首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
Natural visual scenes are rich in information, and any neural system analysing them must piece together the many messages from large arrays of diverse feature detectors. It is known how threshold detection of compound visual stimuli (sinusoidal gratings) is determined by their components' thresholds. We investigate whether similar combination rules apply to the perception of the complex and suprathreshold visual elements in naturalistic visual images. Observers gave magnitude estimations (ratings) of the perceived differences between pairs of images made from photographs of natural scenes. Images in some pairs differed along one stimulus dimension such as object colour, location, size or blur. But, for other image pairs, there were composite differences along two dimensions (e.g. both colour and object-location might change). We examined whether the ratings for such composite pairs could be predicted from the two ratings for the respective pairs in which only one stimulus dimension had changed. We found a pooling relationship similar to that proposed for simple stimuli: Minkowski summation with exponent 2.84 yielded the best predictive power (r=0.96), an exponent similar to that generally reported for compound grating detection. This suggests that theories based on detecting simple stimuli can encompass visual processing of complex, suprathreshold stimuli.  相似文献   

2.
Colour is an important factor in food detection and acquisition by animals using visually based foraging. Colour can be used to identify the suitability of a food source or improve the efficiency of food detection, and can even be linked to mate choice. Food colour preferences are known to exist, but whether these preferences are heritable and how these preferences evolve is unknown. Using the freshwater fish Poecilia reticulata, we artificially selected for chase behaviour towards two different-coloured moving stimuli: red and blue spots. A response to selection was only seen for chase behaviours towards the red, with realized heritabilities ranging from 0.25 to 0.30. Despite intense selection, no significant chase response was recorded for the blue-selected lines. This lack of response may be due to the motion-detection mechanism in the guppy visual system and may have novel implications for the evolvability of responses to colour-related signals. The behavioural response to several colours after five generations of selection suggests that the colour opponency system of the fish may regulate the response to selection.  相似文献   

3.
Comparing entire colour patterns as birds see them   总被引:11,自引:0,他引:11  
Colour patterns and their visual backgrounds consist of a mosaic of patches that vary in colour, brightness, size, shape and position. Most studies of crypsis, aposematism, sexual selection, or other forms of signalling concentrate on one or two patch classes (colours), either ignoring the rest of the colour pattern, or analysing the patches separately. We summarize methods of comparing colour patterns making use of known properties of bird eyes. The methods are easily modifiable for other animal visual systems. We present a new statistical method to compare entire colour patterns rather than comparing multiple pairs of patches. Unlike previous methods, the new method detects differences in the relationships among the colours, not just differences in colours. We present tests of the method's ability to detect a variety of kinds of differences between natural colour patterns and provide suggestions for analysis.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 405–431.  相似文献   

4.
The effects of glaucoma on binocular visual sensitivity for the detection of various stimulus attributes are investigated at the fovea and in four paracentral retinal regions. The study employed a number of visual stimuli designed to isolate the processing of various stimulus attributes. We measured absolute contrast detection thresholds and functional contrast sensitivity by using Landolt ring stimuli. This psychophysical Landolt C-based contrast test of detection and gap discrimination allowed us to test parafoveally at 6 ° from fixation and foveally by employing interleaved testing locations. First-order motion perception was examined by using moving stimuli embedded in static luminance contrast noise. Red/green (RG) and yellow/blue (YB) colour thresholds were measured with the Colour Assessment and Diagnosis (CAD) test, which utilises random dynamic luminance contrast noise (± 45 %) to ensure that only colour and not luminance signals are available for target detection. Subjects were normal controls (n?=?65) and glaucoma patients with binocular visual field defects (n?=?15) classified based on their Humphrey Field Analyzer mean deviation (MD) scores. The impairment of visual function varied depending on the stimulus attribute and location tested. Progression of loss was noted for all tests as the degree of glaucoma increased. For subjects with mild glaucoma (MD ?0.01 dB to ?6.00 dB) significantly more data points fell outside the normal age-representative range for RG colour thresholds than for any other visual test, followed by motion thresholds. This was particularly the case for the parafoveal data compared with the foveal data. Thus, a multifaceted measure of binocular visual performance, incorporating RG colour and motion test at multiple locations, might provide a better index for comparison with quality of life measures in glaucoma.  相似文献   

