首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oncoprotein 18/stathmin (Op18) is a recently identified phosphorylation-responsive regulator of the microtubule (MT) system. It was originally proposed that Op18 specifically regulates dynamic properties of MTs by associating with tubulin, but it has subsequently been proposed that Op18 acts simply by sequestering of tubulin heterodimers. We have dissected the mechanistic action of Op18 by generation of two distinct classes of mutants. One class has interruptions of the heptad repeats of a potential coiled-coil region of Op18, and the other involves substitution at all four phosphorylation sites with negatively charged Glu residues. Both types of mutation result in Op18 proteins with a limited decrease in tubulin complex formation. However, the MT-destabilizing activities of the coiled-coil mutants are more severely reduced in transfected leukemia cells than those of the Glu-substituted Op18 derivative, providing evidence for tubulin-directed regulatory activities distinct from tubulin complex formation. Analysis of Op18-mediated regulation of tubulin GTPase activity and taxol-promoted tubulin polymerization showed that while wild-type and Glu-substituted Op18 derivatives are active, the coiled-coil mutants are essentially inactive. This suggests that Op18-tubulin contact involves structural motifs that deliver a signal of regulatory importance to the MT system.  相似文献   

2.
Oncoprotein18/stathmin (Op18) is a microtubule (MT) destabilizing protein that is inactivated during mitosis by phosphorylation at four Ser-residues. Op18 has at least two functions; the N-terminal region is required for catastrophe-promotion (i.e., transition from elongation to shortening), while the C-terminal region is required to inhibit MT-polymerization rate in vitro. We show here that a "pseudophosphorylation" derivative of Op18 (i.e., four Ser- to Glu-substitutions at phosphorylation sites) exhibits a selective loss of catastrophe-promoting activity. This is contrasted to authentic phosphorylation, which efficiently attenuates all activities except tubulin binding. In intact cells, overexpression of pseudophosphorylated Op18, which is not phosphorylated by endogenous kinases, is shown to destabilize interphase MTs but to leave spindle formation untouched. To test if the mitotic spindle is sensitive only to the catastrophe-promoting activity of Op18 and resistant to C-terminally associated activities, N- and C-terminal truncations with defined activity-profiles were employed. The cell-cycle phenotypes of nonphosphorylatable mutants (i.e., four Ser- to Ala-substitutions) of these truncation derivatives demonstrated that catastrophe promotion is required for interference with the mitotic spindle, while the C-terminally associated activities are sufficient to destabilize interphase MTs. These results demonstrate that specific Op18 derivatives with defined activity-profiles can be used as probes to distinguish interphase and mitotic MTs.  相似文献   

3.
The ubiquitous Op18 and the neural RB3 and SCG10 proteins are members of the oncoprotein18/stathmin family of microtubule regulators. These proteins bind two tubulin heterodimers via two imperfect helical repeats to form a complex of heterodimers aligned head-to-tail. Here we have analyzed GTP exchange and GTP hydrolysis at the exchangeable GTP-binding site (E-site) of tubulin heterodimers in complex with Op18, RB3, or SCG10. These proteins stimulate a low and indistinguishable rate of GTP hydrolysis, and our results show that GTP exchange is blocked at both E-sites of the ternary complex, whereas GTP hydrolysis only occurs at one of the two E-sites. Results from mutational analysis of clusters of hydrophobic residues within the first helical repeat of Op18 suggest that GTP is hydrolyzed at the E-site that is interfaced between the head-to-tail arranged heterodimers, which is consistent with predicted GTPase productive interactions between the two tubulin heterodimers. Our mutational analysis has also indicated that Op18/stathmin family members actively restrain the otherwise potent GTPase productive interactions that are generated by longitudinal interactions within protofilaments. We conclude that tubulin heterodimers in complex with Op18/stathmin family members are subject to allosteric effects that prevent futile cycles of GTP hydrolysis.  相似文献   

