首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Many plants use sophisticated strategies to maximize their reproductive success via outcrossing. Nicotiana attenuata flowers produce nectar with nicotine at concentrations that are repellent to hummingbirds, increasing the number of flowers visited per plant. In choice tests using native hummingbirds, we show that these important pollinators learn to tolerate high‐nicotine nectar but prefer low‐nicotine nectar, and show no signs of nicotine addiction. Nectar nicotine concentrations, unlike those of other vegetative tissues, are unpredictably variable among flowers, not only among populations, but also within populations, and even among flowers within an inflorescence. To evaluate whether variations in nectar nicotine concentrations increase outcrossing, polymorphic microsatellite markers, optimized to evaluate paternity in native N. attenuata populations, were used to compare outcrossing in plants silenced for expression of a biosynthetic gene for nicotine production (Napmt1/2) and in control empty vector plants, which were antherectomized and transplanted into native populations. When only exposed to hummingbird pollinators, seeds produced by flowers with nicotine in their nectar had a greater number of genetically different sires, compared to seeds from nicotine‐free flowers. As the variation in nectar nicotine levels among flowers in an inflorescence decreased in N. attenuata plants silenced in various combinations of three Dicer‐like (DCL) proteins, small RNAs are probably involved in the unpredictable variation in nectar nicotine levels within a plant.  相似文献   

2.
Inga species present brush‐type flower morphology allowing them to be visited by distinct groups of pollinators. Nectar features in relation to the main pollinators have seldom been studied in this genus. To test the hypothesis of floral adaptation to both diurnal and nocturnal pollinators, we studied the pollination ecology of Inga sessilis, with emphasis on the nectar secretion patterns, effects of sequential removals on nectar production, sugar composition and the role of diurnal and nocturnal pollinators in its reproductive success. Inga sessilis is self‐incompatible and pollinated by hummingbirds, hawkmoths and bats. Fruit set under natural conditions is very low despite the fact that most stigmas receive polyads with sufficient pollen to fertilise all ovules in a flower. Nectar secretion starts in the bud stage and flowers continually secreting nectar for a period of 8 h. Flowers actively reabsorbed the nectar a few hours before senescence. Sugar production increased after nectar removal, especially when flowers were drained during the night. Nectar sugar composition changed over flower life span, from sucrose‐dominant (just after flower opening, when hummingbirds were the main visitors) to hexose‐rich (throughout the night, when bats and hawkmoths were the main visitors). Diurnal pollinators contributed less than nocturnal ones to fruit production, but the former were more constant and reliable visitors through time. Our results indicate I. sessilis has floral adaptations, beyond the morphology, that encompass both diurnal and nocturnal pollinator requirements, suggesting a complementary and mixed pollination system.  相似文献   

3.
Luis Navarro 《Biotropica》1999,31(4):618-625
The floral syndrome of Macleania bullataYeo (Ericaceae) reflects its adaptation to hummingbird pollination. Its flowers, however, are subject to high levels of nectar robbing. I examined the floral visitor assemblage of M. bullata in a tropical montane wet forest in southwestern Colombia, focusing on the behavior of the visitors. I also tested for the presence of nocturnal pollination and the effects of nectar removal on new nectar production. The principal floral visitors were the nectar robbing hummingbirds Ocreatus underwoodii (19.1% of visits) and Chlorostilbon mellisugus (18.9%). Only two species of long–billed hummingbirds visited the flowers of M. bullata as “legitimate” pollinators: Coeligena torquata (14.7% of visits) and Doryfera ludoviciae (14.3%). The remaining visits constituted nectar robbing by bees, butterflies, and other species of hummingbirds. Nocturnal pollination took place, although fruit set levels were 2.4 times higher when only diurnal pollination was allowed as opposed to exclusively nocturnal pollination. Nectar robbers removed floral nectar without pollinating the flower. Treatments of experimental nectar removal were carried out to examine if flowers synthesize more nectar after nectar removal. Nectar removal increased the total volume of nectar produced by each flower without affecting sugar concentration. Thus, nectar robbing can impose a high cost to the plants by forcing them to replace lost nectar.  相似文献   