5.
Bumblebee (Bombus terrestris) discrimination of targets with broadband reflectance spectra was tested using simultaneous viewing conditions, enabling an accurate determination of the perceptual limit of colour discrimination excluding confounds from memory coding (experiment 1). The level of colour discrimination in bumblebees, and honeybees (Apis mellifera) (based upon previous observations), exceeds predictions of models considering receptor noise in the honeybee. Bumblebee and honeybee photoreceptors are similar in spectral shape and spacing, but bumblebees exhibit significantly poorer colour discrimination in behavioural tests, suggesting possible differences in spatial or temporal signal processing. Detection of stimuli in a Y-maze was evaluated for bumblebees (experiment 2) and honeybees (experiment 3). Honeybees detected stimuli containing both green-receptor-contrast and colour contrast at a visual angle of approximately 5 degrees , whilst stimuli that contained only colour contrast were only detected at a visual angle of 15 degrees . Bumblebees were able to detect these stimuli at a visual angle of 2.3 degrees and 2.7 degrees , respectively. A comparison of the experiments suggests a tradeoff between colour discrimination and colour detection in these two species, limited by the need to pool colour signals to overcome receptor noise. We discuss the colour processing differences and possible adaptations to specific ecological habitats.  相似文献   

6.
Colour constancy allows for visual systems to be view stimuli independent of changes in spectral illumination. Chromatic adaptation is likely to be an important mechanism in colour constancy and can be explained by use of the von Kries coefficient law. Chromatic adaptation is compared for the honeybee and three hypothetical visual systems. It is shown that the spectral breadth and asymmetry of photoreceptors in the honeybee may limit colour constancy. In particular, it is demonstrated that the absorption of short-wavelength radiation by the cis-band of chromophore is responsible for a poorer correction for bee colours rich in ultraviolet reflectance. The results are discussed in relation to theoretical considerations of von Kries colour constancy and the physiology of eye design in some other species for which colour constancy has been demonstrated. Accepted: 14 August 1999  相似文献   

7.
We present a simplified binocular neural network model of the primary visual cortex with separate ON/OFF-pathways and modifiable afferent as well as intracortical synaptic couplings. Random as well as natural image stimuli drive the weight adaptation which follows Hebbian learning rules stabilized with constant norm and constant sum constraints. The simulations consider the development of orientation and ocular dominance maps under different conditions concerning stimulus patterns and lateral couplings. With random input patterns realistic orientation maps with +/- 1/2-vortices mostly develop and plastic lateral couplings self-organize into mexican hat type structures on average. Using natural greyscale images as input patterns, realistic orientation maps develop as well and the lateral coupling profiles of the cortical neurons represent the two point correlations of the input image used.  相似文献   

8.
The idea that language can affect how we see the world continues to create controversy. A potentially important study in this field has shown that when an object is suppressed from visual awareness using continuous flash suppression (a form of binocular rivalry), detection of the object is differently affected by a preceding word prime depending on whether the prime matches or does not match the object. This may suggest that language can affect early stages of vision. We replicated this paradigm and further investigated whether colour terms likewise influence the detection of colours or colour-associated object images suppressed from visual awareness by continuous flash suppression. This method presents rapidly changing visual noise to one eye while the target stimulus is presented to the other. It has been shown to delay conscious perception of a target for up to several minutes. In Experiment 1 we presented greyscale photos of objects. They were either preceded by a congruent object label, an incongruent label, or white noise. Detection sensitivity (d’) and hit rates were significantly poorer for suppressed objects preceded by an incongruent label compared to a congruent label or noise. In Experiment 2, targets were coloured discs preceded by a colour term. Detection sensitivity was significantly worse for suppressed colour patches preceded by an incongruent colour term as compared to a congruent term or white noise. In Experiment 3 targets were suppressed greyscale object images preceded by an auditory presentation of a colour term. On congruent trials the colour term matched the object’s stereotypical colour and on incongruent trials the colour term mismatched. Detection sensitivity was significantly poorer on incongruent trials than congruent trials. Overall, these findings suggest that colour terms affect awareness of coloured stimuli and colour- associated objects, and provide new evidence for language-perception interaction in the brain.  相似文献   

