首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The conservation of any species requires understanding and predicting the distribution of its habitat and resource use, including the effects of scale‐dependent variation in habitat and resource quality. Consequently, testing for resource selection at the appropriate scales is critical. We investigated how the resource selection process varies across scales, using koalas in a semi‐arid landscape of eastern Australia as a case study. We asked: at what scales does tree selection by koalas vary across regions? We tested the importance of the variation of our ecological predictors at the following scales: (i) the site‐scale (a stand of trees representing an individual koala's perception of local habitat); (ii) the landscape‐scale (10 × 10 km area representing a space within which a population of koalas exists); and (iii) a combination of these scales. We used a mixed‐modelling approach to quantify variation in selection of individual trees by koalas among sites and landscapes within a 1600 km2 study area. We found that tree species, and tree height, were the most important factors influencing tree selection, and that their effect did not vary across scales. In contrast, preferences for trees of different condition, which is the state of tree canopy health, did vary across landscapes, indicating spatial variation in the selection of trees with respect to tree condition at the landscape‐scale, but not at the site‐scale. We conclude that resource selection processes can depend on the quality of those resources at different scales and their heterogeneous nature across landscapes, highlighting the consequence of scale‐dependent ecological processes. Designing studies that capture the heterogeneity in habitat and resources used by species that have an extensive distribution is an important prerequisite for effective conservation planning and management.  相似文献   

2.
Large‐scale forest restoration relies on approaches that are cost‐effective and economically attractive to farmers, and in this context agroforestry systems may be a valuable option. Here, we compared ecological outcomes among (1) 12–15‐year‐old coffee agroforests established with several native shade trees, (2) 12–15‐year‐old high‐diversity restoration plantations, and (3) reference old‐growth forests, within a landscape restoration project in the Pontal do Paranapanema region, in the Atlantic Forest of southeastern Brazil. We compared the aboveground biomass, canopy cover, and abundance, richness, and composition of trees, and the regenerating saplings in the three forest types. In addition, we investigated the landscape drivers of natural regeneration in the restoration plantations and coffee agroforests. Reference forests had a higher abundance of trees and regenerating saplings, but had similar levels of species richness compared to coffee agroforests. High‐diversity agroforests and restoration plantations did not differ in tree abundance. However, compared to restoration plantations, agroforests showed higher abundance and species richness of regenerating saplings, a higher proportion of animal‐dispersed species, and higher canopy cover. The abundance of regenerating saplings declined with increasing density of coffee plants, thus indicating a potential trade‐off between productivity and ecological benefits. High‐diversity coffee agroforests provide a cost‐effective and ecologically viable alternative to high‐diversity native tree plantations for large‐scale forest restoration within agricultural landscapes managed by local communities, and should be included as part of the portfolio of reforestation options used to promote the global agenda on forest and landscape restoration.  相似文献   

3.
Large‐scale and long‐term restoration efforts are urgently needed to reverse historical global trends of deforestation and forest degradation in the tropics. Restoration of forests within landscapes offers multiple social, economic, and environmental benefits that enhance lives of local people, mitigate effects of climate change, increase food security, and safeguard soil and water resources. Despite rapidly growing knowledge regarding the extent and feasibility of natural regeneration and the environmental and economic benefits of naturally regenerating forests in the tropics, tree planting remains the major focus of restoration programs. Natural regeneration is often ignored as a viable land‐use option. Here, we assemble a set of 16 original papers that provide an overview of the ecological, economic, and social dimensions of forest and landscape restoration (FLR), a relatively new approach to forest restoration that aims to regain ecological integrity and enhance human well‐being in deforested or degraded forest landscapes. The papers describe how spontaneous (passive) and assisted natural regeneration can contribute to achieving multiple social and ecological benefits. Forest and landscape restoration is centered on the people who live and work in the landscape and whose livelihoods will benefit and diversify through restoration activities inside and outside of farms. Given the scale of degraded forestland and the need to mitigate climate change and meet human development needs in the tropics, harnessing the potential of natural regeneration will play an essential role in achieving the ambitious goals that motivate global restoration initiatives.  相似文献   