4.
Oncoprotein 18 (Op18) is a microtubule regulator that forms a ternary complex with two tubulin heterodimers. Dispersed regions of Op18 are involved in two-site cooperative binding and subsequent modulation of tubulin GTPase activity. Here we have analyzed specific determinants of Op18 that govern both stoichiometry and positive cooperativity in tubulin binding and consequent stimulatory and inhibitory effects on tubulin GTPase activity. The data revealed that the central and C-terminal regions of Op18 contain overlapping binding-motifs contacting both tubulin heterodimers, suggesting that these regions of Op18 are wedged into the previously noted 1-nm gap between the two longitudinally arranged tubulin heterodimers. Both the N- and C-terminal flanks adjacent to the central region are involved in stabilizing the ternary complex, but only the C-terminal flank does so by imposing positive binding cooperativity. Within the C-terminal flank, deletion of a 7-amino acid region attenuated positive binding cooperativity and resulted in a switch from stimulation to inhibition of tubulin GTP hydrolysis. This switch can be explained by attenuated binding cooperativity, because Op18 under these conditions may block longitudinal contact surfaces of single tubulins with consequent interference of tubulin-tubulin interaction-dependent GTP hydrolysis. Together, our results suggest that Op18 links two tubulin heterodimers via longitudinal contact surfaces to form a ternary GTPase productive complex.  相似文献   

5.
Oncoprotein 18/stathmin (Op18) has been identified recently as a protein that destabilizes microtubules, but the mechanism of destabilization is currently controversial. Based on in vitro microtubule assembly assays, evidence has been presented supporting conflicting destabilization models of either tubulin sequestration or promotion of microtubule catastrophes. We found that Op18 can destabilize microtubules by both of these mechanisms and that these activities can be dissociated by changing pH. At pH 6.8, Op18 slowed microtubule elongation and increased catastrophes at both plus and minus ends, consistent with a tubulin-sequestering activity. In contrast, at pH 7.5, Op18 promoted microtubule catastrophes, particularly at plus ends, with little effect on elongation rates at either microtubule end. Dissociation of tubulin-sequestering and catastrophe-promoting activities of Op18 was further demonstrated by analysis of truncated Op18 derivatives. Lack of a C-terminal region of Op18 (aa 100–147) resulted in a truncated protein that lost sequestering activity at pH 6.8 but retained catastrophe-promoting activity. In contrast, lack of an N-terminal region of Op18 (aa 5–25) resulted in a truncated protein that still sequestered tubulin at pH 6.8 but was unable to promote catastrophes at pH 7.5. At pH 6.8, both the full length and the N-terminal–truncated Op18 bound tubulin, whereas truncation at the C-terminus resulted in a pronounced decrease in tubulin binding. Based on these results, and a previous study documenting a pH-dependent change in binding affinity between Op18 and tubulin, it is likely that tubulin sequestering observed at lower pH resulted from the relatively tight interaction between Op18 and tubulin and that this tight binding requires the C-terminus of Op18; however, under conditions in which Op18 binds weakly to tubulin (pH 7.5), Op18 stimulated catastrophes without altering tubulin subunit association or dissociation rates, and Op18 did not depolymerize microtubules capped with guanylyl (α, β)-methylene diphosphonate–tubulin subunits. We hypothesize that weak binding between Op18 and tubulin results in free Op18, which is available to interact with microtubule ends and thereby promote catastrophes by a mechanism that likely involves GTP hydrolysis.  相似文献   

6.
Oncoprotein 18 (Op18, also termed p19, 19K, metablastin, stathmin, and prosolin) is a recently identified regulator of microtubule (MT) dynamics. Op18 is a target for both cell cycle and cell surface receptor-coupled kinase systems, and phosphorylation of Op18 on specific combinations of sites has been shown to switch off its MT-destabilizing activity. Here we show that induced expression of the catalytic subunit of cAMP-dependent protein kinase (PKA) results in a dramatic increase in cellular MT polymer content concomitant with phosphorylation and partial degradation of Op18. That PKA may regulate the MT system by downregulation of Op18 activity was evaluated by a genetic system allowing conditional co-expression of PKA and a series of kinase target site–deficient mutants of Op18. The results show that phosphorylation of Op18 on two specific sites, Ser-16 and Ser-63, is necessary and sufficient for PKA to switch off Op18 activity in intact cells. The regulatory importance of dual phosphorylation on Ser-16 and Ser-63 of Op18 was reproduced by in vitro assays. These results suggest a simple model where PKA phosphorylation downregulates the MT-destabilizing activity of Op18, which in turn promotes increased tubulin polymerization. Hence, the present study shows that Op18 has the potential to regulate the MT system in response to external signals such as cAMP-linked agonists.  相似文献   

