首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biofuels from agricultural sources are an important part of California's strategy to reduce greenhouse gas emissions and dependence on foreign oil. Land conversion for agricultural and urban uses has already imperiled many animal species in the state. This study investigated the potential impacts on wildlife of shifts in agricultural activity to increase biomass production for transportation fuels. We applied knowledge of the suitability of California's agricultural landscapes for wildlife species to evaluate wildlife effects associated with plausible scenarios of expanded production of three potential biofuel crops (sugar beets, bermudagrass, and canola). We also generated alternative, spatially explicit scenarios that minimized loss of habitat for the same level of biofuel production. We explored trade‐offs to compare the marginal changes per unit of energy for transportation costs, wildlife, land and water‐use, and total energy produced, and found that all five factors were influenced by crop choice. Sugar beet scenarios require the least land area: 3.5 times less land per liter of gasoline equivalent than bermudagrass and five times less than canola. Canola scenarios had the largest impacts on wildlife but the greatest reduction in water use. Bermudagrass scenarios resulted in a slight overall improvement for wildlife over the current situation. Relatively minor redistribution of lands converted to biofuel crops could produce the same energy yield with much less impact on wildlife and very small increases in transportation costs. This framework provides a means to systematically evaluate potential wildlife impacts of alternative production scenarios and could be a useful complement to other frameworks that assess impacts on ecosystem services and greenhouse gas emissions.  相似文献   

2.
Biochar application to soil is currently widely advocated for a variety of reasons related to sustainability. Typically, soil amelioration with biochar is presented as a multiple‐‘win’ strategy, although it is also associated with potential risks such as environmental contamination. The most often claimed benefits of biochar (i.e. the ‘wins’) include (i) carbon sequestration; (ii) soil fertility enhancement; (iii) biofuel/bioenergy production; (iv) pollutant immobilization; and (v) waste disposal. However, the vast majority of studies ignore possible trade‐offs between them. For example, there is an obvious trade‐off between maximizing biofuel production and maximizing biochar production. Also, relatively little attention has been paid to mechanisms, as opposed to systems impacts, behind observed biochar effects, often leaving open the question as to whether they reflect truly unique properties of biochar as opposed to being simply the short‐term consequences of a fertilization or liming effect. Here, we provide an outline for the future of soil biochar research. We first identify possible trade‐offs between the potential benefits. Second, to be able to better understand and quantify these trade‐offs, we propose guidelines for robust experimental design and selection of appropriate controls that allow both mechanistic and systems assessment of biochar effects and trade‐offs between the wins. Third, we offer a conceptual framework to guide future experiments and suggest guidelines for the standardized reporting of biochar experiments to allow effective between‐site comparisons to quantify trade‐offs. Such a mechanistic and systems framework is required to allow effective comparisons between experiments, across scales and locations, to guide policy and recommendations concerning biochar application to soil.  相似文献   

3.
The outcome of sibling competition for food is often determined by variation in body size within the brood and involves trade‐offs; traits that enhance competitive ability within the nest may be developed at the expense of traits that enable effective flight at fledging, or vice versa. We quantified growth of skeletal, body mass and feather traits in male and female Blue Tit Cyanistes caeruleus nestlings. Males were significantly heavier, had longer tarsi and tended to have greater head–bill lengths than females, whereas females were similar to males in wing flight feather growth. These differences in growth may result from sexual differences in selection of the traits. Females are likely to prioritize feather growth to facilitate synchronized fledging with the rest of the brood, and to enhance escape from predators. We suggest that males are heavier and develop longer tarsi because body size is an important determinant of male reproductive success.  相似文献   

4.
1. Foraging animals are often faced with foods that vary in several important attributes, some of which may be in conflict with one another. For ectothermic animals, food temperature can be an important characteristic, as the consumption of cold foods is metabolically costly. 2. Here, the effect of food temperature on food preferences in the green‐headed ant Rhytidoponera metallica (Smith, 1858) was investigated. The first aim of the study was to determine how food concentration (caloric value) and relative food temperature influenced colony‐level preferences. We found that, all else being equal, green‐headed ant colonies preferred warmer food solutions over colder solutions, and more concentrated food solutions over less concentrated ones. 3. Next, the question of whether green‐head ant colonies could make trade‐offs between temperature and food concentration was tested. It was found that ant colonies switched their preferences in favour of a colder food solution when the colder food solution was 10 times more concentrated than the warmer food solution. 4. These experiments show that temperature is an important characteristic shaping food preferences in ants. Moreover, we show that colonies can make trade‐offs between food concentration and food temperature.  相似文献   