9.
Over a century ago workers such as J. Lubbock and K. von Frisch developed behavioural criteria for establishing that non‐human animals see colour. Many animals in most phyla have since then been shown to have colour vision. Colour is used for specific behaviours, such as phototaxis and object recognition, while other behaviours such as motion detection are colour blind. Having established the existence of colour vision, research focussed on the question of how many spectral types of photoreceptors are involved. Recently, data on photoreceptor spectral sensitivities have been combined with behavioural experiments and physiological models to study systematically the next logical question: ‘what neural interactions underlie colour vision ?‘This review gives an overview of the methods used to study animal colour vision, and discusses how quantitative modelling can suggest how photoreceptor signals are combined and compared to allow for the discrimination of biologically relevant stimuli.  相似文献   

10.

Background

Colour is a consequence of the optical properties of an object and the visual system of the animal perceiving it. Colour is produced through chemical and structural means, but structural colour has been relatively poorly studied in plants.

Scope

This Botanical Briefing describes the mechanisms by which structures can produce colour. In plants, as in animals, the most common mechanisms are multilayers and diffraction gratings. The functions of structural colour are then discussed. In animals, these colours act primarily as signals between members of the same species, although they can also play roles in camouflaging animals from their predators. In plants, multilayers are found predominantly in shade-plant leaves, suggesting a role either in photoprotection or in optimizing capture of photosynthetically active light. Diffraction gratings may be a surprisingly common feature of petals, and recent work has shown that they can be used by bees as cues to identify rewarding flowers.

Conclusions

Structural colour may be surprisingly frequent in the plant kingdom, playing important roles alongside pigment colour. Much remains to be discovered about its distribution, development and function.  相似文献   

11.
The visual displays of animals and plants often look dramatic and colourful to us, but what information do they convey to their intended, non-human, audience [1] [2]? One possibility is that stimulus values are judged accurately - so, for example, a female might choose a suitor if he displays a specific colour [3]. Alternatively, as for human advertising, displays may attract attention without giving information, perhaps by exploiting innate preferences for bright colours or symmetry [2] [4] [5]. To address this issue experimentally, we investigated chicks' memories of visual patterns. Food was placed in patterned paper containers which, like seed pods or insect prey, must be manipulated to extract food and their patterns learnt. To establish what was learnt, birds were tested on familiar stimuli and on alternative stimuli of differing colour or contrast. For colour, birds selected the trained stimulus; for contrast, they preferred high contrast patterns over the familiar. These differing responses to colour and contrast show how separate components of display patterns could serve different roles, with colour being judged accurately whereas pattern contrast attracts attention.  相似文献   

12.
Human colour vision originates in the cone photoreceptors, whose spatial density peaks in the fovea and declines rapidly into the periphery. For this reason, one expects to find a large representation of the cone-rich fovea in those cortical locations that support colour perception. Human occipital cortex contains several distinct foveal representations including at least two that extend onto the ventral surface: a region thought to be critical for colour vision. To learn more about these ventral signals, we used functional magnetic resonance imaging to identify visual field maps and colour responsivity on the ventral surface. We found a visual map of the complete contralateral hemifield in a 4 cm(2) region adjacent to ventral V3; the foveal representation of this map is confluent with that of areas V1/2/3. Additionally, a distinct foveal representation is present on the ventral surface situated 3-5 cm anterior from the confluent V1/2/3 foveal representations. This organization is not consistent with the definition of area V8, which assumes the presence of a quarter field representation adjacent to V3v. Comparisons of responses to luminance-matched coloured and achromatic patterns show increased activity to the coloured stimuli beginning in area V1 and extending through the new hemifield representation and further anterior in the ventral occipital lobe.  相似文献   