7.
C A Dougherty  C R Sage  A Davis  K W Farrell 《Biochemistry》2001,40(51):15725-15732
We introduced a threonine-to-glycine point mutation at position 143 in the "tubulin signature motif" 140Gly-Gly-Gly-Thr-Gly-Ser-Gly146 of Saccharomyces cerevisiae beta-tubulin. In an electron diffraction model of the tubulin dimer, this sequence comes close to the phosphates of a guanine nucleotide bound in the beta-tubulin exchangeable E site. Both the GTP-binding affinity and the microtubule (MT)-dependent GTPase activity of tubulin isolated from haploid tub2-T143G mutant cells were reduced by at least 15-fold, compared to tubulin isolated from control wild-type cells. The growing and shortening dynamics of MTs assembled from alphabeta:Thr143Gly-mutated dimers were also strongly suppressed, compared to control MTs. The in vitro properties of the mutated MTs (slower growing and more stable) are consistent with the effects of the tub2-T143G mutation in haploid cells. The average length of MT spindles in large-budded mutant cells was only 3.7 +/- 0.2 microm, approximately half of the size of MT arrays in large-budded wild-type cells (average length = 7.1 +/- 0.4 microm), suggesting that there is a delay in mitosis in the mutant cells. There was also a higher proportion of large-budded cells with unsegregated nuclei in mutant cultures (30% versus 12% for wild-type cells), again suggesting such a delay. The results show that beta:Thr143 of the tubulin signature motif plays an important role in GTP binding and hydrolysis by the beta-tubulin E site and support the idea that tubulins belong to a family of proteins within the GTPase superfamily that are structurally distinct from the classic GTPases, such as EF-Tu and p21(ras). The data also suggest that MT dynamics are critical for MT function in yeast cells and that spindle MT assembly and disassembly could be coordinated with other cell-cycle events by regulating beta-tubulin GTPase activity.  相似文献   

8.
Microtubules (MTs) polymerized with GMPCPP, a slowly hydrolyzable GTP analogue, are stable in buffer but are rapidly depolymerized in Xenopus egg extracts. This depolymerization is independent of three previously identified MT destabilizers (Op18, katanin, and XKCM1/KinI). We purified the factor responsible for this novel depolymerizing activity using biochemical fractionation and a visual activity assay and identified it as XMAP215, previously identified as a prominent MT growth-promoting protein in Xenopus extracts. Consistent with the purification results, we find that XMAP215 is necessary for GMPCPP-MT destabilization in extracts and that recombinant full-length XMAP215 as well as an NH2-terminal fragment have depolymerizing activity in vitro. Stimulation of depolymerization is specific for the MT plus end. These results provide evidence for a robust MT-destabilizing activity intrinsic to this microtubule-associated protein and suggest that destabilization may be part of its essential biochemical functions. We propose that the substrate in our assay, GMPCPP-stabilized MTs, serves as a model for the pause state of MT ends and that the multiple activities of XMAP215 are unified by a mechanism of antagonizing MT pauses.  相似文献   

9.
Dynamic instability is a critical property of microtubules (MTs). By regulating the rate of tubulin polymerization and depolymerization, cells organize the MT cytoskeleton to accommodate their specific functions. Among many processes, posttranslational modifications of tubulin are implicated in regulating MT functions. Here we report a novel tubulin acetylation catalyzed by acetyltransferase San at lysine 252 (K252) of β-tubulin. This acetylation, which is also detected in vivo, is added to soluble tubulin heterodimers but not tubulins in MTs. The acetylation-mimicking K252A/Q mutants were incorporated into the MT cytoskeleton in HeLa cells without causing any obvious MT defect. However, after cold-induced catastrophe, MT regrowth is accelerated in San-siRNA cells while the incorporation of acetylation-mimicking mutant tubulins is severely impeded. K252 of β-tubulin localizes at the interface of α-/β-tubulins and interacts with the phosphate group of the α-tubulin-bound GTP. We propose that the acetylation slows down tubulin incorporation into MTs by neutralizing the positive charge on K252 and allowing tubulin heterodimers to adopt a conformation that disfavors tubulin incorporation.  相似文献   