4.
Aims Floral nectar plays a vital role in plant reproductive success by attracting pollinators. Nectar traits of a flower can depend directly on plant characteristics other than environmental factors and exhibit extensive flower- and plant-level variations. Studies on nectar traits frequently focused on intraplant variation for dichogamous plants, but few have paid attention to both intra- and interplant nectar variations in relation to plant characteristics. Revealing within- and among-plant variation and its relative magnitude is important for our understanding of how pollinator-mediated selection can act on nectar traits and evolution of nectar traits.Methods Through investigating protandrous Aconitum gymnandrum populations at the Alpine Meadows and Wetland Ecosystems Research Station of Lanzhou University, we examined the relationships between nectar production per flower and plant characteristics (e.g. flower position within inflorescences, floral sexual phases, flowering time, inflorescence size and floral attractive traits).Important findings A. gymnandrum exhibited a declining gradient in the nectar volume along inflorescences, with more nectar in basal flowers than distal ones. Protandrous flowers of A. gymnandrum did not show gender-biased nectar production while the nectar volume varied with different stages of floral sexual phases. The significant correlation between the first flowering date of individuals and the mean nectar volume per flower was positive in 2013, but became negative in 2014, suggesting complex effects of biotic and abiotic factors. The mean nectar volume per flower was not related to inflorescence size (the number of total flowers per plant). Furthermore, nectar production was weakly associated with floral attractive traits (the petal width and the galea height), even if the effect of flowering time of individuals was removed, suggesting that the honesty of floral traits as signals of nectar reward for pollinators is not stable in this species.  相似文献   

5.

The plant kingdom produces an extraordinary diversity of secondary metabolites and the majority of the literature supports a defensive ecological role for them, particularly against invertebrate herbivores (antagonists). Plants also produce secondary compounds in floral nectar and pollen and these are often similar to those produced for defense against invertebrates elsewhere in the plant. This is largely because the chemical armoury within a single plant species is typically restricted to a few biochemical pathways and limited chemical products but how their occurrence in floral rewards is regulated to mediate both defence and enhanced pollination is not well understood. Several phytochemicals are reviewed here comparing the defensive function alongside their benefit to flower visiting mutualists. These include caffeine, aconitine, nicotine, thymol, linalool, lupanine and grayanotoxins comparing the evidence for their defensive function with their impacts on pollinators, their behaviour and well-being. Drivers of adaptation and the evolution of floral traits are discussed in the context of recent studies. Ultimately more research is required that helps determine the impacts of floral chemicals in free flying bees, and how compounds are metabolized, sequestered or excreted by flower feeding insects to understand how they may then affect the pollinators or their parasites. More work is also required on how plants regulate nectar and pollen chemistry to better understand how secondary metabolites and their defensive and pollinator supporting functions are controlled, evolve and adapt.

  相似文献   

6.
Although the function of nectar is to attract and reward pollinators, secondary metabolites produced by plants as anti‐herbivore defences are frequently present in floral nectars. Greater understanding is needed of the effects of secondary metabolites in nectar on the foraging behaviour and performance of pollinators, and on plant–pollinator interactions. We investigated how nectar‐feeding birds, both specialist (white‐bellied sunbirds Cinnyris talatala) and generalist (dark‐capped bulbuls Pycnonotus tricolor and Cape white‐eyes Zosterops virens), respond to artificial nectar containing the alkaloid nicotine, present in nectar of Nicotiana species. Preference tests were carried out with a range of nicotine concentrations (0.1–300 μM) in two sucrose concentrations (0.25 and 1 M), and for bulbuls also in two sugars (sucrose and hexose). In addition, we measured short‐term feeding patterns in white‐bellied sunbirds that were offered nicotine (0–50 μM) in 0.63 M sucrose. Both nicotine and sugar concentrations influenced the response of bird pollinators to nicotine. The birds showed dose‐dependent responses to nicotine; and their tolerance of high nicotine concentrations was reduced on the dilute 0.25 M sucrose diet, on which they increased consumption to maintain energy intake. White‐bellied sunbirds decreased both feeding frequency and feeding duration as the nicotine concentration in artificial nectar increased. Of the three species, bulbuls showed the highest tolerance for nicotine, and sugar type (sucrose or hexose) had no effect. The indifference of bulbuls to nicotine may be related to their primarily frugivorous diet. However, the response of white‐eyes to nicotine in the dilute sucrose solution was very similar to that of sunbirds, even though white‐eyes are generalist nectar‐feeders. Additional testing of other avian nectarivores and different secondary metabolites is required to further elucidate whether generalist bird pollinators, which utilise dilute nectars in which secondary metabolites have stronger deterrent effects, are more tolerant of ‘toxic’ nectar.  相似文献   