5.
The fitness effect of a mutation can depend on both its genetic background, known as epistasis, and the prevailing external environment. Many examples of these dependencies are known, but few studies consider both aspects in combination, especially as they affect mutations that have been selected together. We examine interactions between five coevolved mutations in eight diverse environments. We find that mutations are, on average, beneficial across environments, but that there is high variation in their fitness effects, including many examples of mutations conferring a cost in some, but not other, genetic background‐environment combinations. Indeed, even when global interaction trends are accounted for, specific local mutation interactions are common and differed across environments. One consequence of this dependence is that the range of trade‐offs in genotype fitness across selected and alternative environments are contingent on the particular evolutionary path followed over the mutation landscape. Finally, although specific interactions were common, there was a consistent pattern of diminishing returns epistasis whereby mutation effects were less beneficial when added to genotypes of higher fitness. Our results underline that specific mutation effects are highly dependent on the combination of genetic and external environments, and support a general relationship between a genotype's current fitness and its potential to increase in fitness.  相似文献   

6.
Most larval drosophilids eat the microorganisms that develop in rotting fruit, a relatively protein‐rich resource. By contrast, the spotted‐wing Drosophila suzukii Matsumara (Diptera: Drosophilidae) uniquely develops in ripening fruit, a protein‐poor, carbohydrate‐rich resource. This shift in larval nutritional niche has led to D. suzukii being a significant agricultural pest in the U.S.A. and Europe. Although occupying a new niche may benefit a species by reducing competition, adaptation in host use may generate trade‐offs affecting fitness. To test the hypothesis that fitness trade‐offs will change with adaptation to novel larval diets, D. suzukii larval development on either a diet of a fresh, ripe blueberry (a natural host) or standard artificial Drosophila media (protein‐rich) is compared and the effect of diet on development time from egg to adult, adult body size and male wing spot area, and female fecundity is assessed. Larval development time differs, with larvae on the blueberry emerging as adults earlier than those on the artificial medium, although other fitness measures do not vary between the two diets. In addition, the faster development time on a blueberry does not trade off with body size as expected, although early fecundity is delayed in females that develop on blueberries. Thus, adaptation to a novel larval diet environment does not come at a cost to the ability to develop in protein‐rich resources.  相似文献   

7.
Recent empirical evidence suggests that trade‐off relationships can evolve, challenging the classical image of their high entrenchment. For energy reliant traits, this relationship should depend on the endocrine system that regulates resource allocation. Here, we model changes in this system by mutating the expression and conformation of its constitutive hormones and receptors. We show that the shape of trade‐offs can indeed evolve in this model through the combined action of genetic drift and selection, such that their evolutionarily expected curvature and length depend on context. In particular, the shape of a trade‐off should depend on the cost associated with resource storage, itself depending on the traded resource and on the ecological context. Despite this convergence at the phenotypic level, we show that a variety of physiological mechanisms may evolve in similar simulations, suggesting redundancy at the genetic level. This model should provide a useful framework to interpret and unify the overly complex observations of evolutionary endocrinology and evolutionary ecology.  相似文献   

8.
Recycling of livestock manure to agricultural land may reduce the use of synthetic fertilizer and thereby enhance the sustainability of food production. However, the effects of substitution of fertilizer by manure on crop yield, nitrogen use efficiency (NUE), and emissions of ammonia (NH3), nitrous oxide (N2O) and methane (CH4) as function of soil and manure properties, experimental duration and application strategies have not been quantified systematically and convincingly yet. Here, we present a meta‐analysis of these effects using results of 143 published studies in China. Results indicate that the partial substitution of synthetic fertilizers by manure significantly increased the yield by 6.6% and 3.3% for upland crop and paddy rice, respectively, but full substitution significantly decreased yields (by 9.6% and 4.1%). The response of crop yields to manure substitution varied with soil pH and experimental durations, with relatively large positive responses in acidic soils and long‐term experiments. NUE increased significantly at a moderate ratio (<40%) of substitution. NH3 emissions were significantly lower with full substitution (62%–77%), but not with partial substitution. Emissions of CH4 from paddy rice significantly increased with substitution ratio (SR), and varied by application rates and manure types, but N2O emissions decreased. The SR did not significantly influence N2O emissions from upland soils, and a relative scarcity of data on certain manure characteristic was found to hamper identification of the mechanisms. We derived overall mean N2O emission factors (EF) of 0.56% and 0.17%, as well as NH3 EFs of 11.1% and 6.5% for the manure N applied to upland and paddy soils, respectively. Our study shows that partial substitution of fertilizer by manure can increase crop yields, and decrease emissions of NH3 and N2O, but depending on site‐specific conditions. Manure addition to paddy rice soils is recommended only if abatement strategies for CH4 emissions are also implemented.  相似文献   