10.
We investigated how the self-association of isolated tubulin dimers affects the rate of GTP hydrolysis and the equilibrium of nucleotide exchange. Both reactions are relevant for microtubule (MT) dynamics. We used HPLC to determine the concentrations of GDP and GTP and thereby the GTPase activity of SEC-eluted tubulin dimers in assembly buffer solution, free of glycerol and tubulin aggregates. When GTP hydrolysis was negligible, the nucleotide exchange mechanism was studied by determining the concentrations of tubulin-free and tubulin-bound GTP and GDP. We observed no GTP hydrolysis below the critical conditions for MT assembly (either below the critical tubulin concentration and/or at low temperature), despite the assembly of tubulin 1D curved oligomers and single-rings, showing that their assembly did not involve GTP hydrolysis. Under conditions enabling spontaneous slow MT assembly, a slow pseudo-first-order GTP hydrolysis kinetics was detected, limited by the rate of MT assembly. Cryo-TEM images showed that GTP-tubulin 1D oligomers were curved also at 36 °C. Nucleotide exchange depended on the total tubulin concentration and the molar ratio between tubulin-free GDP and GTP. We used a thermodynamic model of isodesmic tubulin self-association, terminated by the formation of tubulin single-rings to determine the molar fractions of dimers with exposed and buried nucleotide exchangeable sites (E-sites). Our analysis shows that the GDP to GTP exchange reaction equilibrium constant was an order-of-magnitude larger for tubulin dimers with exposed E-sites than for assembled dimers with buried E-sites. This conclusion may have implications on the dynamics at the tip of the MT plus end.  相似文献   

11.
Stathmin/Op 18 is a microtubule (MT) dynamics-regulating protein that has been shown to have both catastrophe-promoting and tubulin-sequestering activities. The level of stathmin/Op18 phosphorylation was proved both in vitro and in vivo to be important in modulating its MT-destabilizing activity. To understand the in vivo regulation of stathmin/Op18 activity, we investigated whether MT assembly itself could control phosphorylation of stathmin/Op18 and thus its MT-destabilizing activity. We found that MT nucleation by centrosomes from Xenopus sperm or somatic cells and MT assembly promoted by dimethyl sulfoxide or paclitaxel induced stathmin/Op18 hyperphosphorylation in Xenopus egg extracts, leading to new stathmin/Op18 isoforms phosphorylated on Ser 16. The MT-dependent phosphorylation of stathmin/Op18 took place in interphase extracts as well, and was also observed in somatic cells. We show that the MT-dependent phosphorylation of stathmin/Op18 on Ser 16 is mediated by an activity associated to the MTs, and that it is responsible for the stathmin/Op18 hyperphosphorylation reported to be induced by the addition of "mitotic chromatin." Our results suggest the existence of a positive feedback loop, which could represent a novel mechanism contributing to MT network control.  相似文献   

12.
Oncoprotein 18 (Op18, also termed p19, p18, prosolin or stathmin) is a cytosolic protein of previously unknown function. Phosphorylation of Op18 is cell cycle regulated by cyclin-dependent kinases (CDKs), and expression of a 'CDK target site-deficient mutant' results in a phenotype indicative of a role for Op18 during mitosis. This phenotype is compatible with the idea that Op18 is a phosphorylation-responsive regulator of microtubule (MT) dynamics. Therefore, in this study, we analyzed MTs in cells induced to express either wild-type or mutated Op18. The results showed that wild-type Op18 and a CDK target site mutant both efficiently elicited rapid depolymerization of MTs. This result contrasts with clear-cut differences in their cell cycle phenotypes. Morphological analysis of MTs explained this apparent discrepancy: while interphase MTs were depolymerized in cells expressing either Op18 derivative, apparently normal mitotic spindles were formed only in cells overexpressing wild-type Op18. This result correlates with our finding that only mutated Op18 causes a block during mitosis. Hence, we conclude that Op18 decreases MT stability and that this activity of Op18 is subject to cell cycle regulation by CDKs.  相似文献   