13.
Visual Ecology and Perception of Coloration Patterns by Domestic Chicks   总被引:3,自引:0,他引:3  
This article suggests how we might understand the way potential predators see coloration patterns used in aposematism and visual mimicry. We start by briefly reviewing work on evolutionary function of eyes and neural mechanisms of vision. Often mechanisms used for achromatic vision are accurately modeled as adaptations for detection and recognition of the generality of optical stimuli, rather than specific stimuli such as biological signals. Colour vision is less well understood, but for photoreceptor spectral sensitivities of birds and hymenopterans there is no evidence for adaptations to species-specific stimuli, such as those of food or mates. Turning to experimental work, we investigate how achromatic and chromatic stimuli are used for object recognition by foraging domestic chicks (Gallus gallus). Chicks use chromatic and achromatic signals in different ways: discrimination of large targets uses (chromatic) colour differences, and chicks remember chromatic signals accurately. However, detection of small targets, and discrimination of visual textures requires achromatic contrast. The different roles of chromatic and achromatic information probably reflect their utility for object recognition in nature. Achromatic (intensity) variation exceeds chromatic variation, and hence is more informative about change in reflectance – for example, object borders, while chromatic signals yield more information about surface reflectance (object colour) under variable illumination. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Expertomica Fishgui: comparison of fish skin colour   总被引:1,自引:0,他引:1  
The colour hue and saturation of the fish skin are important factors in fish breeding, reflecting the momentary physiological status of the fish. Algorithms evaluating fish colour were created in the MATLAB environment and compiled in the stand‐alone application, Expertomica Fishgui. Fish groups fed on several diets (varying in carotenoid supplements) were compared as concerns image analysis methods on colour changes. Images were processed and evaluated to locate body positions, areas and colour saturation. Conversion from the Red‐Green‐Blue (RGB) colour space to chromatic colours was carried out to reduce the colour space. The threshold of skin chromatic colour was set on basis of the chromatic histograms using Otsu automatic bimodal segmentation. The average colour was calculated through all pixels of the selected area in the original image and through all images of the group. Colour conversion to the Hue‐Saturation‐Value (HSV) colour space was also carried out. Relative deviation between the saturation of samples in the control and the experimental groups provided a means of judgement. The dominant wavelength was also determined.  相似文献   

15.
Vision plays a paramount role in some spider families such as the Salticidae, Lycosidae and Thomisidae, as it is involved in prey hunting, orientation or choice of substrate. In the thomisid Misumena vatia, for which the substrate colour affects the body colour, vision seems to mediate morphological colour changes. However, nothing is known about which component of visual signals from the substrate might be perceived, nor whether M. vatia possesses the physiological basis for colour vision. The aim of this study is thus to investigate the vision of this spider species by measuring the spectral sensitivities of the different pairs of eyes using electrophysiological methods. Extra- and intracellular electrophysiological recordings combined with selective adaptation revealed the presence of two classes of photoreceptor cells, one sensitive in the UV region of the spectrum (around 340 nm) and one sensitive in the green (around 520 nm) regions in the four pairs of eyes. We conclude that M. vatia possesses the physiological potential to perceive both chromatic and achromatic components of the environment.  相似文献   

16.
Colour is one of several stimuli used by herbivorous insects in host choice. Insects have between 2 and 5 different types of photoreceptors to catch quanta of different wavelengths of the spectrum. Many insects have been shown to possess opponent neural interactions between the receptors that enable them to see colour. I present simple models to describe colour choices as functions of the receptor quantum catches and linear interactions of the receptor types. Models are applied to data sets obtained from own experiments and from the literature, on Pieris brassicae and P. rapae (Lepidoptera, Pieridae), Papilio aegeus (Papilionidae), Dacus oleae (Diptera, Tephritidae) and Eristalis tenax (Syrphidae). In fruit flies, detection of green fruit is based on an inhibitory interaction between a green-sensitive receptor type and a blue-sensitive receptor type. This might explain the preference many herbivorous insects have for yellow over green stimuli. Pollen feeding in hoverflies might have evolved from yellow pollen being a super-normal stimulus for herbivorous insects. In butterflies, an additional red-receptor is involved in the colour choice for an oviposition substratum and leads to them choosing green and not yellow. The models introduced in this study open new perspective for a physiological understanding of the design of visual stimuli for monitoring and trapping pest insects.  相似文献   