7.
Thousands of plant species throughout tropical and temperate zones secrete extrafloral nectar to attract ants, whose presence provides an indirect defense against herbivores. Extrafloral nectaries are located close to flowers and may modify competition between ants and pollinators. Here, we used Lima bean (Phaseolus lunatus L.) to study the plants interaction between ants and flower visitors and its consequences for plant fitness. To test these objectives, we carried out two field experiments in which we manipulated the presence of ants and nectar production via induction with jasmonic acid (JA). We then measured floral and extrafloral nectar production, the number of patrolling ants and flower visitors as well as specific plant fitness traits. Lima bean plants under JA induction produced more nectar in both extrafloral nectaries and flowers, attracted more ants and produced more flowers and seeds than non‐induced plants. Despite an increase in floral nectar in JA plants, application of this hormone had no significant effects on flower visitor attraction. Finally, ant presence did not result in a decrease in the number of visits, but our results suggest that ants could negatively affect pollination efficiency. In particular, JA‐induced plants without ants produced a greater number of seeds compared with the JA‐treated plants with ants.  相似文献   

8.
According to the “nectar protection” and “pollinator protection” hypotheses, ant repellents in flowers have evolved to prevent ants from exploiting floral nectar and chasing away pollinators, respectively. We used weaver ants, Oecophylla smaragdina, to determine the strength of ant repellence in 32 bee-pollinated plant species and used the comparative method to test whether nectar production, size of pollinating bees and plant growth form were related to floral repellence. Flowers were more likely to repel ants if they offered nectar as a reward and were pollinated by small bees than if they were nectarless and pollinated by large bees. Furthermore, tree flowers were more likely than shrub or vine flowers to repel ants. Our results validate the pollinator protection hypothesis and the nectar protection hypothesis. Depending on the ecological context, therefore, ant repellents can function as direct or indirect exploitation barriers: they can prevent ants from removing nectar without effecting pollination (direct barriers) and, when flowers are pollinated by large bees, the absence of ant repellents—or even the presence of ant attractants—can result in ants chasing small ineffective pollinators away (indirect barriers).  相似文献   

9.
Three southern Spanish populations of Helleborusfoetidus L. (Ranunculaceae) were sampled for nectar content in the absence of nectarivorous flower visitors. Nectar volume was measured in individual nectaries of flowers at the same stage in the anthesis cycle. Total nectar content per flower was extremely variable between plants within populations and between flowers within plants, but much less so between populations. Average sugar content per flower was roughly similar in the three populations sampled. High variances in nectar abundance occurred also among nectaries within the same flower. Heterogeneity in pollinator rewards thus occurs simultaneously at several spatial scales, namely between nectaries, between flowers and between plants. This implies a strong component of uncertainty to foraging pollinators, which may therefore tend to avoid Helleborus flowers.  相似文献   

