首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Abstract: The effects of peroxides were investigated on the membrane potential, intracellular Na+ ([Na+]i) and intracellular Ca2+ ([Ca2+]i) concentrations, and basal glutamate release of synaptosomes. Both H2O2 and the organic cumene hydroperoxide produced a slow and continuous depolarization, parallel to an increase of [Na+]i over an incubation period of 15 min. A steady rise of the [Ca2+]i due to peroxides was also observed that was external Ca2+ dependent and detected only at an inwardly directed Ca2+ gradient of the plasma membrane. These changes did not correlate with lipid peroxidation, which was elicited by cumene hydroperoxide but not by H2O2. Resting release of glutamate remained unchanged during the first 15 min of incubation in the presence of peroxides. These alterations may indicate early dysfunctions in the sequence of events occurring in the nerve terminals in response to oxidative stress.  相似文献   

2.
Abstract: Nitric oxide has been recognized in recent years as an important mediator of neuronal toxicity, which in many cases involves alterations of the cytoplasmic Ca2+ concentration ([Ca2+]i). In [Ca2+]i fluorimetric experiments on cultured hippocampal neurons, the nitric oxide-releasing agent S -nitrosocysteine produced a delayed rise in [Ca2+]i over a 20-min exposure, which was accompanied by a progressive slowing of the kinetics of recovery from depolarization-induced [Ca2+]i transients. These effects were blocked by oxyhemoglobin and by superoxide dismutase, confirming nitric oxide as the responsible agent, and suggesting that they involved peroxynitrite formation. Similar alterations of [Ca2+]i homeostasis were produced by the mitochondrial ATP synthase inhibitor oligomycin, and when an ATP-regenerating system was supplied via the patch pipette in combined whole-cell patch-clamp-[Ca2+]i fluorimetry experiments, S -nitrosocysteine had no effect on the resting [Ca2+]i or on the recovery kinetics of [Ca2+]i transients induced by direct depolarization. We conclude that prolonged exposure to nitric oxide disrupts [Ca2+]i homeostasis in hippocampal neurons by impairing Ca2+ removal from the cytoplasm, possibly as a result of ATP depletion. The resulting persistent alterations in [Ca2+]i may contribute to the delayed neurotoxicity of nitric oxide.  相似文献   

3.
Abstract: Cultured astroglia express both adenosine and ATP purinergic receptors that are coupled to increases in intracellular calcium concentration ([Ca2+]i). Currently, there is little evidence that such purinergic receptors exist on astrocytes in vivo. To address this issue, calcium-sensitive fluorescent dyes were used in conjunction with confocal microscopy and immunocytochemistry to examine the responsiveness of astrocytes in acutely isolated hippocampal slices to purinergic neuroligands. Both ATP and adenosine induced dynamic increases in astrocytic [Ca2+]i that were blocked by the adenosine receptor antagonist 8-( p -sulfophenyl)theophylline. The responses to adenosine were not blocked by tetrodotoxin, 8-cyclopentyltheophylline, 8-(3-chlorostyryl)caffeine, dipyridamole, or removal of extracellular calcium. The P2Y-selective agonist 2-methylthioadenosine triphosphate was unable to induce increases in astrocytic [Ca2+]i, whereas the P2 agonist adenosine 5'- O -(2-thiodiphosphate) induced astrocytic responses in a low percentage of astrocytes. These results indicate that the majority of hippocampal astrocytes in situ contain P1 purinergic receptors coupled to increases in [Ca2+]i, whereas a small minority appear to contain P2 purinergic receptors. Furthermore, individual hippocampal astrocytes responded to adenosine, glutamate, and depolarization with increases in [Ca2+]i. The existence of both purinergic and glutamatergic receptors on individual astrocytes in situ suggests that astrocytes in vivo are able to integrate information derived from glutamate and adenosine receptor stimulation.  相似文献   