4.
The relative effects of tree clearing, increased livestock densities and nutrient enrichment have rarely been compared across markedly different organism types, but negative effects are generally predicted. In contrast, adoption of rotational grazing is thought to benefit biodiversity in pastures but there are few supporting data. We examined the response of native plants, birds and reptiles to livestock management in south‐eastern Australia. We selected 12 pairs of rotationally and continuously grazed farms. Two 1‐ha plots were established in native pastures on each farm, one cleared and the second still retaining woodland tree cover. Stocking rates, fertilizer histories and landscape tree cover varied among farms. The abundance and richness of all taxa was lower in cleared pastures. The less mobile organisms (reptiles and plants) were positively correlated with tree cover at landscape scales, but only when trees were present at the plot scale. This pattern was driven by a few observations in landscapes with approximately 50% tree canopy cover. Neither bird abundance nor richness was correlated with stocking rates or nutrient enrichment, but plant richness responded negatively to both. The response of reptiles varied, declining with nutrient enrichment but positively correlated with livestock densities. These responses may be partly interpreted within the context of prior filtering of species pools through long‐term grazing pressure. No taxa responded positively to rotational grazing management. We predict that reductions in livestock density and soil nutrients will directly benefit plants and less so reptiles, but not birds. Indirect benefits are predicted for birds and reptiles if management increases persistence of trees within paddocks. Although some forms of rotational grazing can increase woodland tree recruitment, rotational grazing in itself is unlikely to enhance diversity.  相似文献   

5.
Natural experiments have been proposed as a way of complementing manipulative experiments to improve ecological understanding and guide management. There is a pressing need for evidence from such studies to inform a shift to landscape‐scale conservation, including the design of ecological networks. Although this shift has been widely embraced by conservation communities worldwide, the empirical evidence is limited and equivocal, and may be limiting effective conservation. We present principles for well‐designed natural experiments to inform landscape‐scale conservation and outline how they are being applied in the WrEN project, which is studying the effects of 160 years of woodland creation on biodiversity in UK landscapes. We describe the study areas and outline the systematic process used to select suitable historical woodland creation sites based on key site‐ and landscape‐scale variables – including size, age, and proximity to other woodland. We present the results of an analysis to explore variation in these variables across sites to test their suitability as a basis for a natural experiment. Our results confirm that this landscape satisfies the principles we have identified and provides an ideal study system for a long‐term, large‐scale natural experiment to explore how woodland biodiversity is affected by different site and landscape attributes. The WrEN sites are now being surveyed for a wide selection of species that are likely to respond differently to site‐ and landscape‐scale attributes and at different spatial and temporal scales. The results from WrEN will help develop detailed recommendations to guide landscape‐scale conservation, including the design of ecological networks. We also believe that the approach presented demonstrates the wider utility of well‐designed natural experiments to improve our understanding of ecological systems and inform policy and practice.  相似文献   

6.
To slow the rate of global species loss, it is imperative to understand how to restore and maintain native biodiversity in agricultural landscapes. Currently, agriculture is associated with lower spatial heterogeneity and turnover in community composition (β‐diversity). While some techniques are known to enhance α‐diversity, it is unclear whether habitat restoration can re‐establish β‐diversity. Using a long‐term pollinator dataset, comprising ~9,800 specimens collected from the intensively managed agricultural landscape of the Central Valley of California, we show that on‐farm habitat restoration in the form of native plant ‘hedgerows’, when replicated across a landscape, can boost β‐diversity by approximately 14% relative to unrestored field margins, to levels similar to some natural communities. Hedgerows restore β‐diversity by promoting the assembly of phenotypically diverse communities. Intensively managed agriculture imposes a strong ecological filter that negatively affects several important dimensions of community trait diversity, distribution, and uniqueness. However, by helping to restore phenotypically diverse pollinator communities, small‐scale restorations such as hedgerows provide a valuable tool for conserving biodiversity and promoting ecosystem services.  相似文献   

7.
Scattered trees in general and scattered waddeessa (Cordia africana Lam.) trees in particular are very common across the agricultural landscapes in Oromia, Ethiopia. A study on this scattered waddeessa trees commonly growing on farmers' agricultural fields was conducted at Bako in western Oromia, Ethiopia with the objective of assessing their role in modifying the soil properties in the agricultural landscape. Soil samples from surface layers (0–10 cm) were taken at three concentric transects (0.5, 2 and 4 m) around the tree and compared with soil samples from the adjacent open areas (15 m distance from the tree), and then analysed following the standard procedures. Results showed that scattered waddeessa trees significantly modified the overall properties of the soil in the agricultural landscape of Bako area. But soil texture was not affected, indicating that it is more related to parent material than the tree influence. Hence, the soil patches observed under these waddeessa trees can be important local nutrient reserves that may influence the rural agricultural landscape. They also play an important role in generating local household income from the sale of products and conserving biodiversity by providing habitats and resources that are otherwise absent or scarce in agricultural landscape.  相似文献   