17.
This work presents a new set of 360 high quality colour images belonging to 23 semantic subcategories. Two hundred and thirty-six Spanish speakers named the items and also provided data from seven relevant psycholinguistic variables: age of acquisition, familiarity, manipulability, name agreement, typicality and visual complexity. Furthermore, we also present lexical frequency data derived from Internet search hits. Apart from the high number of variables evaluated, knowing that it affects the processing of stimuli, this new set presents important advantages over other similar image corpi: (a) this corpus presents a broad number of subcategories and images; for example, this will permit researchers to select stimuli of appropriate difficulty as required, (e.g., to deal with problems derived from ceiling effects); (b) the fact of using coloured stimuli provides a more realistic, ecologically-valid, representation of real life objects. In sum, this set of stimuli provides a useful tool for research on visual object- and word-processing, both in neurological patients and in healthy controls.  相似文献   

18.
Colour vision allows animals to reliably distinguish differences in the distributions of spectral energies reaching the eye. Although not universal, a capacity for colour vision is sufficiently widespread across the animal kingdom to provide prima facie evidence of its importance as a tool for analysing and interpreting the visual environment. The basic biological mechanisms on which vertebrate colour vision ultimately rests, the cone opsin genes and the photopigments they specify, are highly conserved. Within that constraint, however, the utilization of these basic elements varies in striking ways in that they appear, disappear and emerge in altered form during the course of evolution. These changes, along with other alterations in the visual system, have led to profound variations in the nature and salience of colour vision among the vertebrates. This article concerns the evolution of colour vision among the mammals, viewing that process in the context of relevant biological mechanisms, of variations in mammalian colour vision, and of the utility of colour vision.  相似文献   

19.
Individuals of pygmy grasshoppers ( Tetrix subulata [L.] Orthoptera: Tetrigidae) exhibit genetically coded discontinuous variation in colour pattern. To determine whether reproductive performance is likely to be affected by colour pattern, this study investigated variation in body size and reproductive life-history characteristics among individuals belonging to five different colour morphs. The proportion of reproductive females (i.e. females with eggs) declined significantly as the season progressed (from 100% in mid-May to 40% in mid-June), but no such seasonal trend was apparent for body size, clutch size or egg size. Colour morphs differed significantly in body size, and these size differences accounted for most of the variation in clutch size and egg size. Colour morphs also differed in the regression of egg size on clutch size, suggesting that trade-offs between number and size of offspring might vary among morphs. Finally, I found a negative relationship across colour morphs between the proportion of females with eggs and average clutch size. This suggests that individuals belonging to certain colour morphs produce a relatively large number of clutches per unit time, at the expense of fewer offspring in each clutch, compared to other morphs. Collectively, my results indicate that different colour morphs of T. subulata may have different reproductive strategies. These differences may reflect variation in thermoregulatory capacity or differences in probability of survival induced by visual predators.  相似文献   

20.
Rapid colour change is a remarkable natural phenomenon that has evolved in several vertebrate and invertebrate lineages. The two principal explanations for the evolution of this adaptive strategy are (1) natural selection for crypsis (camouflage) against a range of different backgrounds and (2) selection for conspicuous social signals that maximise detectability to conspecifics, yet minimise exposure to predators because they are only briefly displayed. Here we show that evolutionary shifts in capacity for colour change in southern African dwarf chameleons (Bradypodion spp.) are associated with increasingly conspicuous signals used in male contests and courtship. To the chameleon visual system, species showing the most dramatic colour change display social signals that contrast most against the environmental background and amongst adjacent body regions. We found no evidence for the crypsis hypothesis, a finding reinforced by visual models of how both chameleons and their avian predators perceive chameleon colour variation. Instead, our results suggest that selection for conspicuous social signals drives the evolution of colour change in this system, supporting the view that transitory display traits should be under strong selection for signal detectability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号