9.
Defining sustainability goals is a crucial but difficult task because it often involves the quantification of multiple interrelated and sometimes conflicting components. This complexity may be exacerbated by climate change, which will increase environmental vulnerability in aquaculture and potentially compromise the ability to meet the needs of a growing human population. Here, we developed an approach to inform sustainable aquaculture by quantifying spatio‐temporal shifts in critical trade‐offs between environmental costs and benefits using the time to reach the commercial size as a possible proxy of economic implications of aquaculture under climate change. Our results indicate that optimizing aquaculture practices by minimizing impact (this study considers as impact a benthic carbon deposition ≥ 1 g C m?2 day?1) will become increasingly difficult under climate change. Moreover, an increasing temperature will produce a poleward shift in sustainability trade‐offs. These findings suggest that future sustainable management strategies and plans will need to account for the effects of climate change across scales. Overall, our results highlight the importance of integrating environmental factors in order to sustainably manage critical natural resources under shifting climatic conditions.  相似文献   

10.
In nature, organisms are simultaneously exposed to multiple stresses (i.e. complex environments) that often fluctuate unpredictably. Although both these factors have been studied in isolation, the interaction of the two remains poorly explored. To address this issue, we selected laboratory populations of Escherichia coli under complex (i.e. stressful combinations of pH, H2O2 and NaCl) unpredictably fluctuating environments for ~900 generations. We compared the growth rates and the corresponding trade‐off patterns of these populations to those that were selected under constant values of the component stresses (i.e. pH, H2O2 and NaCl) for the same duration. The fluctuation‐selected populations had greater mean growth rate and lower variation for growth rate over all the selection environments experienced. However, whereas the populations selected under constant stresses experienced trade‐offs in the environments other than those in which they were selected, the fluctuation‐selected populations could bypass the across‐environment trade‐offs almost entirely. Interestingly, trade‐offs were found between growth rates and carrying capacities. The results suggest that complexity and fluctuations can strongly affect the underlying trade‐off structure in evolving populations.  相似文献   

11.
Survival through periods of resource scarcity depends on the balance between metabolic demands and energy storage. The opposing effects of predation and starvation mortality are predicted to result in trade‐offs between traits that optimize fitness during periods of resource plenty (e.g., during the growing season) and those that optimize fitness during periods of resource scarcity (e.g., during the winter). We conducted a common environment experiment with two genetically distinct strains of rainbow trout to investigate trade‐offs due to (1) the balance of growth and predation risk related to foraging rate during the growing season and (2) the allocation of energy to body size prior to the winter. Fry (age 0) from both strains were stocked into replicate natural lakes at low and high elevation that differed in winter duration (i.e., ice cover) by 59 days. Overwinter survival was lowest in the high‐elevation lakes for both strains. Activity rate and growth rate were highest at high elevation, but growing season survival did not differ between strains or between environments. Hence, we did not observe a trade‐off between growth and predation risk related to foraging rate. Growth rate also differed significantly between the strains across both environments, which suggests that growth rate is involved in local adaptation. There was not, however, a difference between strains or between environments in energy storage. Hence, we did not observe a trade‐off between growth and storage. Our findings suggest that intrinsic metabolic rate, which affects a trade‐off between growth rate and overwinter survival, may influence local adaptation in organisms that experience particularly harsh winter conditions (e.g., extended periods trapped beneath the ice in high‐elevation lakes) in some parts of their range.  相似文献   

12.
With the human population expected to near 10 billion by 2050, and diets shifting towards greater per‐capita consumption of animal protein, meeting future food demands will place ever‐growing burdens on natural resources and those dependent on them. Solutions proposed to increase the sustainability of agriculture, aquaculture, and capture fisheries have typically approached development from single sector perspectives. Recent work highlights the importance of recognising links among food sectors, and the challenge cross‐sector dependencies create for sustainable food production. Yet without understanding the full suite of interactions between food systems on land and sea, development in one sector may result in unanticipated trade‐offs in another. We review the interactions between terrestrial and aquatic food systems. We show that most of the studied land–sea interactions fall into at least one of four categories: ecosystem connectivity, feed interdependencies, livelihood interactions, and climate feedback. Critically, these interactions modify nutrient flows, and the partitioning of natural resource use between land and sea, amid a backdrop of climate variability and change that reaches across all sectors. Addressing counter‐productive trade‐offs resulting from land‐sea links will require simultaneous improvements in food production and consumption efficiency, while creating more sustainable feed products for fish and livestock. Food security research and policy also needs to better integrate aquatic and terrestrial production to anticipate how cross‐sector interactions could transmit change across ecosystem and governance boundaries into the future.  相似文献   