13.
XMAP215/Dis1 proteins are conserved tubulin-binding TOG-domain proteins that regulate microtubule (MT) plus-end dynamics. Here we show that Alp14, a XMAP215 orthologue in fission yeast, Schizosaccharomyces pombe, has properties of a MT polymerase. In vivo, Alp14 localizes to growing MT plus ends in a manner independent of Mal3 (EB1). alp14-null mutants display short interphase MTs with twofold slower assembly rate and frequent pauses. Alp14 is a homodimer that binds a single tubulin dimer. In vitro, purified Alp14 molecules track growing MT plus ends and accelerate MT assembly threefold. TOG-domain mutants demonstrate that tubulin binding is critical for function and plus end localization. Overexpression of Alp14 or only its TOG domains causes complete MT loss in vivo, and high Alp14 concentration inhibits MT assembly in vitro. These inhibitory effects may arise from Alp14 sequestration of tubulin and effects on the MT. Our studies suggest that Alp14 regulates the polymerization state of tubulin by cycling between a tubulin dimer-bound cytoplasmic state and a MT polymerase state that promotes rapid MT assembly.  相似文献   

14.
Microtubules (MTs) control cell replication, material transport and motion in eukaryotic cells, but MT role in several pathologies is still unknown. These functions are related to the MT physico-chemical properties and MT formation mode starting from tubulin molecules. This study describes a new method, based on the computer aided analysis of the electron paramagnetic resonance (EPR) spectra of selected spin probes to obtain structural and dynamical information on tubulins and MTs and the kinetics of MTs formation promoted by guanosine-5'-triphosphate (GTP). It was found that tubulin and MTs avoid radical quenching caused by ethylene glycol tetraacetic acid (EGTA). MT formation showed different kinetics as a function of tubulin concentration. At 5 mg/mL of tubulin, MTs were formed in 8 min. These results are also useful for getting information on MT-drug interactions.  相似文献   

15.
Op18/stathmin (Op18) is a phosphorylation-regulated and differentially expressed microtubule-destabilizing protein in animal cells. Op18 regulates tubulin monomer-polymer partitioning of the interphase microtubule system and forms complexes with tubulin heterodimers. Recent reports have shown that specific tubulin-folding cofactors and related proteins may disrupt tubulin heterodimers. We therefore investigated whether Op18 protects unpolymerized tubulin from such disruptive activities. Our approach was based on inducible overexpression of two tubulin-disrupting proteins, namely TBCE, which is required for tubulin biogenesis, and E-like, which has been proposed to regulate tubulin turnover and microtubule stability. Expression of either of these proteins was found to cause a rapid degradation of both alpha-tubulin and beta-tubulin subunits of unpolymerized, but not polymeric, tubulin heterodimers. We found that depletion of Op18 by means of RNA interference increased the susceptibility of tubulin to TBCE or E-like mediated disruption, while overexpressed Op18 exerted a tubulin-protective effect. Tubulin protection was shown to depend on Op18 levels, binding affinity, and the partitioning between tubulin monomers and polymers. Hence, the present study reveals that Op18 at physiologically relevant levels functions to preserve the integrity of tubulin heterodimers, which may serve to regulate tubulin turnover rates.  相似文献   

16.
Hyperphosphorylated forms of the neuronal microtubule (MT)-associated protein tau are major components of Alzheimer's disease paired helical filaments. Previously, we reported that ABalphaC, the dominant brain isoform of protein phosphatase 2A (PP2A), is localized on MTs, binds directly to tau, and is a major tau phosphatase in cells. We now describe direct interactions among tau, PP2A, and MTs at the submolecular level. Using tau deletion mutants, we found that ABalphaC binds a domain on tau that is indistinguishable from its MT-binding domain. ABalphaC binds directly to MTs through a site that encompasses its catalytic subunit and is distinct from its binding site for tau, and ABalphaC and tau bind to different domains on MTs. Specific PP2A isoforms bind to MTs with distinct affinities in vitro, and these interactions differentially inhibit the ability of PP2A to dephosphorylate various substrates, including tau and tubulin. Finally, tubulin assembly decreases PP2A activity in vitro, suggesting that PP2A activity can be modulated by MT dynamics in vivo. Taken together, these findings indicate how structural interactions among ABalphaC, tau, and MTs might control the phosphorylation state of tau. Disruption of these normal interactions could contribute significantly to development of tauopathies such as Alzheimer's disease.  相似文献   

