli from lambda P gene-mediated killing and complements E. coli dnaAts46 at 42 degrees C. Also, starting with the wild-type dnaA gene in a plasmid, the rpl-like mutations have been isolated by in vitro mutagenesis. DNA sequencing data show that each of the rpl8, rpl12 and rpl14 mutations has changed a single base in the dnaA gene, which translates into the amino acid changes N313T, Y200N, and S246T respectively within the DnaA protein. These results have led us to conclude that the rpl mutations, which make E. coli resistant to lambda P gene-mediated host lethality, are located within the DNA initiator gene dnaA of the host.  相似文献   

10.
We describe the construction and use of two classes of cDNA cloning vectors. The first class comprises the lambda EXLX(+) and lambda EXLX(-) vectors that can be used for the expression in Escherichia coli of proteins encoded by cDNA inserts. This is achieved by the fusion of cDNA open reading frames to the T7 gene 10 promoter and protein-coding sequences. The second class, the lambda SHLX vectors, allows the generation of large amounts of single-stranded DNA or synthetic cRNA that can be used in subtractive hybridization procedures. Both classes of vectors are designed to allow directional cDNA cloning with non-enzymatic protection of internal restriction sites. In addition, they are designed to facilitate conversion from phage lambda to plasmid clones using a genetic method based on the bacteriophage P1 site-specific recombination system; we refer to this as automatic Cre-loxP plasmid subcloning. The phage lambda arms, lambda LOX, used in the construction of these vectors have unique restriction sites positioned between the two loxP sites. Insertion of a specialized plasmid between these sites will convert it into a phage lambda cDNA cloning vector with automatic plasmid subcloning capability.  相似文献   

11.
D W Grogan  J E Cronan 《Gene》1983,22(1):75-83
A nonselectable gene carried on a poorly selectable recombinant plasmid has been physically mapped by deletion analysis. Our method involved cloning the plasmid into a coliphage lambda vector and treating the recombinant phage with a chelator. Virtually all particles surviving this treatment carried large deletions within the plasmid insert. Further deletion analysis was done by inserting a selectable lambda sequence into one such deletion derivative and repeating the chelator selection. Chelator selection was also used to isolate deletions constructed in vitro. The deleted phage are readily characterized by restriction mapping, and the gene in question scored after infection of a mutant host strain. These techniques have enabled us to physically assign the cyclopropane fatty acid synthase gene of Escherichia coli to 0.8 kb of a 16-kb segment after characterizing only a small number of isolates. This approach should be generally useful in the mapping of plasmids for which no convenient method exists for selecting or scoring the gene in question.  相似文献   

12.
Targeted mutagenesis is an extremely useful experimental approach in molecular medicine, allowing the generation of specialized animals that are mutant for any gene of interest. Currently the rate determining step in any gene targeting experiment is construction of the targeting vector (TV). In order to streamline gene targeting methods and avoid problems encountered with plasmid TVs, we describe the direct application of lambda phage in targeted mutagenesis. The recombination-proficient phage vector lambda2TK permits generation of TVs by conventional restriction-ligation or recombination-mediated methods. The resulting lambdaTV DNA can then be cleaved with restriction endonucleases to release the bacteriophage arms and can subsequently be electroporated directly into ES cells to yield gene targets. We demonstrate that in vivo phage-plasmid recombination can be used to introduce neo and lacZ - neo mutations into precise positions within a lambda2TK subclone via double crossover recombination. We describe two methods for eliminating single crossover recombinants, spi selection and size restriction, both of which result in phage TVs bearing double crossover insertions. Thus TVs can be easily and quickly generated in bacteriophage without plasmid subcloning and with little genomic sequence or restriction site information.  相似文献   

13.
A derivative of bacteriophage lambda containing a colicin E1 plasmid replicon was constructed by recombinant DNA techniques. This phage, lambdacol100, has two functional modes of DNA replication; it can replicate via either plasmid or phage replication systems. lambdacol100 has been used to introduce the colicin E1 plasmid replicon into Escherichia coli previously treated with chloramphenicol to block protein synthesis. Under these conditions, lambdacol100 DNA is replicated normally as a colicin E1 plasmid. This suggests that colicin E1 plasmid replication in vivo does not require any plasmid-encoded proteins.  相似文献   