13.
Plant reproductive trade‐offs are thought to be caused by resource limitations or other constraints, but more empirical support for these hypotheses would be welcome. Additionally, quantitative characterization of these trade‐offs, as well as consideration of whether they are linear, could yield additional insights. We expanded our flower removal research on lowbush blueberry (Vaccinium angustifolium) to explore the nature of and causes of its reproductive trade‐offs. We used fertilization, defoliation, positionally biased flower removal, and multiple flower removal levels to discern why reproductive trade‐offs occur in this taxon and to plot these trade‐offs along two continuous axes. We found evidence through defoliation that vegetative mass per stem may trade off with reproductive effort in lowbush blueberry because the two traits compete for limited carbon. Also, several traits including ripe fruit production per reproductive node and fruit titratable acidity may be “sink‐limited”—they decline with increasing reproductive effort because average reproductive structure quality declines. We found no evidence that reproductive trade‐offs were caused by nitrogen limitation. Use of reproductive nodes remaining per stem as a measure of reproductive effort indicated steeper trade‐offs than use of the proportion of nodes remaining. For five of six traits, we found evidence that the trade‐off could be concave down or up instead of strictly linear. Synthesis. To date, studies have aimed primarily at identifying plant reproductive trade‐offs. However, understanding how and why these trade‐offs occur represent the exciting and necessary next steps for this line of inquiry.  相似文献   

14.
In seasonal environments with limited time and energy resources, double‐brooded birds face trade‐offs in the timing of their two reproductive attempts and in the effort allocated to the first and the second broods. In the Barn Swallow Hirundo rustica a long care period for the first brood enhances the survival of first‐brood chicks, but also delays the start of the second brood, which in turn reduces the survival prospects of second‐brood chicks. Probably as a response to this trade‐off, double‐brooded Barn Swallows reduce the period of post‐fledging care for first‐brood fledglings. By radiotracking whole families, we investigated the determinants of this behaviour and its consequences for the survival of the first‐brood fledglings. The end of the females’ investment in post‐fledging care of the first brood was related to the beginning of egg synthesis for the second clutch. With the start of egg synthesis, females significantly reduced provisioning rates to the first‐brood fledglings to less than one‐fifth of the previous rates, while the proportion of time they spent foraging remained high. Assuming that the females’ foraging success was constant, we conclude that their energy income was allocated to egg production rather than fledgling provision. Males did not compensate for the females’ reduced feeding rates. Thus the start of egg production for the second clutch had a marked effect on the quantity of food received by first‐brood fledglings. In parallel with the changes in parental behaviour and provisioning rates, we observed a marked drop in the daily survival rate of first‐brood chicks. These results support the hypothesis that females face a strong trade‐off in the allocation of energy to subsequent broods. Energy allocation to a second clutch involves a cost in terms of reduced provisioning, and as a result the survival of first‐brood chicks is compromised. This is probably outweighed by the improved success of an early second brood.  相似文献   

15.
The trade‐off between offspring size and number is a central component of life‐history theory, postulating that larger investment into offspring size inevitably decreases offspring number. This trade‐off is generally discussed in terms of genetic, physiological or morphological constraints; however, as among‐individual differences can mask individual trade‐offs, the underlying mechanisms may be difficult to reveal. In this study, we use multivariate analyses to investigate whether there is a trade‐off between offspring size and number in a population of sand lizards by separating among‐ and within‐individual patterns using a 15‐year data set collected in the wild. We also explore the ecological and evolutionary causes and consequences of this trade‐off by investigating how a female's resource (condition)‐ vs. age‐related size (snout‐vent length) influences her investment into offspring size vs. number (OSN), whether these traits are heritable and under selection and whether the OSN trade‐off has a genetic component. We found a negative correlation between offspring size and number within individual females and physical constraints (size of body cavity) appear to limit the number of eggs that a female can produce. This suggests that the OSN trade‐off occurs due to resource constraints as a female continues to grow throughout life and, thus, produces larger clutches. In contrast to the assumptions of classic OSN theory, we did not detect selection on offspring size; however, there was directional selection for larger clutch sizes. The repeatabilities of both offspring size and number were low and we did not detect any additive genetic variance in either trait. This could be due to strong selection (past or current) on these life‐history traits, or to insufficient statistical power to detect significant additive genetic effects. Overall, the findings of this study are an important illustration of how analyses of within‐individual patterns can reveal trade‐offs and their underlying causes, with potential evolutionary and ecological consequences that are otherwise hidden by among‐individual variation.  相似文献   