8.
Low‐latitudinal range margins of temperate and boreal plant species typically consist of scattered populations that persist locally in microrefugia. It remains poorly understood how their refugial habitats affect patterns of gene flow and connectivity, key components for their long‐term viability and evolution. We examine landscape‐scale patterns of historical and contemporary gene flow in refugial populations of the widespread European forest tree Pedunculate oak (Quercus robur) at the species' southwestern range margin. We sampled all adult trees (= 135) growing in a 20 km long valley and genotyped 724 acorns from 72 mother trees at 17 microsatellite loci. The ten oak stands that we identified were highly differentiated and formed four distinct genetic clusters, despite sporadic historical dispersal being detectable. By far most contemporary pollination occurred within stands, either between local mates (85.6%) or through selfing (6.8%). Pollen exchange between stands (2.6%) was remarkably rare given their relative proximity and was complemented by long‐distance pollen immigration (4.4%) and hybridization with the locally abundant Quercus pyrenaica (0.6%). The frequency of between‐stand mating events decreased with increasing size and spatial isolation of stands. Overall, our results reveal outstandingly little long‐distance gene flow for a wind‐pollinated tree species. We argue that the distinct landscape characteristics of oaks' refugial habitats, with a combination of a rugged topography, dense vegetation and humid microclimate, are likely to increase plant survival but to hamper effective long‐distance pollen dispersal. Moreover, local mating might be favoured by high tree compatibility resulting from genetic purging in these long‐term relict populations.  相似文献   

9.
Representatives from agencies involved in natural resource management in the Murray‐Darling Basin gathered for a workshop in November 2010 to develop a vision for improved monitoring and reporting of riparian restoration projects. The resounding message from this workshop was that the effectiveness of riparian restoration depends on having sound, documented and agreed evidence on the ecological responses to restoration efforts. Improving our capacity to manage and restore riparian ecosystems is constrained by (i) a lack of ecological evidence on the effects of restoration efforts, and (ii) short‐termism in commitment to restoration efforts, in funding of monitoring and in expected time spans for ecosystem recovery. Restoration at the effective spatial scope will invariably require a long‐term commitment by researchers, funding agencies, management agencies and landholders. To address the knowledge gaps that constrain riparian restoration in the Basin, participants endorsed four major fields for future research: the importance of landscape context to restoration outcomes; spatio‐temporal scaling of restoration outcomes; functional effects of restoration efforts; and developing informative and effective indicators of restoration. To improve the monitoring and restoration of riparian zones throughout the Basin, participants advocated an integrated approach: a hierarchical adaptive management framework that incorporates long‐term ecological research.  相似文献   

10.

Aim

The biodiversity value of scattered trees in modified landscapes is often overlooked in planning and conservation decisions. We conducted a multitaxa study to determine how wildlife abundance, species richness and community composition at individual trees are affected by (1) the landscape context in which trees are located; and (2) the size of trees.

Location

Canberra, south‐eastern Australia.

Methods

Trunk arthropod, bat and bird surveys were undertaken over 3 years (2012–2014) at 72 trees of three sizes (small (20–50 cm DBH), medium (51–80 cm), large (≥80 cm)) located in four landscape contexts (reserves, pasture, urban parklands, urban built‐up areas).

Results

Landscape context affected all taxa surveyed. Trunk arthropod communities differed between trees in urban built‐up areas and reserves. Bat activity and richness were significantly reduced at trees in urban built‐up areas suggesting that echolocating bats may be disturbed by high levels of urbanization. Bird abundance and richness were highest at trees located in modified landscapes, highlighting the value of scattered trees for birds. Bird communities also differed between non‐urban and urban trees. Tree size had a significant effect on birds but did not affect trunk arthropods and bats. Large trees supported higher bird abundance, richness and more unique species compared to medium and small trees.

