首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Megasporogenesis, megagametogenesis and seed formation were analyzed cytologically in populations of Arabis holboellii originating from North America (Colorado) and Greenland. The Colorado population contained only triploid plants, while the Greenland population consisted of diploid and triploid plants. The penetrance of the apomictic trait was assessed at the level of embryo sac development. All populations showed facultative apomeiotic embryo sac development; however the penetrance of this trait differed between the populations. Apomeiotic and meiotic embryo sac development were characterized by diplosporous dyad formation (Taraxacum-type) and meiotic tetrad formation (Polygonum-type), respectively. Flow cytometric analyses of single mature seeds from all three populations suggest that only unreduced gametes participate in viable seed development. Pseudogamy was the predominant mode of endosperm formation; however, autonomous endosperm development was also observed. The fertilization of unreduced egg cells with unreduced pollen was observed at a low frequency in the Greenland populations. The mechanisms of apomictic reproduction in A. holboellii are discussed.  相似文献   

2.
Inheritance of apomeiosis (diplospory) in fleabanes (Erigeron, Asteraceae)   总被引:2,自引:0,他引:2  
Noyes RD 《Heredity》2005,94(2):193-198
Unreduced egg formation (apomeiosis) in flowering plants is rare except when it is coupled with parthenogenesis to yield gametophytic apomixis via apospory or diplospory. Results from genetic mapping studies in diverse apomictic taxa suggest that apomeiosis and parthenogenesis are genetically linked, a finding that is compatible with the conventional rationale that apomeiosis is unlikely to evolve independently because of deleterious fitness consequences. An Erigeron annuus (apomictic) x E. strigosus (sexual) genetic mapping population, however, included a high proportion of plants that were highly apomeiotic (diplosporous) but nonapomictic; that is, they lacked autonomous seed production. To evaluate the function and inheritance of diplospory in Erigeron, a diplosporous triploid (2n=3x=27) seed parent was crossed with a sexual diploid (2n=2x=18) E. strigosus pollen parent to produce an F1 of 31 plants. Chromosome numbers and molecular markers (AFLPs) document the inheritance of the maternal genome through unreduced eggs resulting in recombinant but predominantly (77%) tetraploid F1s (2n=4x=36; 2n+n, B(III)). Quantitative evaluation shows continuous variation in the proportion of diplosporous (vs meiotic) ovules (41-89%) in tetraploid F1s despite the presumed equal genetic contribution from the diplosporous mother. These findings demonstrate the functional independence of diplospory and suggest that variation in the trait in F1s is likely due to segregating paternal modifiers. In addition, of six aneuploid (4x-1, 4x-2) F1s, three lack a subset of maternal AFLP markers. These plants likely arose from aberrant megagametogenesis resulting in the loss of maternal chromatin prior to fertilization.  相似文献   

3.
Segregating progenies of crosses between sexual and apomictic genotypes of Paspalum simplex were analysed for the formation of meiotic versus aposporous embryo sacs, zygotic versus parthenogenetic embryos, and autonomous versus pseudogamous endosperms by using cytoembryological and flow cytometric analyses. Reduced and unreduced 8-nucleated embryo sacs were the final product of female gametophyte development in sexual and aposporous genotypes, respectively. An incomplete penetrance of parthenogenesis was detected in aposporous genotypes. The relative DNA content of endosperm nuclei revealed the normal 2:1 maternal to paternal ratio in sexuals and a 4:1 ratio in apomicts, indicating insensitivity of the apomictic genotypes to endosperm imprinting. Apospory, parthenogenesis and pseudogamy are located on a relatively large linkage group and are inherited together with previously developed molecular markers as a single genetic unit in segregating progenies.  相似文献   