4.
Abstract: Human NT2-N neurons express Ca2+-permeable α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptors (AMPA-GluRs) and become vulnerable to excitotoxicity when AMPA-GluR desensitization is blocked with cyclothiazide. Although the initial increase in intracellular Ca2+ levels ([Ca2+]i) was 1.9-fold greater in the presence than in the absence of cyclothiazide, Ca2+ entry via AMPA-GluRs in an early phase of the exposure was not necessary to elicit excitotoxicity in these neurons. Rather, subsequent necrosis was caused by a >40-fold rise in [Na+]i, which induced a delayed [Ca2+]i rise. Transfer of the neurons to a 5 m M Na+ medium after AMPA-GluR activation accelerated the delayed [Ca2+]i rise and intensified excitotoxicity. Low-Na+ medium-enhanced excitotoxicity was partially blocked by amiloride or dizocilpine (MK-801), and completely blocked by removal of extracellular Ca2+, suggesting that Ca2+ entry by reverse operation of Na+/Ca2+ exchangers and via NMDA glutamate receptors was responsible for the neuronal death after excessive Na+ loading. Our results serve to emphasize the central role of neuronal Na+ loading in AMPA-GluR-mediated excitotoxicity in human neurons.  相似文献   

5.
Abstract: The role of the Na+/Ca2+ exchanger and intracellular nonmitochondrial Ca2+ pool in the regulation of cytosolic free calcium concentration ([Ca2+]i) during catecholamine secretion was investigated. Catecholamine secretion and [Ca2+]i were simultaneously monitored in a single chromaffin cell. After high-K+ stimulation, control cells and cells in which the Na+/Ca2+ exchange activity was inhibited showed similar rates of [Ca2+]i elevation. However, the recovery of [Ca2+]i to resting levels was slower in the inhibited cells. Inhibition of the exchanger increased the total catecholamine secretion by prolonging the secretion. Inhibition of the Ca2+ pump of the intracellular Ca2+ pool with thapsigargin caused a significant delay in the recovery of [Ca2+]i and greatly enhanced the secretory events. These data suggest that both the Na+/Ca2+ exchanger and the thapsigargin-sensitive Ca2+ pool are important in the regulation of [Ca2+]i and, by modulating the time course of secretion, are important in determining the extent of secretion.  相似文献   

6.
Abstract: We investigated the modulation of (±)-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-induced increases in intracellular free Ca2+ ([Ca2+]i) and intracellular free Mg2+ ([Mg2+]i) by cyclothiazide and GYKI 52466 using microspectrofluorimetry in single cultured rat brain neurons. AMPA-induced changes in [Ca2+]i were increased by 0.3–100 µ M cyclothiazide, with an EC50 value of 2.40 µ M and a maximum potentiation of 428% of control values. [Ca2+]i responses to glutamate in the presence of N -methyl- d -aspartate (NMDA) receptor antagonists were also potentiated by 10 µ M cyclothiazide. The response to NMDA was not affected, demonstrating specificity of cyclothiazide for non-NMDA receptors. Almost all neurons responded with an increase in [Ca2+]i to both kainate and AMPA in the absence of extracellular Na+, and these Na+-free responses were also potentiated by cyclothiazide. GYKI 52466 inhibited responses to AMPA with an IC50 value of 12.0 µ M . Ten micromolar cyclothiazide significantly decreased the potency of GYKI 52466. However, the magnitude of this decrease in potency was not consistent with a competitive interaction between the two ligands. Cyclothiazide also potentiated AMPA- and glutamate-induced increases in [Mg2+]i. These results are consistent with the ability of cyclothiazide to decrease desensitization of non-NMDA glutamate receptors and may provide the basis for the increase in non-NMDA receptor-mediated excitotoxicity produced by cyclothiazide.  相似文献   

7.
Abstract: Increasing extracellular pH from 7.4 to 8.5 caused a dramatic increase in the time required to recover from a glutamate (3 µ M , for 15 s)-induced increase in intracellular Ca2+ concentration ([Ca2+]i) in indo-1-loaded cultured cortical neurons. Recovery time in pH 7.4 HEPES-buffered saline solution (HBSS) was 126 ± 30 s, whereas recovery time was 216 ± 19 s when the pH was increased to 8.5. Removal of extracellular Ca2+ did not inhibit the prolongation of recovery caused by increasing pH. Extracellular alkalinization caused rapid intracellular alkalinization following glutamate exposure, suggesting that pH 8.5 HBSS may delay Ca2+ recovery by affecting intraneuronal Ca2+ buffering mechanisms, rather than an exclusively extracellular effect. The effect of pH 8.5 HBSS on Ca2+ recovery was similar to the effect of the mitochondrial uncoupler carbonyl cyanide p -(trifluoromethoxyphenyl)hydrazone (FCCP; 750 n M ). However, pH 8.5 HBSS did not have a quantitative effect on mitochondrial membrane potential comparable to that of FCCP in neurons loaded with a potential-sensitive fluorescent indicator, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide (JC-1). We found that the effect of pH 8.5 HBSS on Ca2+ recovery was completely inhibited by the mitochondrial Na+/Ca2+ exchange inhibitor CGP-37157 (25 µ M ). This suggests that increased mitochondrial Ca2+ efflux via the mitochondrial Na2+/Ca2+ exchanger is responsible for the prolongation of [Ca2+]i recovery caused by alkaline pH following glutamate exposure.  相似文献   

