首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I Riede  M Degen    U Henning 《The EMBO journal》1985,4(9):2343-2346
T-Even type bacteriophages recognize their cellular receptors with the distal ends of their long tail fibers. The distal part of these fibers consists of a dimer of gene product (gp) 37. The assembly of this gp to a functional dimer requires the action of two other proteins, gp57 and gp38. Genes (g) 38 have been cloned from five T-even type phages which use the Escherichia coli outer membrane protein OmpA as a receptor. The phages used differ in their ability to infect a series of ompA mutants producing altered OmpA proteins, i.e., each phage has a specific host range for these mutants. The cloned genes 38 complemented g38 amber mutants of phage T2, which uses the outer membrane protein OmpF as a receptor. The complemented phages had become phenotypically OmpA-dependent and, with one exception, OmpF-independent, but regained the host range of T2 upon growth in a host lacking the cloned g38. The host range of the complemented phages, as determined on the ompA mutants, was identical to, similar to, or different from that of the phage, from which the cloned g38 originated. The results presented show that gp38 from one phage can phenotypically 'imprint', in a finely-tuned manner, a host range onto gp37 of another phage with a different host specificity. In view of the extreme diversity of host ranges observed, it is suggested that gp38 of T2 and of the OmpA-specific phages may remain attached to gp37 in the phage particle and in cooperation with gp37 determine the host range.  相似文献   

2.
Structure of the distal half of the bacteriophage T4 tail fiber   总被引:9,自引:0,他引:9  
Studies of T4 amber mutants defective in tail fiber assembly have allowed the antigens of the distal half of the T4 tail fiber to be divided into two classes, called B and C. Only a few of the antibodies directed against these antigens cross-react with the related phage, T2. By adsorbing these cross-reactive antigens, it has been possible to produce a T4-specific anti-BC serum, AS1.The product of gene 37, P37, is the major protein in the distal half-fiber. A series of T2-T4 hybrid phage has been isolated which carry part of P37 from T2 and part from T4. By testing the ability of these hybrids to block the activity of AS1, it has been possible to divide the C antigen into 4 or 5 subclasses which have different specificities and are determined by different parts of P37.Observation of the tail fiber-antibody complexes formed by these hybrids and AS1 has allowed a determination of the topology of P37 in the assembled fiber. It is oriented linearly with its N-terminus near the joint between the two half-fibers and its C-terminus near the tip of the fiber. These observations lead to a simple model for the structure of the distal half-fiber.  相似文献   

3.
Structure of bacteriophage T4 genes 37 and 38   总被引:10,自引:0,他引:10  
The distal half of the bacteriophage T4 tail fiber interacts with the bacterial surface during adsorption. The specificity of this interaction is controlled by the largest polypeptide in this half fiber, P37. During assembly of the half fiber P37 interacts with P38. These two gene products are incompatible with the corresponding gene products from the related phage T2: T2 P37 does not interact with T4 P38 and T4 P37 does not interact with T2 P38. Thus P37 has two specific functions, interaction with P38 and interaction with the bacterial surface. Both functions differ in specificity between T2 and T4. We have compared genes 37 and 38 of T2 with the corresponding genes of T4 to determine in more detail how the genes have diverged.Crosses between T2 and T4 phage which are mutant in genes 37 and 38 divide gene 37 into four segments which show different frequencies of T2-T4 recombination. These crosses show that both functional specializations of P37, attachment to the bacterial surface and interaction with P38, are determined by a single segment at the carboxyl end of P37. In this segment of gene 37 and in all of gene 38 there is no recombination between T2 and T4. The rest of gene 37 contains a segment with a small amount of T2-T4 recombination flanked by two small segments with relatively high T2-T4 recombination.When T2/T4 heteroduplex DNA molecules are examined under the electron microscope, four heterologous loops appear in the region of genes 37 and 38. When genes 37 and 38 are aligned with this heteroduplex pattern, regions of low recombination correspond to regions of T2-T4 heterology. Begions with relatively high recombination are homologous.As determined from sodium dodecyl sulfate polyacrylamide gels, the molecular weight of T2 P37 is about 13,000 larger than that of T4 P37. Analysis of T2-T4 hybrid phage has shown that, like the functional differences, this molecular weight difference is determined by the carboxyl terminal segment of P37.  相似文献   