10.
The effectiveness of flower visitors as pollinators will determine their potential role as selective agents on flower traits. Pitcairnia angustifolia has floral characters that would fit pollination by long-billed hummingbirds, and they should be the most effective pollinators for this plant. To test this prediction, we characterized the behavior of visitors toward flowers and their pollination effectiveness. Coereba flaveola (bananaquits) was the most frequent flower visitor and acted as a primary nectar robber; however, they pollinated incidentally and deposited pollen on stigmas. The endemic short-billed hummingbird Chlorostilbon maugaeus behaved as a secondary robber and did not pollinate flowers. As expected, the long-billed hummingbird, Anthracothorax viridis, was the most efficient visitor in terms of pollen deposition; however, it was the least frequent flower visitor. Introduced Apis mellifera (honeybees) were second in efficiency at depositing pollen and performed one third of the flower visits. Estimates of the expected rate of pollen deposition by each pollinator did not identify a single most effective pollinator. For P. angustifolia at least three flower visitors including an exotic bee and a nectar robber may be equally important to reproductive success. While these results limit our ability to make predictions on the role of hummingbird-pollination on current flower evolution, they do suggest the potential for pollination redundancy among flower visitors for P. angustifolia populations.  相似文献   

11.
In order to compare the effectiveness of birds and insects as pollinators, we studied the floral biology of the bromeliad Aechmea nudicaulis (L.) Grisebach in the biome of the Atlantic rain forest, southern Brazil. On Santa Catarina Island, flowering extends from mid-September to the end of December, with diurnal anthesis. The reproductive system is obligatory xenogamy, thus pollinator-dependent. Flowers secrete 31.84 μl of nectar per day, with a mean sugar concentration of 23.2%. Highest nectar volume and sugar concentration occur at the beginning of anthesis. Most floral traits are characteristic for ornithophily, and nectar production appears to be adapted to the energy demand of hummingbirds. Continued secretion of the sucrose-dominated nectar attracts and binds visitors to inflorescences, strengthening trapline foraging behaviour. Experiments assessing seed set after single flower visits were performed with the most frequent visitors, revealing the hummingbird Thalurania glaucopis as the most effective pollen vector. In addition, bees are also functional pollinators, as substantiated by their high visitation frequency. We conclude that this pollination system is bimodal. Thus, there is redundancy in the pollination service provided by birds and bees, granting a high probability of successful reproduction in Ae. nudicaulis.  相似文献   

12.
Galen C 《Oecologia》2005,144(1):80-87
According to the distraction hypothesis, extrafloral nectaries (EFN) evolved under selection to entice ants away from floral nectaries, reducing ant-mediated damage to flowers and/or interference with pollinators. Predator-satiation, through production of nectar in either surplus flowers or EFN, provides an alternative mechanism for reducing the impact of ants as flower visitors. I tested these two hypotheses by experimentally adding EFN to flowering plants of the alpine wildflower, Polemonium viscosum, and by surveying the relationship between ant visitation and nectary number in nature. Plants of P. viscosum lack EFN and experience flower damage by ants of Formica neorufibarbus gelida. Ant behavior was compared on plants with five flowers and three experimental EFN and on controls with equal floral display, but no EFN. Addition of EFN increased flower visitation by ants. The effect of EFN on flower visitation did not depend on proximity of EFN to flowers or attractiveness of EFN to ants. Findings suggest that ants perceived patch quality on a whole plant basis, rather than responding to EFN and flowers as distinct nectar patches. Ant visitation did not keep pace with nectary number in nature. The relationship between ant visitation and nectary number per plant was weak and shallow as predicted under satiation. Ant foraging choices on experimental inflorescences showed that ants bypass flowers avoided by earlier ants, enhancing probability of escape via satiation. Results do not support the idea that EFN evolve to reduce flower visitation by ants, but show instead that nectar in surplus flowers can satiate ants and reduce their negative impacts on flower function and integrity.  相似文献   