8.
Abstract: Recently we have shown that 4-aminopyridine (4-AP), a drug known to enhance transmitter release, stimulates the phosphorylation of the protein kinase C substrate B-50 (GAP-43) in rat brain synaptosomes and that this effect is dependent on the presence of extracellular Ca2+. Hence, we were interested in the relationship between changes induced by 4-AP in the intracellular free Ca2+ concentration ([Ca2+]i) and B-50 phosphorylation in synaptosomes. 4-AP (100 μ M ) elevates the [Ca2+]i (as determined with fura-2) to approximately the same extent as depolarization with 30 m M K+ (from an initial resting level of 240 n M to ∼480 n M after treatment). However, the underlying mechanisms appear to be different: In the presence of 4-AP, depolarization with K+ still evoked an increase in [Ca2+]i, which was additive to the elevation caused by 4-AP. Several Ca2+ channel antagonists (CdCl2, LaCl3, and diphenylhydantoin) inhibited the increase in B-50 phosphorylation by 4-AP. It is interesting that the increase in [Ca2+]i and the increase in B-50 phosphorylation by 4-AP were attenuated by tetrodotoxin, a finding pointing to a possible involvement of Na+ channels in this action. These results suggest that 4-AP (indirectly) stimulates both Ca2+ influx and B-50 phosphorylation through voltage-dependent channels by a mechanism dependent on Na+ channel activity.  相似文献   

9.
Elevation of intracellular Ca2+ concentration ([Ca2+]i) triggers exocytosis of secretory granules in pancreatic duct epithelia. In this study, we find that the signal also controls granule movement. Motions of fluorescently labeled granules stopped abruptly after a [Ca2+]i increase, kinetically coincident with formation of filamentous actin (F-actin) in the whole cytoplasm. At high resolution, the new F-actin meshwork was so dense that cellular structures of granule size appeared physically trapped in it. Depolymerization of F-actin with latrunculin B blocked both the F-actin formation and the arrest of granules. Interestingly, when monitored with total internal reflection fluorescence microscopy, the immobilized granules still moved slowly and concertedly toward the plasma membrane. This group translocation was abolished by blockers of myosin. Exocytosis measured by microamperometry suggested that formation of a dense F-actin meshwork inhibited exocytosis at small Ca2+ rises <1 μ m . Larger [Ca2+]i rises increased exocytosis because of the co-ordinate translocation of granules and fusion to the membrane. We propose that the Ca2+-dependent freezing of granules filters out weak inputs but allows exocytosis under stronger inputs by controlling granule movements.  相似文献   

10.
Abstract: Nitric oxide (NO) has been shown to be an important mediator in several forms of neurotoxicity. We previously reported that NO alters intracellular Ca2+ concentration ([Ca2+]i) homeostasis in cultured hippocampal neurons during 20-min exposures. In this study, we examine the relationship between late alterations of [Ca2+]i homeostasis and the delayed toxicity produced by NO. The NO-releasing agent S -nitrosocysteine (SNOC; 300 µ M ) reduced survival by about one half 1 day after 20-min exposures, as did other NO-releasing agents. SNOC also was found to produce prolonged elevations of [Ca2+]i, persisting at 2 and 6 h. Hemoglobin, a scavenger of NO, blocked both the late [Ca2+]i elevation and the delayed toxicity of SNOC. Removal of extracellular Ca2+ during the 20-min SNOC treatment failed to prevent the late [Ca2+]i elevations and did not prevent the delayed toxicity, but removal of extracellular Ca2+ for the 6 h after exposure as well blocked most of the toxicity. Western blots showed that SNOC exposure resulted in an increased proteolytic breakdown of the structural protein spectrin, generating a fragment with immunoreactivity suggesting activity of the Ca2+-activated protease calpain. The spectrin breakdown and the toxicity of SNOC were inhibited by treatment with calpain antagonists. We conclude that exposures to toxic levels of NO cause prolonged disruption of [Ca2+]i homeostatic mechanisms, and that the resulting persistent [Ca2+]i elevations contribute to the delayed neurotoxicity of NO.  相似文献   