4.
The mode of reproduction was characterized for 113 accessions of the tetraploid facultative apomictic species Hypericum perforatum using bulked or single mature seeds in the flow cytometric seed screen (FCSS). This screen discriminates several processes of sexual or asexual reproduction based on DNA contents of embryo and endosperm nuclei. Seed formation in H. perforatum proved to be highly polymorphic. Eleven different routes of reproduction were determined. For the first time, individual seeds were identified that originated from two embryo sacs: the endosperm from an aposporous and the embryo from the legitimate meiotic embryo sac. Moreover, diploid plants were discovered, which apparently reproduce by a hitherto unknown route of seed formation, that is chromosome doubling within aposporous initial cells followed by double fertilization. Although most plants were tetraploid and facultative sexual/apomictic, diploid obligate sexuals and tetraploid obligate apomicts could be selected. Additionally, genotypes were detected which at a high frequency produced embryos either from reduced parthenogenetic or unreduced fertilized egg cells. The endosperm developed most frequently after fertilization of the central cell in aposporous embryo sacs (pseudogamy) but in few cases also autonomously. The genetic control of apomixis appears to be complex in H. perforatum. Basic material was developed for breeding H. perforatum, and strategies are suggested for elucidation of inheritance as well as evolution of apomixis and for molecular approaches of apomixis engineering.  相似文献   

5.
 It is generally accepted that most angiosperms require an accurate balance between maternal and paternal genome contribution for endosperm development. The endosperm balance number (EBN) hypothesis postulates that each species has an effective number which must be in a 2:1 maternal to paternal ratio for normal endosperm development and seed formation. The aim of this work was to investigate the effect of different sources and ploidy levels of pollen donors on endosperm formation and seed production of aposporous tetraploid (2n=4×=40) Paspalum notatum. Hand-emasculated spikelets of an apomictic 4× plant were dusted with pollen of 2×, 4×, 5×, 6× and 8× races of the same species; 3× and 4× races of a phylogenetically closely related species, P. cromyorrhizon; and 2× and 4× races of P. simplex, a species of a different subgenus. Experiments including self-pollination as well as emasculation without pollination were conducted for controls. Results indicated that apomictic 4×P. notatum is a pseudogamous species with effective fertilization of the two unreduced (2n) polar nuclei by a reduced (n) sperm. Endosperm development and seed production occurred independently of the species or the ploidy level of the pollen donor. However, seed germination rates were significantly lower than in the self-pollinated control when the pollen donor was 3×P. cromyorrhizon or 2× and 4×P. simplex. Aposporous embryo sacs in Paspalum contribute to endosperm formation with two unreduced (2n) polar nuclei, while the male contribution is the same as in sexual plants (n). Since sexual Paspalum plants fit the EBN hypothesis, the EBN insensitivity observed in apomictic plants might be a prerequisite for the spread of pseudogamous apomixis. The EBN insensitivity could have arisen as an imprinting consequence of a high maternal genome contribution. Received: 20 February 1998 / Revision accepted: 21 October 1998  相似文献   

6.
Sexual and apomictic development in Hieracium   总被引:2,自引:2,他引:0  
 Most members of the genus Hieracium are apomictic and set seed without fertilization, but sexual forms also exist. A cytological study was conducted on an apomictic accession of H. aurantiacum (A3.4) and also H. piloselloides (D3) to precisely define the cellular basis for apomixis. The apomictic events were compared with the sexual events in a self-incompatible isolate of H. pilosella (P4). All plants were maintained as vegetatively propagated lines each derived from a single plant. Sexual P4 exhibited characteristic events of polygonum-type embryo sac formation, showed no latent apomitic tendencies, and depended upon fertilization to set seed. In contrast, D3 and A3.4 were autonomous aposporous apomicts, forming both embryo and endosperm spontaneously inside an unreduced embryo sac. The two apomicts exhibited distinct mechanisms, but variation was also observed within each apomictic line. Seeds from apomicts often contained more than one embryo. A degree of developmental instability was also observed amongst germinated seedlings and included variation in meristem and cotyledon number, altered phyllotaxis, callus formation, and seedling fusion. In most cases abnormal seedlings developed into normal plants. Such phenomena were not observed following germination of hybrid seeds derived from crosses between sexual P4 and the apomictic plants. The three plants can now be used in inheritance studies and also to investigate the molecular mechanisms controlling apomixis. Received: 11 February 1998 / Revision accepted: 23 July 1998  相似文献   