14.
The curves of UV (254 nm)-inactivation and inactivation by furocoumarin derivatives + UVA radiation (PUVA) of bacteriophage lambda and biologically active plasmid pBR322 were measured using Escherichia coli K12 bacteria with different defects of DNA repair system as a ghost. The ratio of mono- and diadducts (interstrand cross-links) of 8-methoxypsoralen was determined that are formed after treating the DNA of pBR322 and bacteriophage lambda with PUVA. It is shown that, on the average, about five monoadducts per one diadduct are formed in DNA of pBR322, and about 0.9 monoadducts per one diadduct are formed in lambda phage DNA. An increased (up to 50%) efficiency of SOS-repair of monoadducts of 8-methoxypsoralen in DNA of pBR322 and lambda in the presence of plasmid pKM101 muc+ (incN) was found.  相似文献   

15.
Recently, DNA bacteriophages (M13, lambda) have been genetically engineered to transfer genes into mammalian cells. Although efficiencies observed are still relatively low, this opens the possibility of using these viruses as a new class of transfection agents not only for fundamental research purposes but also in gene therapy protocols or in other applications like vaccination. In this respect, it has been shown that a lambda bacteriophage engineered to express the hepatitis B surface antigen in mammalian cells could elicit an immune response against this antigen in mice and rabbits without any specific targeting of the bacteriophage. These impressive results would be even more encouraging if they could be obtained with an RNA bacteriophage, as RNA vaccines are preferred over DNA vaccines for safety reasons. Up to now, RNA bacteriophages have never been engineered for gene delivery. In this paper, we have sought to determine whether such a vector could be obtained by engineering the RNA bacteriophage MS2. We show that MS2 can be produced as virus-like particles (VLPs) in Saccharomyces cerevisiae and is able to package functional heterologous mRNAs, provided that these mRNAs contain the MS2 packaging sequence. For instance, linking the MS2 packaging sequence to the human growth hormone (hGH) mRNA enabled the packaging of this particular mRNA in MS2 VLPs. Functionality in eukaryotic systems of packaged mRNAs was confirmed by showing that mRNAs purified from VLPs can be efficiently translated in vitro and in cell cultures. The high stability of MS2 could, therefore, make MS2 VLPs a very powerful carrier for RNA vaccines.  相似文献   

16.
Infection of Escherichia coli by bacteriophage lambda depends on two membrane protein complexes: (i) maltoporin (LamB) in the outer membrane for adsorption and (ii) the IIC(Man)-IID(Man) complex of the mannose transporter in the inner membrane for DNA penetration. IIC(Man) and IID(Man) are components of the phosphoenolpyruvate: sugar phosphotransferase system (PTS) which together with the IIAB(Man) subunit mediate transport and phosphorylation of sugars. To identify structural determinants important for penetration of lambda DNA, the homologous IIC-IID complexes of E. coli, K. pneumoniae and B. subtilis, and chimeric complexes between the IIC and IID were characterized. All three complexes support sugar transport in E. coli. Only IIC-IID of E. coli and B. subtilis also support bacteriophage lambda infection. The six chimeric complexes had lost transport activity, but three containing IIC of E. coli or B. subtilis continue to support bacteriophage lambda infection. Complexes containing IIC(Man) and fusion proteins between truncated IID(Man) and alkaline phosphatase or beta-galactosidase support penetration of lambda DNA if less than 100 residues are missing from the C-terminus of IID(Man). Truncation of IIC(Man) renders the complex unstable. Taken together, these results suggest, that IIC is the major specificity determinant for lambda infection but that the IIC subunit is stably expressed only in a complex with the IID subunit. Lambda DNA in transit across the periplasmic space, but not transforming plasmid DNA, is inaccessible to the non-specific nuclease NucA of Anabaena sp. targeted to the periplasmic space either in soluble form or as a fusion protein to the C-terminus of IID(Man).  相似文献   