11.
In sea urchin eggs, 10 μg/mL melittin was found to induce fertilization envelope formation without any increase in [Ca2+]i (the intracellular free Ca2+ level). On the other hand, 10 μmol/L Br-A23187 and 100 μg/mL SDS induced fertilization envelope formation associated with [Ca2+]i increase. If EGTA was injected into eggs to make an intracellular concentration of 2 mmol/L, [Ca2+]i became quite low and was not altered by melittin, or by Br-A23187 and SDS. In eggs containing EGTA, fertilization envelope formation was induced by melittin even in Ca2+-free artificial sea water, but not by Br-A23187 or SDS. Thus [Ca2+]i is essential for induction of a fertilization envelope in sea urchin eggs by Br-A23187 or SDS but not by melittin. Melittin probably activates some Ca2+-independent reaction downstream of Ca2+-dependent reactions in a sequential reaction system that finally results in fertilization envelope formation.  相似文献   

12.
We examined the effects of two egg jelly components, a fucose sulfate glycoconjugate (FSG) and sperm-activating peptide I (SAP-I: Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly), on the intracellular pH (pHi) and Ca2+ ([Ca2+]i) of spermatozoa of the sea urchin Hemicentrotus pulcherrimus . FSG and/or SAP-I induced elevations of [Ca2+]; and pHi in the spermatozoa at pH 8.0. At pH 8.0, a second addition of FSG did not induced further elevation of the [Ca2+]i or pHi of spermatozoa treated with FSG, but addition or FSG after SAP-I or of SAP-I after FSG induced further increases of [Ca2+]i and pHi, At pH 6.6, FSG and/or SAP-I did not induce significant elevation of the [Ca2+]i, although SAP-I elevated the pHi, its half-maximal effective concentration being 10 to 100 pM. At pH 8.0, tetraethyl-ammonium, a voltage-sensitive K+-channel blocker, inhibited induction of the acrosome reaction and elevations of [Ca2+]i and pHi by FSG, but did not affect those by SAP-I. These results suggest that FSG and SAP-I activate different Ca2+ and H+ transport systems.  相似文献   

13.
Cytoplasmic calcium ion (Ca2+) has generally been proposed to be a key factor of numerous cellular processes. Among several agents which might be expected to alter cytoplasmic Ca2+-concentration ([Ca2+]i), unexpectedly Ca2+-antagonist TMB-8 was found to raise considerably [Ca2+]i, and inhibited not only the formation of prespore cells, but also their maintenance in the monolayer cultures of Dictyostelium discoideum . This seems to indicate that higher [Ca2+]i is unfavorable to the prespore differentiation. In this study, we adopted the monolayer culture technique to monitor cell differentiation. However, in high density monolayers there arised a number of unique cells which was highly vacuolated and morphologically intermediate between the stalk and spore cells. These vacuolated cells having both cellulosic wall and spore coat were also induced by differentiation inducing factor (DIF). Thus the monolayer culture system used might be not necessarily qualified to monitor the terminal differentiation of Dictyostelium cells. Nevertheless, the data presented here have strongly suggested that DIF have two physiologically valued roles: 1) Induction of the membrane fusion of vesicles and/or vacuoles (vacuolization), and 2) Induction of the fusion between the cell membrane and vacuole (or vesicle) membrane (exocytosis).  相似文献   