Main conclusions

Scattered trees support a diversity of wildlife. However, landscape context and tree size affected wildlife in contrasting ways. Land management strategies are needed to collectively account for responses exhibited by multiple taxa at varying spatial scales. We recommend that the retention and perpetuation of scattered trees in modified landscapes should be prioritized, hereby providing crucial habitat benefits to a multitude of taxa.  相似文献   

11.
Forest restoration is an increasingly important tool to offset and indeed reverse global deforestation rates. One low cost strategy to accelerate forest recovery is conserving scattered native trees that persist across disturbed landscapes and which may act as seedling recruitment foci. Ficus trees, which are considered to be critically important components of tropical ecosystems, may be particularly attractive to seed dispersers in that they produce large and nutritionally rewarding fruit crops. Here, we evaluate the effectiveness of remnant Ficus trees in inducing forest recovery compared to other common trees. We studied the sapling communities growing under 207 scattered trees, and collected data on seed rain for 55 trees in a modified landscape in Assam, India. We found that Ficus trees have more sapling species around them (species richness = 140.1 ± 9.9) than non‐Ficus trees (79.5 ± 12.9), and significantly more saplings of shrub and large tree species. Sapling densities were twice as high under Ficus trees (median = 0.06/m2) compared to non‐Ficus (0.03/m2), and seed rain densities of non‐parent trees were significantly higher under Ficus trees (mean = 12.73 ± 3/m2/wk) than other fruit or non‐zoochorous trees (2.19 ± 0.97/m2/wk). However, our regression model found that canopy area, used as a proxy for tree size, was the primary predictor of sapling density, followed by remnant tree type. These results suggest that large trees, and in particular large Ficus trees, may be more effective forest restoration agents than other remnant trees in disturbed landscapes, and therefore the conservation of these trees should be prioritized.  相似文献   

12.
Landscape diversity slows the spread of an invasive forest pest species   总被引:1,自引:0,他引:1  
According to the associational resistance hypothesis, diverse habitats provide better resistance to biological invasions than monocultures. Host‐plant abundance has been shown to affect the range expansion of invasive pests, but the effect of landscape diversity (i.e. density of host/non‐host patches and diversity of forest habitat patches) on invasions remains largely untested. We used boundary displacement models and boosted regression tree analyses to investigate the effects of landscape diversity on the invasion of Corsica by the maritime pine bast scale Matsucoccus feytaudi over an 18‐yr period. Taking the passive wind dispersal of the scale into account, we showed that open habitats and connectivity between host patches accelerated spread by up to 13%, whereas landscapes with high tree diversity and a high density of non‐host trees decreased scale spread by up to 14%. We suggest a new mechanism for such associational resistance to pest invasion at the landscape level, which we term ‘the pitfall effect’.  相似文献   

13.
Extensive tropical forest loss and degradation have stimulated increasing awareness at the international policy level of the need to undertake large‐scale forest landscape restoration (FLR). Natural regeneration offers a cost‐effective way to achieve large‐scale FLR, but is often overlooked in favor of tree plantations. The studies presented in this special issue show how natural regeneration can become an important part of FLR and highlight the ecological, environmental, and social factors that must be considered to effectively do so. They also identify major knowledge gaps and outline a research agenda to support the use of natural regeneration in FLR. Six central questions emerge from these studies: (1) What are the ecological, economic, and livelihood outcomes of active and passive restoration interventions?; (2) What are the tradeoffs and synergies among ecological, economic, and livelihood outcomes of natural regeneration, restoration and productive land uses, and how do they evolve in the face of market and climate shocks?; (3) What diagnostic tools are needed to identify and map target areas for natural regeneration?; (4) How should spatial prioritization frameworks incorporate natural regeneration into FLR?; (5) What legal frameworks and governance structures are best suited to encourage natural regeneration and how do they change across regions and landscapes?; (6) What financial mechanisms can foster low‐cost natural regeneration? Natural regeneration is not a panacea to solve tensions and conflicts over land use, but it can be advantageous under some circumstances. Identifying under what conditions this is the case is an important avenue for future research.  相似文献   