13.
The self-incompatible flowers of Linaria vulgaris have developed a range of mechanisms for attraction of insect visitors/pollinators and deterrence of ineffective pollinators and herbivores. These adaptive traits include the flower size and symmetry, the presence of a spur as a “secondary nectar presenter,” olfactory (secondary metabolites) and sensual (scent, flower color, nectar guide—contrasting palate) signals, and floral rewards, i.e. pollen and nectar. Histochemical tests revealed that the floral glandular trichomes produced essential oils and flavonoids, and pollen grains contained flavonoids, terpenoids, and steroids, which play a role of olfactory attractants/repellents. The nectary gland is disc-shaped and located at the base of the ovary. Nectar is secreted through numerous modified stomata. Nectar secretion began in the bud stage and lasted to the end of anthesis. The amount of produced nectar depended on the flower age and ranged from 0.21 to 3.95 mg/flower (mean?=?1.51 mg). The concentration of sugars in the nectar reached up to 57.0%. Both the nectar amount and sugar concentration demonstrated a significant year and population effect. Pollen production was variable between the years of the study. On average, a single flower of L. vulgaris produced 0.31 mg of pollen. The spectrum of insect visitors in the flowers of L. vulgaris differed significantly between populations. In the urban site, Bombus terrestris and Apis mellifera were the most common visitors, while a considerable number of visits of wasps and syrphid flies were noted in the rural site.  相似文献   

14.
Hummingbird flower mites are transported in the nares of hummingbirds and may compete with them by "robbing" nectar secreted by the host plants. We have shown that Tropicoseius sp. flower mites consume almost half the nectar secreted by the long-lived, protandrous flowers of Moussonia deppeana (Gesneriaceae) pollinated by Lampornis amethystinus (Trochilidae). In this paper, we ask whether mimicking nectar consumption of flower mites alters some aspects of hummingbird foraging patterns, and, if so, how this affects host plant seed production. We observed hummingbirds foraging on (a) plants in which nectar was removed from the flowers and then filled with a sugar solution to half the volume of nectar simulating nectar consumption by flower mites, and (b) plants where nectar was removed and then filled with the sugar solution up to normal nectar volumes. Flower mites were excluded from both groups of plants to control for mite activity. Hummingbirds made fewer but longer visits to plants and revisited more the flowers with nectar removal than those without the treatment. We then conducted a pollination experiment on pistillate flowers using a stuffed L. amethystinus hummingbird to evaluate the effect of pollination intensity (number of bill insertions into one flower) on seed production. Flowers with more insertions produced significantly more seeds than those flowers that received fewer insertions. We conclude that the simulation of nectar consumption by hummingbird flower mites can influence the behavior of the pollinator, and this may positively affect seed production.  相似文献   

15.
Large floral displays favour pollinator attraction and the import and export of pollen. However, large floral displays also have negative effects, such as increased geitonogamy, pollen discounting and nectar/pollen robber attraction. The size of the floral display can be measured at different scales (e.g. the flower, inflorescence or entire plant) and variations in one of these scales may affect the behaviour of flower visitors in different ways. Moreover, the fragmentation of natural forests may affect flower visitation rates and flower visitor behaviour. In the present study, video recordings of the inflorescences of a tree species (Tabebuia aurea) from the tropical savannah of central Brazil were used to examine the effect of floral display size at the inflorescence and tree scales on the visitation rate of pollinators and nectar robbers to the inflorescence, the number of flowers approached per visit, the number of visits per flower of potential pollinators and nectar robbers, and the interaction of these variables with the degree of landscape disturbance. Nectar production was quantified with respect to flower age. Although large bees are responsible for most of the pollination, a great diversity of flower insects visit the inflorescences of T. aurea. Other bee and hummingbird species are highly active nectar robbers. Increases in inflorescence size increase the visitation rate of pollinators to inflorescences, whereas increases in the number of inflorescences on the tree decrease visitation rates to inflorescences and flowers. This effect has been strongly correlated with urban environments in which trees with the largest floral displays are observed. Pollinating bees (and nectar robbers) visit few flowers per inflorescence and concentrate visits to a fraction of available flowers, generating an overdispersed distribution of the number of visits per inflorescence and per flower. This behaviour reflects preferential visits to young flowers (including flower buds) with a greater nectar supply.  相似文献   