17.
An Escherichia coli expression vector, pG408N containing a PL promoter and the upstream untranslated region of the N gene of bacteriophage lambda has been constructed. We have designed a PvuII site immediately behind the untranslated region. A DNA fragment starting with an initiation codon ATG could be inserted into this site for expression. This vector also contains 7 additional cloning sites downstream from the PvuII site. A gene could be cloned into one of these sites and the 5' sequence of this gene could be modified with synthetic oligonucleotides and ligated to the PvuII for the purpose of increasing gene expression. We have also cloned the lambda cl gene into a p15A plasmid. Cotransformation of this plasmid with the expression vector allows the cloning vector pG408N to be used in any E. coli strain. Using this system, we were able to express porcine growth hormone to approximately 35% of total proteins in E. coli DH5 alpha.  相似文献   

18.
High-density functional display of proteins on bacteriophage lambda   总被引:4,自引:0,他引:4  
We designed a bacteriophage lambda system to display peptides and proteins fused at the C terminus of the head protein gpD of phage lambda. DNA encoding the foreign peptide/protein was first inserted at the 3' end of a DNA segment encoding gpD under the control of the lac promoter in a plasmid vector (donor plasmid), which also carried lox P(wt) and lox P(511) recombination sequences. Cre-expressing cells were transformed with this plasmid and subsequently infected with a recipient lambda phage that carried a stuffer DNA segment flanked by lox P(wt) and lox P(511) sites. Recombination occurred in vivo at the lox sites and Amp(r) cointegrates were formed. The cointegrates produced recombinant phage that displayed foreign protein fused at the C terminus of gpD. The system was optimised by cloning DNA encoding different length fragments of HIV-1 p24 (amino acid residues 1-72, 1-156 and 1-231) and the display was compared with that obtained with M13 phage. The display on lambda phage was at least 100-fold higher than on M13 phage for all the fragments with no degradation of displayed products. The high-density display on lambda phage was superior to that on M13 phage and resulted in selective enrichment of epitope-bearing clones from gene-fragment libraries. Single-chain antibodies were displayed in functional form on phage lambda, strongly suggesting that correct disulphide bond formation takes place during display.This lambda phage display system, which avoids direct cloning into lambda DNA and in vitro packaging, achieved cloning efficiencies comparable to those obtained with any plasmid system. The high-density display of foreign proteins on bacteriophage lambda should be extremely useful in studying low-affinity protein-protein interactions more efficiently compared to the M13 phage-based system.  相似文献   

19.
The Nu3 gene of bacteriophage lambda resides within a cluster of genes that specify structural components of the bacteriophage head. Previous experiments indicate that the Nu3 gene product (gpNu3) is associated with immature proheads but is not detectable in mature proheads or bacteriophage particles, hence its classification as a scaffolding protein. The Nu3 gene has been cloned and overexpressed, and its protein product has been purified. The purified protein is biologically active, as demonstrated by its ability to complement a gpNu3-deficient extract in an in vitro assembly reaction. The sequence of the amino terminus of the protein indicates that translation of Nu3 starts at nucleotide position 5,342 on the standard lambda DNA sequence, yielding a protein with a calculated Mr of 13,396. A combination of gel exclusion chromatography and velocity sedimentation gradient data indicates that gpNu3 possesses an unusually elongated shape.  相似文献   

20.
The N(6)-methyladenine (MeAde) and 5-methylcytosine (MeC) contents in deoxyribonucleic acid (DNA) of bacteriophage lambda has been analyzed as a function of host specificity. The following facts have emerged: (i) lambda grown on strains harboring the P1 prophage contain ca. 70 more MeAde residues/DNA molecule than lambda grown either in the P1-sensitive parent, or in a P1 immune-defective lysogen which does not confer P1 modification; (ii) lambda grown on strains harboring the N-3 drug-resistance factor contain ca. 60 more MeC residues/DNA molecule than lambda grown on the parental strain lacking the factor; (iii) lambda grown in Escherichia coli B strains is devoid of MeC, whereas lambda grown in a B (N-3) host contains a high level of MeC; (iv) the MeAde content in lambda DNA is not affected by the N-3 factor. These results suggest that P1 controls an adenine-specific DNA methylase, and that the N-3 plasmid controls a cytosine-specific DNA methylase. The N-3 factor has been observed previously to direct cytosine-specific methylation of phage P22 DNA and E. coli B DNA in vivo; in vitro studies presented here demonstrate this activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号