7.
In apomictic Hieracium subgenus Pilosella species, embryo sacs develop in ovules without meiosis. Embryo and endosperm formation then occur without fertilization, producing seeds with a maternal genotype encased in a fruit (achene). Genetic analyses in H. praealtum indicate a dominant locus (LOA) controls meiotic avoidance, and another dominant locus (LOP) controls both fertilization-independent embryogenesis and endosperm formation. While cytologically examining developmental events in ovules of progeny from crosses between different wild-type and mutant Hieracium apomicts, and a sexual Hieracium species, we identified two plants, AutE196 and AutE24, which have lost the capacity for meiotic avoidance and fertilization-independent embryo formation. AutE196 and AutE24 exhibit autonomous endosperm formation and set parthenocarpic, seedless achenes at a penetrance of 18 %. Viable seed form after pollination. Cytological examination of 102 progeny from a backcross of AutE196 with sexual H. pilosella showed that autonomous endosperm formation is a heritable, dominant, qualitative trait, detected in 51 % of progeny. Variation in quantitative trait penetrance indicates other factors influence its expression. The correlation between autonomous endosperm development and mature parthenocarpic achene formation suggests the former is sufficient to trigger fruit maturation in Hieracium. The developmental component of autonomous endosperm formation is therefore genetically separable from those controlling meiotic avoidance and autonomous embryogenesis in Hieracium and has been denoted as AutE. We postulate that tight linkage of AutE and genes controlling autonomous embryogenesis at the LOP locus in H. praealtum may explain why inheritance of autonomous seed formation is typically observed as a single component.  相似文献   

8.
InRubus L. a connection seems to exist between the degree of meiotic disturbances on the one hand, and the production of unreduced embryo sacs, pollen fertility and relative seed set on the other hand. Severe meiotic disturbances commonly encountered in apomictic taxa decrease pollen fertility and thereby seed set since pollen is necessary for endosperm development. By contrast interspecific hybrids between apomictic taxa appear to be sexual and exhibit high pollen fertilities, probably due to an improved meiosis. Thus, apomixis leads to a decreased fertility inRubus, not the opposite, as often discussed.  相似文献   

9.
Apomixis in daisy fleabanes (Erigeron annuus and E. strigosus) is controlled by two genetically unlinked loci that regulate, independently, the formation of unreduced female gametophytes (apomeiosis, diplospory) and autonomous seed formation (parthenogenesis). In this work, fully apomictic F2s were regenerated by crossing F1s bearing, separately, these two functional regions. Two triploid (3x = 2n = 27) highly diplosporous F1s served as seed parents to an aneuploid (2x + 1 = 2n = 19) meiotic pollen donor bearing four AFLP markers linked to parthenogenetic seed formation but producing only abortive embryos and endosperm. Of 408 hybrids, 21 (5.1%) produced seed. Nine of these putative apomicts were tetraploids (4x), likely combining an unreduced egg from the diplosporous seed parent and a haploid gamete from the pollen parent (3x + x). The other 12 hybrid apomicts were pentaploid, interpreted as arising from the fusion of an unreduced diplosporous egg with an unreduced sperm cell (3x + 2x). Analysis indicated that all but three of the 21 synthetic apomicts recombined markers linked to diplospory and parthenogenesis. In addition, three additional hybrids combined markers linked to the two functional regions but produced only aborted embryos. The apomicts varied in percentage of diplosporous ovules (4.7–95.3% of all ovules produced) and in percentage of ovules that developed into seed (3.8–58.0%). These results support the hypothesis that apomeiosis and autonomous seed formation are genetically distinct, and that the traits can be separated and recombined to create hybrids exhibiting apomixis at near wildtype levels.  相似文献   