14.
Plant diversity is threatened in many agricultural landscapes. Our understanding of patterns of plant diversity in these landscapes is mainly based on small‐scale (<1000 m2) observations of species richness. However, such observations are insufficient for detecting the spatial heterogeneity of vegetation composition. In a case‐study farm on the North‐West Slopes of New South Wales, Australia, we observed species richness at four scales (quadrat, patch, land use and landscape) across five land uses (grazed and ungrazed woodlands, native pastures, roadsides and crops). We applied two landscape ecological models to assess the contribution of these land uses to landscape species richness: (i) additive partitioning of diversity at multiple spatial scales, and (ii) a measure of habitat specificity – the effective number of species that a patch contributes to landscape species richness. Native pastures had less variation between patches than grazed and ungrazed woodlands, and hence were less species‐rich at the landscape scale, despite having similar richness to woodlands at the quadrat and patch scale. Habitat specificity was significantly higher for ungrazed woodland patches than all other land uses. Our results showed that in this landscape, ungrazed woodland patches had a higher contribution than the grazed land uses to landscape species richness. These results have implications for the conservation management of this landscape, and highlighted the need for greater consensus on the influence of different land uses on landscape patterns of plant diversity.  相似文献   

15.
The impact of biomass crop cultivation on temperate biodiversity   总被引:2,自引:0,他引:2  
The urgency for mitigation actions in response to climate change has stimulated policy makers to encourage the rapid expansion of bioenergy, resulting in major land‐use changes over short timescales. Despite the potential impacts on biodiversity and the environment, scientific concerns about large‐scale bioenergy production have only recently been given adequate attention. Environmental standards or legislative provisions in the majority of countries are still lagging behind the rapid development of energy crops. Ranging from the field to the regional scale, this review (i) summarizes the current knowledge about the impact of biomass crops on biodiversity in temperate regions, (ii) identifies knowledge gaps and (iii) drafts guidelines for a sustainable biomass crop production with respect to biodiversity conservation. The majority of studies report positive effects on biodiversity at the field scale but impacts strongly depend on the management, age, size and heterogeneity of the biomass plantations. At the regional scale, significant uncertainties exist and there is a major concern that extensive commercial production could have negative effects on biodiversity, in particular in areas of high nature‐conservation value. However, integration of biomass crops into agricultural landscapes could stimulate rural economy, thus counteracting negative impacts of farm abandonment or supporting restoration of degraded land, resulting in improved biodiversity values. Given the extent of landconversion necessary to reach the bioenergy targets, the spatial layout and distribution of biomass plantations will determine impacts. To ensure sustainable biomass crop production, biodiversity would therefore have to become an essential part of risk assessment measures in all those countries which have not yet committed to making it an obligatory part of strategic landscape planning. Integrated environmental and economic research is necessary to formulate standards that help support long‐term economic and ecological sustainability of biomass production and avoid costly mistakes in our attempts to mitigate climate change.  相似文献   

16.
1.  Facilitating adaptive responses of organisms in modified landscape will be essential to overcome the negative effects of climate change and its interaction with land use change. Without such action, many organisms will be prevented from achieving the predicted range shifts they need to survive.
2.  Scattered trees are a prominent feature of many modified landscapes, and could play an important role in facilitating climate change adaptation. They are keystone structures because of the disproportionally large ecological values and ecosystem services that they provide relative to the area they occupy in these landscapes. The provision of habitat and connectivity will be particularly relevant.
3.  Scattered trees are declining in modified landscapes due to elevated tree mortality and poor recruitment often associated with intensive land use. The continuing global decline of scattered trees will undermine the capacity of many organisms to adapt to climate change.
4.   Synthesis and applications. The sustainable management of scattered trees in modified landscapes could complement other strategies for facilitating climate change adaptation. They create continuous, though sparse, vegetation cover that permits multi-directional movements of biota across landscapes and ecological networks. They have the capacity to span ecosystems and climatic gradients that cannot be captured in formal reserves alone. The management of scattered trees should be an integral part of conservation objectives and agricultural activities in modified landscapes. Public investment, through mechanisms such as agri-environmental schemes, in rotational grazing, temporary set-asides, tree-planting and regulations that reduce clearing and early mortality among standing trees will improve the capacity of biota to adapt to climate change.  相似文献   