4.
Summary Genes (g) 36 and 37 code for the proteins of the distal half of the long tail fibers of phage T4, gene product (gp) 35 links the distal half to the proximal half of this fiber. The receptor, lipopolysaccharide, most likely is recognized by gp37. Using as probe a restriction fragment consisting of most of g36 and g37 of phage T4 the genes corresponding to g35, g36, and g37 of phages T2 and K3 (using the E. coli outer membrane proteins OmpF and OmpA, respectively, as receptors) have been cloned into plasmid pUC8. Partial DNA sequences of g37 of phage K3 have been determined. One area, corresponding to residues 157 to 210 of the 1026 residue gp37 of phage T4, codes for an identical sequence in phage K3. Another area corresponds to residues 767 to 832 of the phage T4 sequence. Amino acid residues 767 to 832 of the phage T4 sequence are almost identical in both phage proteins while the remainder is rather different. DNAs of T2, T4, T6, another T-even type phage using protein Tsx as a receptor, and 10 different T-even type phages using the OmpA protein as a receptor have been hybridized with restriction fragments covering various parts of the g37 area of phage K3. With probably only one exception all of the 13 phages tested possess unique genes 37 and within the majority of these, sequences highly homologous to parts of g37 of K3 are present in a mosaic type fashion. Other regions of these genes 37 did not show any homology with the K3 probes; in case of the OmpA specific phage M1 absence of homology was evident in most of its g37 even including the area that should serve for recognition of the cellular receptor. In sharp contrast to this situation it was found that a major part of the gene (g23) coding for the major capsid protein is rather highly conserved in all phages studied. The extreme variability in sequences existing in genes 37 might be a consequence of phages during evolution being able to more or less drastically change their receptor specifities.  相似文献   

5.
The collar and whiskers of bacteriophage T4 extend outward from the top of the tail and play a role in regulating retraction of the tail fibers (Conley &; Wood, 1975). The collar and whiskers also are required for efficient tail fiber attachment during phage assembly. The structural gene for the collar/whisker protein is called wac. In vitro, infected-cell extracts that contain tail fibers activate whiskerless (wac) tail fiberless particles and ordinary (wac+) tail fiberless particles at equal rates if the extracts contain the wac+ gene product. However, extracts that contain tail fibers but no wac+ gene product activate wac particles about ten times more slowly. In vivo, whiskers are not essential for plaque formation, but a wac mutation causes a delay in the appearance of intracellular phage and a fivefold decrease in the burst size of infectious particles.The effect of the whiskers on tail fiber attachment is due to an interaction between the whisker and the distal half of the tail fiber, similar if not identical to the interaction that controls tail fiber retraction in complete phage. The following observations support this view: a slow rate of in vitro tail fiber attachment similar to that described above is seen with wac+ particles when they are pretreated with anti-whisker serum, or when the tail fibers carry a mutational alteration in gp36, a structural protein in the distal half fiber near the central kink. Lack of whiskers does not affect the slow rate of attachment of proximal half fibers to the baseplate of fiberless particles, but lack of whiskers greatly decreases the rate at which particles with attached proximal half fibers are activated by addition of distal half fibers. Since whiskers normally are attached to the phage only after head—tail union (Coombs &; Eiserling, 1977; Terzaghi et al., 1978), these findings explain why tail fibers do not attach efficiently to the baseplates of free tails.  相似文献   

6.
The long-tail fibers (LTFs) form part of bacteriophage T4's apparatus for host cell recognition and infection, being responsible for its initial attachment to susceptible bacteria. The LTF has two parts, each ∼70 to 75 nm long; gp34 (140 kDa) forms the proximal half-fiber, while the distal half-fiber is composed of gp37 (109 kDa), gp36 (23 kDa) and gp35 (30 kDa). LTFs have long been thought to be dimers of gp34, gp37 and gp36, with one copy of gp35. We have used mass mapping by scanning transmission electron microscopy (STEM), quantitative SDS-PAGE, and computational sequence analysis to study the structures of purified LTFs and half-fibers of both kinds. These data establish that the LTF is, in fact, trimeric, with a stoichiometry of gp34: gp37: gp36: gp35=3:3:3:1. Averaged images of stained and unstained molecules resolve the LTF into a linear stack of 17 domains. At the proximal end is a globular domain of ∼145 kDa that becomes incorporated into the baseplate. It is followed by a rod-like shaft (33 × 4 nm; 151 kDa) which correlates with a cluster of seven quasi repeats, each 34 to 39 residues long. The proximal half-fiber terminates in three globular domains. The distal half-fiber consists of ten globular domains of variable size and spacing, preceding a needle-like end domain (15 × 2.5 nm; 31 kDa). The LTF is rigid apart from hinges between the two most proximal domains, and between the proximal and distal half-fibers. The latter hinge occurs at a site of local non-equivalence (the “kneecap”) at which density, correlated with the presence of gp35, bulges asymmetrically out on one side. Several observations indicate that gp34 participates in the sharing of conserved structural modules among coliphage tail-fiber genes to which gp37 was previously noted to subscribe. Two adjacent globular domains in the proximal half-fiber match a pair of domains in the distal half-fiber, and the rod domain in the proximal half-fiber resembles a similar domain in the T4 short tail-fiber (gp12). Finally, possible structures are considered; combining our data with earlier observations, the most likely conformation for most of the LTF is a three-stranded β-helix.  相似文献   