10.
A Polycomb-Group (PcG) complex, FERTILIZATION INDEPENDENT SEED (FIS), represses endosperm development in Arabidopsis thaliana until fertilization occurs. The Hieracium genus contains apomictic species that form viable seeds asexually. To investigate FIS function during apomictic seed formation, FERTILIZATION INDEPENDENT ENDOSPERM (FIE), encoding a WD-repeat member of the FIS complex, was isolated and downregulated in sexual and apomictic Hieracium species. General downregulation led to defects in leaf and seed development, consistent with a role in developmental transitions and cell fate. PcG-like activity of Hieracium FIE was also supported by its interaction in vitro with the Arabidopsis CURLY LEAF PcG protein. By contrast, specific downregulation of FIE in developing seeds of sexual Hieracium did not result in autonomous endosperm proliferation but led to seed abortion after cross-pollination. Furthermore, in apomictic Hieracium, specific FIE downregulation inhibited autonomous embryo and endosperm initiation, and most autonomous seeds displayed defective embryo and endosperm growth. Therefore, FIE is required for both apomictic and fertilization-induced seed initiation in Hieracium. Since Hieracium FIE failed to interact with FIS class proteins in vitro, its partner proteins might differ from those in the FIS complex of Arabidopsis. These differences in protein interaction were attributed to structural modifications predicted from comparisons of Arabidopsis and Hieracium FIE molecular models.  相似文献   

11.
12.
Apomictic seed development is a complex process including formation of unreduced embryo sac, parthenogenetic embryo development from the egg cell, and endosperm formation either autonomously, or due to fertilization of polar nuclei by the sperm (under pseudogamous form of apomixis). In the latter case, an obstacle to the normal endosperm development is disturbance of maternal (m) -to-paternal (p) genomic ratio 2m: 1p that occurs in the cases of pollination of unreduced embryo sac with haploid sperms. Usage of tetraploid pollinators can overcome this problem because in such crosses maternal-to-paternal genomic ratio is 4m: 2p that provides formation of kernels with plump endosperm. Using tetraploid lines as pollen parents we observed formation of plump kernels on the ears and panicles of diploid maize and sorghum accessions. These kernels had hybrid endosperm and diploid maternaltype embryo or hybrid embryo with different ploidy level (2n, 3n, 4n). The frequencies of plump kernels on the ear ranged from 0.2-0.3% to 5.7-6.2% counting from the number of ovaries. Maternal-type plants were found in two maize lines, their frequency varying from 10.7 to 37.5% of the progeny plants. In CMS-lines of sorghum pollinated with tetraploid sorghum accessions, the frequency of plump kernels ranged from 0.6 to 14.0% counting from the number of ovaries; the frequency of maternal-type plants varied from 33.0 up to 96.1%. The hybrid nature of endosperm of the kernels that gave rise to maternal-type plants has been proved by marker gene expression and by SDS-electrophoresis of endosperm proteins. These data testify to variable modes of seed formation under diploid × tetraploid crosses in maize and sorghum both by amphi- and by apomixis. Therefore, usage of tetraploid pollinators might be a promising approach for isolation of apomixis in maize and sorghum accessions.  相似文献   

13.
. In the autonomous apomictic Taraxacum officinale (common dandelion), parthenogenetic egg cells develop into embryos and central cells into endosperm without prior fertilisation. Unreduced (2n) megaspores are formed via meiotic diplospory, a nonreductional type of meiosis. In this paper, we describe the normal developmental pathways of sexual and apomictic reproduction and compare these with the development observed in the apomictic hybrids. In sexual diploids, a standard type of megasporogenesis and embryo sac development is synchronised between florets in individual capitula. In contrast, we observed that megasporogenesis and gametogenesis proceeded asynchronously between florets within a single capitulum of natural triploid apomicts. In addition, autonomous endosperm and embryo development initiated independently within individual florets. Parthenogenetic initiation of embryo development in outdoor apomicts was found to be temperature-dependent. Egg cells produced in natural apomicts were not fertilised after pollination with haploid pollen grains although pollen tubes were observed to grow into their embryo sacs. Both reductional and diplosporous megasporogenesis were observed in individual inflorescences of triploid apomictic hybrids. Embryo and endosperm development initiated independently in natural and hybrid apomicts.  相似文献   