14.
Abstract: Cross talk between two phospholipase C (PLC)-linked receptor signalings was investigated in SK-N-BE(2)C human neuroblastoma cells. Sequential stimulation with two agonists at 5-min intervals was performed to examine the interaction between muscarinic and bradykinin (BK) receptors. Pretreatment of cells with a maximal effective concentration (5 µ M ) of BK did not affect the subsequent carbachol (CCh)-induced [Ca2+]i rise, but CCh (1 m M ) pretreatment completely abolished the BK-induced [Ca2+]i rise without inhibition of BK-induced inositol 1,4,5-trisphosphate (IP3) generation. Thapsigargin (1 µ M ) pretreatment abolished the subsequent BK- and CCh-induced [Ca2+]i rise, though it did not affect agonist-induced IP3 generation. However, the addition of atropine at plateau phases of CCh-induced [Ca2+]i rise and IP3 production caused a rapid decline to the basal levels and then restored the [Ca2+]i rise by BK. Treatment of cells with both CCh and BK at the same time showed additive effects in IP3 production. However, the [Ca2+]i rise induced by both agonists in the presence or absence of extracellular Ca2+ was the same as the responses triggered by CCh alone. The results suggest that each receptor or receptor-linked PLC activity is not influenced by pretreatment with the other agonist but IP3-sensitive Ca2+ stores are shared by signal pathways from both receptors.  相似文献   

15.
Abstract: To study how growth factors affect stimulus-secretion coupling pathways, we examined the effects of nerve growth factor (NGF), epidermal growth factor (EGF), and insulin on ATP-induced [Ca2+]i rise and dopamine secretion in PC12 cells. After a 4-day incubation of cells, all three factors increased ATP-induced dopamine secretion significantly. We then examined which step of ATP-induced secretion was affected by the growth factors. Cellular levels of dopamine-β-hydroxylase and catecholamines were increased by NGF treatment but were not affected by EGF or insulin. The ATP-induced [Ca2+]i rise was also enhanced after growth factor treatment. The EC50 of ATP for inducing [Ca2+]i rise and dopamine secretion was increased by NGF treatment but not by treatment with EGF or insulin. Accordingly, the dependence on [Ca2+]i of dopamine secretion was increased significantly only in NGF-treated cells. Our results suggest that for EGF- and insulin-treated PC12 cells, the increase in secretion is mainly due to increased potency of ATP in inducing [Ca2+]i rise. NGF treatment not only increased the potency of ATP but also decreased the Ca2+ sensitivity of the secretory pathway, which as a result becomes more tightly regulated by changes in [Ca2+]i.  相似文献   

16.
Neuropeptide Y (NPY) and NPY receptors are widely distributed in the CNS, including the retina, but the role of NPY in the retina is largely unknown. The aim of this study was to investigate whether NPY modulates intracellular calcium concentration ([Ca2+]i) changes in retinal neurons and identify the NPY receptors involved. As NPY decreased the [Ca2+]i amplitudes evoked by 30 mM KCl in only 50% of neurons analyzed, we divided them in two populations: NPY-non-responsive neurons (Δ2/Δ1 ≥ 0.80) and NPY-responsive neurons (Δ2/Δ1 < 0.80), being the Δ2/Δ1 the ratio between the amplitude of [Ca2+]i increase evoked by the second (Δ2) and the first (Δ1) stimuli of KCl. The NPY Y1/Y5, Y4, and Y5 receptor agonists (100 nM), but not the Y2 receptor agonist (300 nM), inhibited the [Ca2+]i increase induced by KCl. In addition, the inhibitory effect of NPY on evoked-[Ca2+]i changes was reduced in the presence of the Y1 or the Y5 receptor antagonists. In conclusion, NPY inhibits KCl-evoked [Ca2+]i increase in retinal neurons through the activation of NPY Y1, Y4, and Y5 receptors. This effect may be viewed as a potential neuroprotective mechanism of NPY against retinal neurodegeneration.  相似文献   

17.
Abstract: Confocal microscopy was used to assess internal calcium level changes in response to presynaptic receptor activation in individual, isolated nerve terminals (synaptosomes) from rat corpus striatum, focusing, in particular, on the serotonin 5-HT3 receptor, a ligand-gated ion channel. The 5-HT3 receptor agonist-induced calcium level changes in individual synaptosomes were compared with responses evoked by K+ depolarization. Using the fluorescent dye fluo-3 to measure relative changes in internal free Ca2+ concentration ([Ca2+]i), K+-induced depolarization resulted in variable but rapid increases in apparent [Ca2+]i among the individual terminals, with some synaptosomes displaying large transient [Ca2+]i peaks of varying size (two- to 12-fold over basal levels) followed by an apparent plateau phase, whereas others displayed only a rise to a sustained plateau level of [Ca2+]i (two- to 2.5-fold over basal levels). Agonist activation of 5-HT3 receptors induced slow increases in [Ca2+]i (rise time, 15–20 s) in a subset (∼5%) of corpus striatal synaptosomes, with the increases (averaging 2.2-fold over basal) being dependent on Ca2+ entry and inhibited by millimolar external Mg2+. We conclude that significant increases in brain nerve terminal Ca2+, rivaling that found in response to excitation by depolarization but having distinct kinetic properties, can therefore result from the activation of presynaptic ligand-gated ion channels.  相似文献   