16.
17.
The ecological significance of toxic nectar   总被引:18,自引:0,他引:18  
Lynn S. Adler 《Oikos》2000,91(3):409-420
Although plant-herbivore and plant-pollinator interactions have traditionally been studied separately, many traits are simultaneously under selection by both herbivores and pollinators. For example, secondary compounds commonly associated with herbivore defense have been found in the nectar of many plant species, and many plants produce nectar that is toxic or repellent to some floral visitors. Although secondary compounds in nectar and toxic nectar are geographically and phylogenetically widespread, their ecological significance is poorly understood. Several hypotheses have been proposed for the possible functions of toxic nectar, including encouraging specialist pollinators, deterring nectar robbers, preventing microbial degradation of nectar, and altering pollinator behavior. All of these hypotheses rest on the assumption that the benefits of toxic nectar must outweigh possible costs; however, to date no study has demonstrated that toxic nectar provides fitness benefits for any plant. Therefore, in addition to these adaptive hypotheses, we should also consider the hypothesis that toxic nectar provides no benefits or is tolerably detrimental to plants, and occurs due to previous selection pressures or pleiotropic constraints. For example, secondary compounds may be transported into nectar as a consequence of their presence in phloem, rather than due to direct selection for toxic nectar. Experimental approaches are necessary to understand the role of toxic nectar in plant-animal interactions.  相似文献   

18.
The mistletoe Psittacanthus robustus was studied as a model to link flower phenology and nectar secretion strategy to pollinator behaviour and the reproductive consequences for the plant. The bright‐coloured flowers presented diurnal anthesis, opened asynchronously throughout the rainy season and produced copious dilute nectar as the main reward for pollinators. Most nectar was secreted just after flower opening, with little sugar replenishment after experimental removals. During the second day of anthesis in bagged flowers, the flowers quickly reabsorbed the offered nectar. Low values of nectar standing crop recorded in open flowers can be linked with high visitation rates by bird pollinators. Eight hummingbirds and two passerines were observed as potential pollinators. The most frequent flower visitors were the hummingbirds Eupetomena macroura and Colibri serrirostris, which actively defended flowering mistletoes. The spatial separation between anthers, stigma and nectar chamber promotes pollen deposition on flapping wings of hovering hummingbirds that usually probe many flowers per visit. Seed set did not differ between hand‐, self‐ and cross‐pollinated flowers, but these treatments set significantly more seeds than flowers naturally exposed to flower visitors. We suggest that the limitation observed in the reproductive success of this plant is not related to pollinator scarcity, but probably to the extreme frequency of visitation by territorial hummingbirds. We conclude that the costs and benefits of plant reproduction depend on the interaction strength between flowers and pollinators, and the assessment of nectar secretion dynamics, pollinator behaviour and plant breeding system allows clarification of the complexity of such associations.  相似文献   

19.

Background and Aims

Several members of Bromeliaceae show adaptations for hummingbird pollination in the Neotropics; however, the relationships between floral structure, nectar production, pollination and pollinators are poorly understood. The main goal of this study was to analyse the functional aspects of nectar secretion related to interaction with pollinators by evaluating floral biology, cellular and sub-cellular anatomy of the septal nectary and nectar composition of Ananas ananassoides, including an experimental approach to nectar dynamics.

Methods

Observations on floral anthesis and visitors were conducted in a population of A. ananassoides in the Brazilian savanna. Nectary samples were processed using standard methods for light and transmission electron microscopy. The main metabolites in nectary tissue were detected via histochemistry. Sugar composition was analysed by high-performance liquid chromatography (HPLC). The accumulated nectar was determined from bagged flowers (‘unvisited’), and floral response to repeated nectar removal was evaluated in an experimental design simulating multiple visits by pollinators to the same flowers (‘visited’) over the course of anthesis.

Key Results

The hummingbirds Hylocharis chrysura and Thalurania glaucopis were the most frequent pollinators. The interlocular septal nectary, composed of three lenticular canals, extends from the ovary base to the style base. It consists of a secretory epithelium and nectary parenchyma rich in starch grains, which are hydrolysed during nectar secretion. The median volume of nectar in recently opened ‘unvisited’ flowers was 27·0 µL, with a mean (sucrose-dominated) sugar concentration of 30·5 %. Anthesis lasts approx. 11 h, and nectar secretion begins before sunrise. In ‘visited’ flowers (experimentally emptied every hour) the nectar total production per flower was significantly higher than in the ‘unvisited’ flowers (control) in terms of volume (t = 4·94, P = 0·0001) and mass of sugar (t = 2·95, P = 0·007), and the concentration was significantly lower (t = 8·04, P = 0·0001).