14.
? Premise of the study: The evolution of asexual seed production (apomixis) from sexual relatives is a great enigma of plant biology. The genus Boechera is ideal for studying apomixis because of its close relation to Arabidopsis and the occurrence of sexual and apomictic species at low ploidy levels (diploid and triploid). Apomixis is characterized by three components: unreduced embryo-sac formation (apomeiosis), fertilization-independent embryogenesis (parthenogenesis), and functional endosperm formation (pseudogamy or autonomous endosperm formation). Understanding the variation in these traits within and between species has been hindered by the laborious histological analyses required to analyze large numbers of samples. ? Methods: To quantify variability for the different components of apomictic seed development, we developed a high-throughput flow cytometric seed screen technique to measure embryo:endosperm ploidy in over 22000 single seeds derived from 71 accessions of diploid and triploid Boechera. ? Key results: Three interrelated features were identified within and among Boechera species: (1) variation for most traits associated with apomictic seed formation, (2) three levels of apomeiosis expression (low, high, obligate), and (3) correlations between apomeiosis and parthenogenesis/pseudogamy. ? Conclusions: The data presented here provide a framework for choosing specific genotypes for correlations with large "omics" data sets being collected for Boechera to study population structure, gene flow, and evolution of specific traits. We hypothesize that low levels of apomeiosis represent an ancestral condition of Boechera, whereas high apomeiosis levels may have been induced by global gene regulatory changes associated with hybridization.  相似文献   

15.
Apomixis in Crataegus is primarily aposporous and requires pollination. The embryo sac is of the Polygonum type. A combination of meiotically unreduced embryo sacs with apparently reduced pollen would violate the usual requirement for a 2 : 1 ratio of maternal to paternal contributions to the endosperm. We therefore investigated the origin of endosperm in seeds of sexual diploids and apomictic polyploids of the sister genera Crataegus and Mespilus. Flow-cytometric DNA measurements from embryo and endosperm in mature seeds were converted to ploidy levels using leaf-tissue information. The diploids had triploid endosperm. In c. 60% of seed from polyploids, one sperm apparently contributes to the endosperm, while 25% or more may involve two sperm. Additional results suggest that trinucleate central cells also occur. Fertilization of meiotically unreduced eggs is indicated. The ratio of maternal to paternal contributions to the endosperm in these apomictic Crataegus is not constrained to 2 : 1. They thus resemble some Sorbus (Pyreae) and very distantly related Ranunculus (Ranunculaceae). It is suggested that Paspalum (Poaceae) may have similarly flexible endosperm ploidy levels.  相似文献   

16.
Noyes RD  Rieseberg LH 《Genetics》2000,155(1):379-390
Asexual seed production (agamospermy) via gametophytic apomixis in flowering plants typically involves the formation of an unreduced megagametophyte (via apospory or diplospory) and the parthenogenetic development of the unreduced egg cell into an embryo. Agamospermy is almost exclusively restricted to polyploids. In this study, the genetic basis of agamospermy was investigated in a segregating population of 130 F(1)'s from a cross between triploid (2n = 27) agamospermous Erigeron annuus and sexual diploid (2n = 18) E. strigosus. Correlations between markers and phenotypes and linkage analysis were performed on 387 segregating amplified fragment length polymorphisms (AFLPs). Results show that four closely linked markers with polysomic inheritance are significantly associated with parthenogenesis and that 11 cosegregating markers with univalent inheritance are completely associated with diplospory. This indicates that diplospory and parthenogenesis are unlinked and inherited independently. Further, the absence of agamospermy in diploid F(1)'s appears to be best explained by a combination of recessive-lethal gametophytic selection against the parthenogenetic locus and univalent inheritance of the region bearing diplospory. These results may have major implications for attempts to manipulate agamospermy for agricultural purposes and for interpreting the evolution of the trait.  相似文献   