17.
In this study, a two-state mechanochemical model is presented to describe the dynamic instability of microtubules (MTs) in cells. The MT switches between two states, the assembly and disassembly states. In assembly state, the growth of MTs includes two processes: free GTP-tubulin binding to the tip of protofilament (PF) and conformation change of PF, during which the first tubulin unit that curls outwards is rearranged onto the MT surface, using the energy released from the hydrolysis of GTP in the penultimate tubulin unit. In the disassembly state, the shortening of MTs also includes two processes, the release of GDP-tubulin from the tip of PF and the curling of one new tubulin unit out of the MT surface. Switches between these two states, which are usually called rescue and catastrophe, happen stochastically with external force-dependent rates. Using this two-state model with parameters obtained by fitting the recent experimental data, detailed properties of MT growth are obtained. I find that MT is mainly in the assembly state, its mean growth velocity increases with both the external force and the GTP-tubulin concentration, and an MT will shorten on average without an external force. To know more about the external force and GTP-tubulin concentration-dependent properties of MT growth, and for future experimental verification of this two-state model, 11 critical forces are defined and discussed numerically.  相似文献   

18.
Microtubules are polar polymers that continually switch between phases of elongation and shortening, a property referred to as dynamic instability. The ubiquitous microtubule associated protein 4 (MAP4) shows rescue-promoting activity during in vitro assembly of microtubules (i.e., promotes transitions from shortening to elongation), but its regulatory role in intact cells is poorly defined. Here, we demonstrate that ectopic MAP4 promotes outgrowth of extended MTs during beta1-integrin-induced cell spreading. An inducible cotransfection protocol was employed to further analyze the regulatory role of MAP4 in human leukemia cells with microtubules partially destabilized by either ectopic tubulin-sequestering proteins or proteins that promote catastrophes (i.e., transitions from elongation to shortening). Coexpression of proteins that sequester free tubulin heterodimers with different efficiencies was found to abolish microtubule stabilization by MAP4. In contrast, however, the microtubule-stabilizing activity of MAP4 was found to suppress the activities of two distinct and specific catastrophe promoters, namely, XKCM1 and a nonsequestering truncation derivative of Op18/stathmin. These observations reveal specificity in the microtubule-stabilizing activity of MAP4 that differentiates between two mechanistically distinct types of MT destabilization.  相似文献   

19.
Protein phosphorylation represents a ubiquitous control mechanism in living cells. The structural prerequisites and consequences of this important post-translational modification, however, are poorly understood. Oncoprotein 18/stathmin (Op18) is a globally disordered phosphoprotein that is involved in the regulation of the microtubule (MT) filament system. Here we document that phosphorylation of Ser63, which is located within a helix initiation site in Op18, disrupts the transiently formed amphipathic helix. The phosphoryl group reduces tubulin binding 10-fold and suppresses the MT polymerization inhibition activity of Op18’s C-terminal domain. Op18 represents an example where phosphorylation occurs within a regular secondary structural element. Together, our findings have implications for the prediction of phosphorylation sites and give insights into the molecular behavior of a globally disordered protein.  相似文献   

20.
Microtubule-associated protein 4 (MAP4) promotes MT assembly in vitro and is localized along MTs in vivo. These results and the fact that MAP4 is the major MAP in nonneuronal cells suggest that MAP4's normal functions may include the stabilization of MTs in situ. To understand MAP4 function in vivo, we produced a blocking antibody (Ab) to prevent MAP4 binding to MTs. The COOH-terminal MT binding domain of MAP4 was expressed in Escherichia coli as a glutathione transferase fusion protein and was injected into rabbits to produce an antiserum that was then affinity purified and shown to be monospecific for MAP4. This Ab blocked > 95% of MAP4 binding to MTs in an in vitro assay. Microinjection of the affinity purified Ab into human fibroblasts and monkey epithelial cells abolished MAP4 binding to MTs as assayed with a rat polyclonal antibody against the NH2-terminal projection domain of MAP4. The removal of MAP4 from MTs was accompanied by its sequestration into visible MAP4-Ab immunocomplexes. However, the MT network appeared normal. Tubulin photoactivation and nocodazole sensitivity assays indicated that MT dynamics were not altered detectably by the removal of MAP4 from the MTs. Cells progressed to mitosis with morphologically normal spindles in the absence of MAP4 binding to MTs. Depleting MAP4 from MTs also did not affect the state of posttranslational modifications of tubulin subunits. Further, no perturbations of MT- dependent organelle distribution were detected. We conclude that the association of MAP4 with MTs is not essential for MT assembly or for the MT-based functions in cultured cells that we could assay. A significant role for MAP4 is not excluded by these results, however, as MAP4 may be a component of a functionally redundant system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号