Conclusions

The data suggest that the total production of floral nectar in A. ananassoides is linked to the pollinators'' activity and that the rapid renewal of nectar is related to the nectary morphological features.  相似文献   

20.
Animal-pollinated angiosperms either depend on cross-pollination or may also reproduce after self-pollination—the former are thus obligately, the latter facultatively dependent on the service of animal-pollinators. Analogously, flower visitors either solely feed on floral resources or complement their diet with these, and are hence dependent or not on the flowers they visit. We assume that obligate flower visitors evolved abilities that enable them to effectively forage on flowers including mechanisms to bypass or tolerate floral defences such as morphological barriers and repellent/deterrent secondary metabolites. Facultative flower visitors, in contrast, are supposed to lack these adaptations and are often prevented to consume floral resources by defence mechanisms. In cases where obligate flower visitors are mutualists and facultative ones are antagonists, this dichotomy provides a solution for the plants'' dilemma to attract pollinators and simultaneously repel exploiters. In a meta-analysis, we recently supported this hypothesis: obligate flower visitors are attracted to floral scents, while facultative ones are repelled. Here, we add empirical evidence to these results: bumblebees and ants, obligate and facultative flower visitors, respectively, responded as predicted by the results of the meta-analysis to synthetic floral scent compounds.Key words: antagonists, exploitation, floral defences, mutualism, nectar, pollinationThe mutualism between flowers and their pollinators is often exploited by cheaters that consume floral rewards but do not contribute to or even reduce the reproductive success of plants.1 The classification into mutualistic and antagonistic flower visitors represents a phytocentric point of view and only considers the interaction''s net effect for the plant. However, the outcome of each plant-flower visitor interaction may be highly conditional and variable over time2 and thus constitutes a continuum between beneficial and detrimental, and it may not be unequivocally assigned to be either positive or negative. Furthermore, many flower visitor species that function as effective pollinators of some plant species represent severe antagonists to other plant species.3 Thus, except for highly specialised systems, it is difficult to predict whether an interaction is mutualistic, commensalistic or antagonistic. We proposed a different classification of flower visitors based on the animals'' interest in flower visits.4 Animals visit flowers primarily in search for food; pollination is just a secondary effect.5 For some taxa nectar and pollen are the sole nutrient supply, others only supplement their more generalistic diets with floral resources. These different dependencies on floral resources can often be unequivocally assigned to each animal species. Bees, for example, strongly depend on pollen and nectar and are thus obligate flower visitors. In contrast, ants are omnivores and thus facultative flower visitors that consume large amounts of floral nectar of some plant species but obtain most of the nutrients required by the colony from non-floral resources.6Optimal foraging theory predicts that animals evolve physiological and behavioral features that allow them to exploit their resources as effectively as possible.7,8 Therefore, a classification considering the animals'' dependencies on floral resources (obligate versus facultative) may be better suited to explain adaptations to flower visits than their effect on plants'' reproduction (mutualistic versus antagonistic). One very important adaptation to the consumption of floral resources is the ability to tolerate or overcome floral defences that are employed by the flowers to reduce the visitation frequency of detrimental flower visitors.9 Floral scents are innate attractants or reinforce floral visits due to associative learning but do also serve as effective repellents against antagonists.10 In a meta-analysis, we recently demonstrated that the dependency on floral resources determines the responses to floral scents.4 In the bioassay presented here, using bumblebees (Bombus terrestris) and ants (Lasius niger), we empirically tested the predictions deduced from the metaanalysis. We expected that bumblebees—as obligate flower visitors—are attracted to floral scent compounds, while ants—as facultative flower visitors—are repelled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号