7.
The bacteriophage T7 tail complex consists of a conical tail-tube surrounded by six kinked tail-fibers, which are oligomers of the viral protein gp17 (Mr 61,400). We have derived a molecular model for the tail-fiber by integrating secondary structure predictions with ultrastructural information obtained by correlation averaging of electron micrographs of negatively stained tail complexes. This model has been further refined by high-resolution scanning transmission electron microscopy of purified fibers, both negatively stained and unstained. Mass measurements made from the latter images establish that the fiber is a trimer of gp17. The proximal half-fiber is a uniform rod, about 2.0 nm in diameter and 16.4 nm long, which we infer to be a triple-stranded coiled-coil, containing three copies of an alpha-helical domain of about 117 residues, starting at Phe151. The distal half-fiber is 15.5 nm long, and is made up of four globules, 3.1 to 4.8 nm in diameter, in rigid linear array: it contains the carboxy-terminal halves (residues approximately 268 to 553) of the constituent gp17 chains, arranged with 3-fold symmetry around its long axis. The amino-terminal domains (residues 1 to 149) link the fiber to the tail-tube. We conclude that the three gp17 chains are quasi-equivalent in the proximal half-fiber, equivalent in the distal half-fiber, and non-equivalent in the kink region that separates the two half-fibers: such localized non-equivalence may represent a general mechanism for the formation of kinked joints in segmented homo-oligomeric proteins.  相似文献   

8.
The distal part of the long tail fiber of Escherichia coli bacteriophage T4 consists of a dimer of protein 37. Dimerization requires the catalytic action of protein 38, which is encoded by T4 and is not present in the virion. It had previously been shown that gene tfa of the otherwise entirely unrelated phage lambda can functionally replace gene 38. Open reading frame (ORF) 314, which encodes a protein that exhibits homology to a COOH-terminal area of protein 37, is located immediately upstream of tfa. The gene was cloned and expressed in E. coli. An antiserum against the corresponding polypeptide showed that it was present in phage lambda. The serum also reacted with the long tail fibers of phage T4 near their free ends. An area of the gene encoding a COOH-terminal region of ORF 314 was recombined, together with tfa, into the genome of T4, thus replacing gene 38 and a part of gene 37 that codes for a COOH-terminal part of protein 37. Such T4-lambda hybrids, unlike T4, required the presence of outer membrane protein OmpC for infection of E. coli B. An ompC missense mutant of E. coli K-12, which was still sensitive to T4, was resistant to these hybrids. We conclude that the ORF 314 protein represents a subunit of the side tail fibers of phage lambda which probably recognize the OmpC protein. ORF 314 was designated stf (side tail fiber). The results also offer an explanation for the very unusual fact that, despite identical genomic organizations, T4 and T2 produce totally different proteins 38. An ancestor of T4 from the T2 lineage may have picked up tfa and stf from a lambdoid phase, thus possibly demonstrating horizontal gene transfer between unrelated phage species.  相似文献   