17.
Diplosporous apomeiosis, formation of unreduced embryo sacs primarily of the Antennaria type, followed by parthenogenetic embryo development and pseudogamy (fertilization of the central cell) describe gametophytic apomixis within the Tripsacum agamic complex. Tripsacum dactyloides (Eastern gamagrass) is a close relative of domesticated maize and was chosen as a natural model system to investigate gene expression patterns associated with parthenogenesis. The genome size of diploid sexual and polyploid apomictic T. dactyloides was estimated by flow cytometry to be 7.37 pg (2C), 14.74 pg (4C) and 22.39 pg (6C), respectively. The diploid genome size is thus approximately 1.352 larger than that of maize. The apomeiotic-pseudogamous pathway of seed formation was demonstrated at a rate of 92% by the flow cytometric seed screen (FCSS) with single mature seeds in tetraploid accessions. This number includes twin embryos which were detected in 13% of the seeds analyzed. Fertilization of unreduced egg cells (BIII hybrids) was measured in 10% of apomictic seeds. Autonomous (fertilization-independent) embryo development and fertilization-dependent endosperm formation were confirmed by pollination of tetraploid T. dactyloides with a diploid transgenic maize line carrying an actin::#-glucuronidase (GUS) reporter construct. GUS expression was detected after pollination in the developing endosperm, but not in the embryo. In similar intraspecific crossing experiments with maize, GUS expression was detected in both the embryo and endosperm. A protocol was established for microdissection of embryo sacs and early parthenogenetic embryos of T. dactyloides. Together, these techniques provide new tools for future studies aimed at comparing gene expression patterns between sexual maize and sexual or apomictic T. dactyloides.  相似文献   

18.
In apomictic dandelions, Taraxacum officinale, unreduced megaspores are formed via a modified meiotic division (diplospory). The genetic basis of diplospory was investigated in a triploid (3x = 24) mapping population of 61 individuals that segregated approximately 1:1 for diplospory and meiotic reduction. This population was created by crossing a sexual diploid (2x = 16) with a tetraploid diplosporous pollen donor (4x = 32) that was derived from a triploid apomict. Six different inheritance models for diplospory were tested. The segregation ratio and the tight association with specific alleles at the microsatellite loci MSTA53 and MSTA78 strongly suggest that diplospory is controlled by a dominant allele D on a locus, which we have named DIPLOSPOROUS (DIP). Diplosporous plants have a simplex genotype, Ddd or Dddd. MSTA53 and MSTA78 were weakly linked to the 18S-25S rDNA locus. The D-linked allele of MSTA78 was absent in a hypotriploid (2n = 3x - 1) that also lacked one of the satellite chromosomes. Together these results suggest that DIP is located on the satellite chromosome. DIP is female specific, as unreduced gametes are not formed during male meiosis. Furthermore, DIP does not affect parthenogenesis, implying that several independently segregating genes control apomixis in dandelions.  相似文献   

19.
Seed formation in flowering plants requires meiosis of the megaspore mother cell (MMC) inside the ovule, selection of a megaspore that undergoes mitosis to form an embryo sac, and double fertilization to initiate embryo and endosperm formation. During apomixis, or asexual seed formation, in Hieracium ovules, a somatic aposporous initial (AI) cell divides to form a structurally variable aposporous embryo sac and embryo. This entire process, including endosperm development, is fertilization independent. Introduction of reproductive tissue marker genes into sexual and apomictic Hieracium showed that AI cells do not express a MMC marker. Spatial and temporal gene expression patterns of other introduced genes were conserved commencing with the first nuclear division of the AI cell in apomicts and the mitotic initiation of embryo sac formation in sexual plants. Conservation in expression patterns also occurred during embryo and endosperm development, indicating that sexuality and apomixis are interrelated pathways that share regulatory components. The induction of a modified sexual reproduction program in AI cells may enable the manifestation of apomixis in HIERACIUM:  相似文献   

20.
Apomictic seed development in dandelion ( Taraxacum officinale) involves (1) restitutional meiosis (diplospory), (2) egg cell parthenogenesis, and (3) autonomous endosperm development. The question is whether these elements of apomixis are controlled by one single gene or by several independent genes. Five triploid non-apomictic hybrids, obtained in diploid sexual × triploid apomict crosses were characterized using cyto-embryological and genetic methods. Nomarski-differential interference contrast microscopy and the transmission of microsatellite markers and ploidy levels indicated that the hybrids combined elements of the apomictic and the sexual developmental pathway. Hybrids form two complementary groups with respect to the presence or absence of parthenogenesis and autonomous endosperm development. The occurrence of complementary apomixis-recombinants suggests that parthenogenesis and autonomous endosperm development in Taraxacum are regulated independently by different genes. This study also indicates that early embryo development is independent of endosperm formation, but that endosperm is essential for later embryo growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号