17.
Major declines of whitebark pine forests throughout western North America from the combined effects of mountain pine beetle (Dendroctonus ponderosae) outbreaks, fire exclusion policies, and the exotic disease white pine blister rust (WPBR) have spurred many restoration actions. However, projected future warming and drying may further exacerbate the species' decline and possibly compromise long‐term success of today's restoration activities. We evaluated successes of restoration treatments under future climate using a comprehensive landscape simulation experiment. The spatially explicit, ecological process model FireBGCv2 was used to simulate whitebark pine populations on two U.S. Northern Rocky Mountain landscapes over 95 years under two climate, three restoration, and two fire management scenarios. Major findings were that (1) whitebark pine can remain on some high mountain landscapes in a future climate albeit at lower basal areas (50% decrease), (2) restoration efforts, such as thinning and prescribed burning, are vital to ensure future whitebark pine forests, and (3) climate change impacts on whitebark pine vary by local setting. Whitebark pine restoration efforts will mostly be successful in the future but only if future populations are somewhat resistant to WPBR. Results were used to develop general guidelines that address climate change impacts for planning, designing, implementing, and evaluating fine‐scale restoration activities.  相似文献   

18.
A major global effort to enable cost‐effective natural regeneration is needed to achieve ambitious forest and landscape restoration goals. Natural forest regeneration can potentially play a major role in large‐scale landscape restoration in tropical regions. Here, we focus on the conditions that favor natural regeneration within tropical forest landscapes. We illustrate cases where large‐scale natural regeneration followed forest clearing and non‐forest land use, and describe the social and ecological factors that drove these local forest transitions. The self‐organizing processes that create naturally regenerating forests and natural regeneration in planted forests promote local genetic adaptation, foster native species with known traditional uses, create spatial and temporal heterogeneity, and sustain local biodiversity and biotic interactions. These features confer greater ecosystem resilience in the face of future shocks and disturbances. We discuss economic, social, and legal issues that challenge natural regeneration in tropical landscapes. We conclude by suggesting ways to enable natural regeneration to become an effective tool for implementing large‐scale forest and landscape restoration. Major research and policy priorities include: identifying and modeling the ecological and economic conditions where natural regeneration is a viable and favorable land‐use option, developing monitoring protocols for natural regeneration that can be carried out by local communities, and developing enabling incentives, governance structures, and regulatory conditions that promote the stewardship of naturally regenerating forests. Aligning restoration goals and practices with natural regeneration can achieve the best possible outcome for achieving multiple social and environmental benefits at minimal cost.  相似文献   

19.
The conservation of biodiversity in highly fragmented landscapes often requires large‐scale habitat restoration in addition to traditional biological conservation techniques. The selection of priority restoration sites to support long‐term persistence of biodiversity within landscape‐scale projects however remains a challenge for many restoration practitioners. Techniques developed under the paradigm of systematic conservation planning may provide a template for resolving these challenges. Systematic conservation planning requires the identification of conservation objectives, the establishment of quantitative targets for each objective, and the identification of areas which, if conserved, would contribute to meeting those targets. A metric developed by systematic conservation planners termed “irreplaceability” allows for analysis and prioritization of such conservation options, and allows for the display of analysis results in a way that can engage private landowners and other decision makers. The process of systematic conservation planning was modified to address landscape‐level restoration prioritization in southern Ontario. A series of recent and locally relevant landscape ecology studies allowed the identification of restoration objectives and quantitative targets, and a simple algorithm was developed to identify and prioritize potential restoration projects. The application of an irreplaceability analysis to landscape‐level restoration planning allowed the identification of varying needs throughout the planning region, resulting from underlying differences in topography and settlement patterns, and allowed the effective prioritization of potential restoration projects. Engagement with rural landowners and agricultural commodity groups, as well as the irreplaceability maps developed, ultimately resulted in a substantial increase in the number and total area of habitat restoration projects in the planning region.  相似文献   

20.
Scattered trees are considered ‘keystone structures’ in many agricultural landscapes worldwide because of the disproportionate effect they have on ecosystem function and biodiversity. Populations of these trees are in decline in many regions. Understanding the processes driving these declines is crucial for better management. Here, we examine the impact of wildfire on populations of this keystone resource. We examined 62 observation plots affected by wildfire and matched with 62 control observation plots where fire was absent. Counts of scattered trees were conducted pre‐fire in 2005 and repeated post‐fire in 2011. Changes in populations were compared between the control and fire‐affected observation plots. Our results show wildfire had a significant local impact, with an average decline of 19.9% in scattered tree populations on burned plots. In contrast, scattered trees increased on average by 5.3% in the control observation plots. The impact of wildfire was amplified (as revealed by greater percentage tree losses) by larger wildfires. Wildfire effects on scattered tree populations are of concern, given a background of other (usually) chronic stressors (often associated with agriculture) and that the frequency and intensity of wildfire are predicted to increase in many landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号