9.
The classical T-even bacteriophages recognize host cells with their long tail fibers. Gene products 35, 36, and 37 constitute the distal moiety of these fibers. The free ends of the tail fibers, which are formed by the CO2H terminus of gene product 37, possess the host range determinants. It was found that 4 out of 10 different strains of Escherichia coli K-12 contained regions of chromosomal DNA which hybridized with a probe consisting of genes 35, 36, and 37 of the T-even phage K3. From one strain this homologous DNA, which was associated with an EcoRI fragment of about 5 kilobases, was cloned into plasmid pUC8. Two independently recovered hybrid plasmids had undergone a peculiar rearrangement which resulted in the loss of about 3 kilobases of cloned DNA and a duplication of both the vector and the remaining chromosomal DNA. The mechanisms causing this duplication-deletion may be related to that of transposases. The cloned DNA was capable of recombination with phage T4 gene 36 and a phage T2 gene 37 amber mutant. DNA sequencing revealed the existence of regions of identity between the cloned DNA and genes 36 and 37 of phage T2. In addition, after growth of a derivative of phage K3 on a strain harboring T2 DNA, it was found that this phage contained the same parts of the T2 tail fiber genes which had been recovered from the bacterial chromosome. There appears to be little doubt that the phage had picked up this DNA from the host. The possibility is considered that a repertoire of parts of genes 36 and 37 of various T-even-type phages is present in their hosts, allowing the former to change their host ranges.  相似文献   

10.
Summary A component of T4 phage tail fiber was purified from the lysate of E. coli strain Bb infected with gene 35 defective mutant of T4D (amB252). The purified component which occupies a part of the distal half fiber is formed under the control of genes 36, 37 and 38. The purified component was characterized and compared with the genes 35-36-37-38 directed half fiber. Although the components resembled each other, differences were observed in length, stability and chemical compositions. The results of a further decomposition of this component and the correlating characters of the gene 35 and 36 directed products were discussed.  相似文献   

11.
Bacteriophage DNA packaging results from an ATP-driven translocation of concatemeric DNA into the prohead by the phage terminase complexed with the portal vertex dodecamer of the prohead. Functional domains of the bacteriophage T4 terminase and portal gene 20 product (gp20) were determined by mutant analysis and sequence localization within the structural genes. Interaction regions of the portal vertex and large terminase subunit (gp17) were determined by genetic (terminase-portal intergenic suppressor mutations), biochemical (column retention of gp17 and inhibition of in vitro DNA packaging by gp20 peptides), and immunological (co-immunoprecipitation of polymerized gp20 peptide and gp17) studies. The specificity of the interaction was tested by means of a phage T4 HOC (highly antigenicoutercapsid protein) display system in which wild-type, cs20, and scrambled portal peptide sequences were displayed on the HOC protein of phage T4. Binding affinities of these recombinant phages as determined by the retention of these phages by a His-tag immobilized gp17 column, and by co-immunoprecipitation with purified terminase supported the specific nature of the portal protein and terminase interaction sites. In further support of specificity, a gp20 peptide corresponding to a portion of the identified site inhibited packaging whereas the scrambled sequence peptide did not block DNA packaging in vitro.The portal interaction site is localized to 28 residues in the central portion of the linear sequence of gp20 (524 residues). As judged by two pairs of intergenic portal-terminase suppressor mutations, two separate regions of the terminase large subunit gp17 (central and COOH-terminal) interact through hydrophobic contacts at the portal site. Although the terminase apparently interacts with this gp20 portal peptide, polyclonal antibody against the portal peptide appears unable to access it in the native structure, suggesting intimate association of gp20 and gp17 possibly internalizes terminase regions within the portal in the packasome complex. Both similarities and differences are seen in comparison to analogous sites which have been identified in phages T3 and lambda.  相似文献   

12.
W. F. Wu  S. Christiansen    M. Feiss 《Genetics》1988,119(3):477-484
The large subunit of phage lambda terminase, gpA, the gene product of the phage A gene, interacts with the small subunit, gpNul, to form functional terminase. Terminase binds to lambda DNA at cosB to form a binary complex. The terminase:DNA complex binds a prohead to form a ternary complex. Ternary complex formation involves an interaction of the prohead with gpA. The amino terminus of gpA contains a functional domain for interaction with gpNul, and the carboxy-terminal 38 amino acids of gpA contain a functional domain for prohead binding. This information about the structure of gpA was obtained through the use of hybrid phages resulting from recombination between lambda and the related phage 21. lambda and 21 encode terminases that are analogous in structural organization and have ca. 60% sequence identity. In spite of these similarities, lambda and 21 terminases differ in specificity for DNA binding, subunit assembly, and prohead binding. A lambda-21 hybrid phage produces a terminase in which one of the subunits is chimeric and had recombinant specificities. In the work reported here; a new hybrid, lambda-21 hybrid 67, is characterized. lambda-21 hybrid 67 is the result of a crossover between lambda and 21 in the large subunit genes, such that the DNA from the left chromosome end is from 21, including cosB phi 21, the 1 gene, and the first 48 codons for the 2 gene. The rest of the hybrid 67 chromosome is lambda DNA, including 593 codons of the A gene. The chimeric gp2/A of hybrid 67 binds gp1 to form functional terminase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The key stage of the infection of the Escherichia coli cell with bacteriophage T4, the binding to the surface of the host cell, is determined by the specificity of the long tail fiber proteins of the phage, in particular, gp37. The assembly and oligomerization of this protein under natural conditions requires the participation of at least two additional protein factors, gp57A and gp38, which strongly hinders the production of the recombinant form of gp37. To overcome this problem, a modern protein engineering strategy was used, which involves the construction of a chimeric protein containing a carrier protein that drives the correct folding of the target protein. For this purpose, the trimeric β-helical domain of another protein of phage T4, gp5, was used. It was shown that this domain, represented as a rigid trimeric polypeptide prism, has properties favorable for use as a protein carrier. A fragment of protein gp37 containing five pentapeptide repeats, Gly-X-His-X-His, which determine the binding to the receptors on the bacterial cell surface, was fused in a continuous reading frame to the C-terminus of the domain of gp5. The resulting chimeric protein forms a trimer that has the native conformation of gp37 and exhibits biological activity.  相似文献   