18.
Abstract: Hypoxia (5% O2) enhanced catecholamine release in cultured rat adrenal chromaffin cells. Also, the intracellular free Ca2+ concentration ([Ca2+]i) increased within 3 min in ∼50% of the chromaffin cells under hypoxic stimulation. The increase depended on the presence of extracellular Ca2+. Nifedipine and ω-conotoxin decreased the population of the cells that showed the hypoxia-induced [Ca2+]i increase, showing that the Ca2+ influx was attributable to L- and N-type voltage-dependent Ca2+ channels. The membrane potential was depolarized during the perfusion with the hypoxic solution and returned to the basal level following the change to the normoxic solution (20% O2). Membrane resistance increased twofold under the hypoxic condition. The current-voltage relationship showed a hypoxia-induced decrease in the outward K+ current. Among the K+ channel openers tested, cromakalim and levcromakalim, both of which interact with ATP-sensitive K+ channels, inhibited the hypoxia-induced [Ca2+]i increase and catecholamine release. The inhibitory effects of cromakalim and levcromakalim were reversed by glibenclamide and tolbutamide, potent blockers of ATP-sensitive K+ channels. These results suggest that some fractions of adrenal chromaffin cells are reactive to hypoxia and that K+ channels sensitive to cromakalim and glibenclamide might have a crucial role in hypoxia-induced responses. Adrenal chromaffin cells could thus be a useful model for the study of oxygen-sensing mechanisms.  相似文献   

19.
Abstract.  Secretion of ecdysteroids by the prothoracic glands of the migratory locust, Locusta migratoria L., is enhanced in vitro by tris(hydroxymethyl)aminomethane (tris) in a dose-dependent manner. Glands from larvae on the second day of the penultimate stadium are most sensitive. This action of tris depends on the uptake of calcium; increased production of ecdysteroid does not occur in the presence of cadmium, verapamil or TMB-8, or in calcium-free media. The concentration of unbound Ca2+, [Ca2+]i, in the cytoplasm is measured with the aid of FURA 2/AM. Tris causes a rise of [Ca2+]i that is fully suppressed by lanthanum and partially by nitrendipine. Two antagonists of IP3 receptors elicit mutually opposite effects: heparin blocks, whereas 2-APB accelerates, the rise in [Ca2+]i. Ryanodine exerts only a slight effect. It is proposed that tris activates locust prothoracic glands in a Ca2+-dependent manner that exhibits many similarities to the transduction pathway of prothoracicotropic hormone.  相似文献   

20.
Abstract: During K+ -induced depolarization of isolated rat brain nerve terminals (synaptosomes), 1 m M Ba2+ could substitute for 1 m M Ca2+ in evoking the release of endogenous glutamate. In addition, Ba2+ was found to evoke glutamate release in the absence of K+-induced depolarization. Ba2+ (1–10 m M ) depolarized synaptosomes, as measured by voltage-sensitive dye fluorescence and [3H]-tetraphenylphosphonium cation distribution. Ba2+ partially inhibited the increase in synaptosomal K+ efflux produced by depolarization, as reflected by the redistribution of radiolabeled 86Rb+. The release evoked by Ba2+ was inhibited by tetrodotoxin (TTX). Using the divalent cation indicator fura-2, cytosolic [Ca2+] increased during stimulation by approximately 200 n M , but cytosolic [Ba2+] increased by more than 1 μ M . Taken together, our results indicate that Ba2+ initially depolarizes synaptosomes most likely by blocking a K+ channel, which then activates TTX-sensitive Na+ channels, causing further depolarization, and finally enters synaptosomes through voltage-sensitive Ca2+channels to evoke neurotransmitter release directly. Though Ba2+-evoked glutamate release was comparable in level to that obtained with K+-induced depolarization in the presence of Ca2+, the apparent intrasynaptosomal level of Ba2+ required for a given amount of glutamate release was found to be several-fold higher than that required of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号