14.
The product of gene 31 is normally required for assembly of the T4 capsid. Two mutations that each bypass that requirement are shown to be located at separate sites in gene 23, which encodes the major structural protein of the capsid. A second phenotypic effect that characterizes both bypass31 mutant strains is the ability to multiply in host-defective strains, such as hdB3-1 and groEL mutants, on which wild-type T4 is unable to assemble capsids. The genetic data indicate that both phenotypic effects are due to the bypass31 mutation. Elimination of the requirement for both the phage protein, gp31, and the host protein, GroEL, by either of two single mutations in gene 23 indicates that GroEL and gp31 are normally needed to interact with gp23 in capsid assembly of wild-type T4.  相似文献   

15.
The DNA entrance vertex of the phage head is critical for prohead assembly and DNA packaging. A single structural protein comprises this dodecameric ring substructure of the prohead. Assembly of the phage T4 prohead occurs on the cytoplasmic membrane through a specific attachment at or near the gp20 DNA entrance vertex. An auxiliary head assembly gene product, gp40, was hypothesized to be involved in assembling the gp20 substructure. T4 genes 20, 40 and 20 + 40 were cloned into expression vectors under lambda pL promoter control. The corresponding T4 gene products were synthesized in high yield and were active as judged by their ability to complement the corresponding infecting T4 mutants in vivo. The cloned T4 gene 20 and gene 40 products were inserted into the cytoplasmic membrane as integral membrane proteins; however, gp20 was inserted into the membrane only when gp40 was also synthesized, whereas gp40 was inserted in the presence or absence of gp20. The gp20 insertion required a membrane potential, was not dependent upon the Escherichia coli groE gene, and assumed a defined membrane-spanning conformation, as judged by specific protease fragments protected by the membrane. The inserted gp20 structure could be probed by antibody binding and protein A-gold immunoelectron microscopy. The data suggest that a specific gp20-gp40-membrane insertion structure constitutes the T4 prohead assembly initiation complex.  相似文献   

16.
Artificial control of phage specificity may contribute to practical applications, such as the therapeutic use of phages and the detection of bacteria by their specific phages. To change the specificity of phage infection, gene products (gp) 37 and 38, expressed at the tip of the long tail fiber of T2 phage, were exchanged with those of PP01 phage, an Escherichia coli O157:H7 specific phage. Homologous recombination between the T2 phage genome and a plasmid encoding the region around genes 37-38 of PP01 occurred in transformant E. coli K12 cells. The recombinant T2 phage, named T2ppD1, carried PP01 gp37 and 38 and infected the heterogeneous host cell E. coli O157:H7 and related species. On the other hand, T2ppD1 could not infect E. coli K12, the original host of T2, or its derivatives. The host range of T2ppD1 was the same as that of PP01. Infection of T2ppD1 produced turbid plaques on a lawn of E. coli O157:H7 cells. The binding affinity of T2ppD1 to E. coli O157:H7 was weaker than that of PP01. The adsorption rate constant (ka) of T2ppD1 (0.17 x 10(-9)(ml CFU(-1) min(-1)) was almost 1/6 that of PP01 (1.10 x 10(-9)(ml CFU(-1) min(-1))). In addition to the tip of the long tail fiber, exchange of gene products expressed in the short tail fiber may be necessary for tight binding of recombinant phage.  相似文献   

17.
Assembly of tail fibers of coliphage T4 requires the action of helper proteins. In the absence of one of these, protein 38 (p38), p37, constituting the distal part of the long tail fiber, fails to oligomerize. In the absence of the other, p57, p34 (another component of the long tail fiber), p37, and p12 (the subunit of the short tail fiber) remain unassembled. p38 can be replaced by the Tfa (tail fiber assembly) protein (pTfa) of phage lambda, which has the advantage of remaining soluble even when produced in massive amounts. The mechanisms of action of the helpers are unknown. As a first step towards elucidation of these mechanisms, p57 and pTfa have been purified to homogeneity and have been crystallized. The identity of gene 57 (g57), not known with certainty previously, has been established. The 79-residue protein p57 represents a very exotic polypeptide. It is oligomeric and acidic (an excess of nine negative charges). It does not contain Phe, Trp, Tyr, His, Pro, and Cys. Only 25 N-terminal residues were still able to complement a g57 amber mutant, although with a reduced efficiency. In cells overproducing the protein, it assumed a quasi-crystalline structure in the form of highly ordered fibers. They traversed the cells longitudinally (and thus blocked cell division) with a diameter approaching that of the cell and with a hexagonal appearance. The 194-residue pTfa is also acidic (an excess of 13 negative charges) and is likely to be dimeric.  相似文献   

18.
Assembly of the long tail fibers of the Escherichia coli bacteriophage T4 requires the catalytic action of two auxiliary proteins. It was found that a gene of the entirely unrelated phage lambda codes for a protein which can substitute for one of these T4 polypeptides, protein 38. The lambda gene was designated tfa (tail fiber assembly). Protein 38 consists of 183 residues, and the Tfa protein consists of 194 residues; the two polypeptides are about 40% homologous. Although the tfa gene is dispensable for the growth of phage lambda, these results indicate that it may have a function in lambda morphogenesis.  相似文献   

19.
About 130 kb of sequence information was obtained from the coliphage JS98 isolated from the stool of a pediatric diarrhea patient in Bangladesh. The DNA shared up to 81% base pair identity with phage T4. The most conserved regions between JS98 and T4 were the structural genes, but their degree of conservation was not uniform. The head genes showed the highest sequence conservation, followed by the tail, baseplate, and tail fiber genes. Many tail fiber genes shared only protein sequence identity. Except for the insertion of endonuclease genes in T4 and gene 24 duplication in JS98, the structural gene maps of the two phages were colinear. The receptor-recognizing tail fiber proteins gp37 and gp38 were only distantly related to T4, but shared up to 83% amino acid identity to other T6-like phages, suggesting lateral gene transfer. A greater degree of variability was seen between JS98 and T4 over DNA replication and DNA transaction genes. While most of these genes came in the same order and shared up to 76% protein sequence identity, a few rearrangements, insertions, and replacements of genes were observed. Many putative gene insertions in the DNA replication module of T4 were flanked by intron-related endonuclease genes, suggesting mobile DNA elements. A hotspot of genome diversification was located downstream of the DNA polymerase gene 43 and the DNA binding gene 32. Comparative genomics of 100-kb genome sequence revealed that T4-like phages diversify more by the accumulation of point mutations and occasional gene duplication events than by modular exchanges.  相似文献   

20.
The capsid of bacteriophage T4 is composed of two essential structural proteins, gp23, the major constituent of the capsid, and gp24, a less prevalent protein that is located in the pentameric vertices of the capsid. gp24 is required both to stabilize the capsid and to allow it to be further matured. This requirement can be eliminated by bypass-24 (byp24) mutations within g23. We have isolated, cloned and sequenced several new byp24 mutations. These mutations are cold-sensitive in the absence of gp24, and are located in regions of g23 not known to contain any other mutations affecting capsid assembly. The cold-sensitivity of the byp24 mutations can be reduced by further mutations within g23 (trb mutations). Cloning and sequencing of these trb mutations has revealed that they lie in regions of g23 that contain clusters of mutations that cause the production of high levels of petite and giant phage (ptg mutations). Despite the proximity of the trb mutations to the ptg mutations, none of the ptg mutations has a Trb phenotype. The mutation ptE920g, which is also located near one of the ptg clusters, and which produces only petite and wild-type phage, has been shown to confer a Trb but not a Byp24 phenotype. The relevance of these observations to our understanding of capsid assembly is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号