16.
Energy allocation theory predicts that a lactating female should alter the energetic demands of its organ systems in a manner that maximizes nutrient allocation to reproduction while reducing nutrient use for tasks that are not vital to immediate survival. We posit that organ‐specific plasticity in the function of mitochondria plays a key role in mediating these energetic trade‐offs. The goal of this project was to evaluate mitochondrial changes that occur in response to lactation in two of the most energetically demanding organs in the body of a rodent, the liver and skeletal muscle. This work was conducted in wild‐derived house mice (Mus musculus) kept in seminatural enclosures that allow the mice to maintain a natural social structure and move within a home range size typical of wild mice. Tissues were collected from females at peak lactation and from age‐matched nonreproductive females. Mitochondrial respiration, oxidative damage, antioxidant, PGC‐1α, and uncoupling protein levels were compared between lactating and nonreproductive females. Our findings suggest that both liver and skeletal muscle downregulate specific antioxidant proteins during lactation. The liver, but not skeletal muscle, of lactating females displayed higher oxidative damage than nonreproductive females. The liver mass of lactating females increased, but the liver displayed no change in mitochondrial respiratory control ratio. Skeletal muscle mass and mitochondrial respiratory control ratio were not different between groups. However, the respiratory function of skeletal muscle did vary among lactating females as a function of stage of concurrent pregnancy, litter size, and mass of the mammary glands. The observed changes are predicted to increase the efficiency of skeletal muscle mitochondria, reducing the substrate demands of skeletal muscle during lactation. Differences between our results and prior studies highlight the role that an animals’ social and physical environment could play in how it adapts to the energetic demands of reproduction.  相似文献   

17.
Physiology, physics, and ecological interactions can generate trade‐offs within species, but may also shape divergence among species. We tested whether signal divergence in Oecanthus tree crickets is shaped by acoustic, energetic, and behavioral trade‐offs. We found that species with faster pulse rates, produced by opening and closing wings up to twice as many times per second, did not have higher metabolic costs of calling. The relatively constant energetic cost across species is explained by trade‐offs between the duration and repetition rate of acoustic signals—species with fewer stridulatory teeth closed their wings more frequently such that the number of teeth struck per second of calling and the resulting duty cycle were relatively constant across species. Further trade‐offs were evident in relationships between signals and body size. Calling was relatively inexpensive for small males, permitting them to call for much of the night, but at low amplitude. Large males produced much louder calls, reaching up to four times more area, but the energetic costs increased substantially with increasing size and the time spent calling dropped to only 20% of the night. These trade‐offs indicate that the trait combinations that arise in these species represent a limited subset of conceivable trait combinations.  相似文献   

18.
The characterization of biochar has been predominantly focused around determining physicochemical properties including chemical composition, porosity and volatile content. To date, little systematic research has been done into assessing the properties of biochar that directly relate to its function in soil and how production conditions could impact these. The aim of this study was to evaluate how pyrolysis conditions can influence biochar's potential for soil enhancing benefits by addressing key soil constraints, and identify potential synergies and restrictions. To do this, biochar produced from pine wood chips (PC), wheat straw (WS) and wheat straw pellets (WSP) at four highest treatment temperatures (HTT) (350, 450, 550 and 650 °C) and two heating rates (5 and 100 °C min?1) were analysed for pH, extractable nutrients, cation exchange capacity (CEC), stable‐C content and labile‐C content. Highest treatment temperature and feedstock selection played an important role in the development of biochar functional properties while overall heating rate (in the range investigated) was found to have no significant effect on pH, stable‐C or labile‐C concentrations. Increasing the HTT reduced biochar yield and labile‐C content while increasing the yield of stable‐C present within biochar. Biochar produced at higher HTT also demonstrated a higher degree of alkalinity improving biochar's ability to increase soil pH. The concentration of extractable nutrients was mainly affected by feedstock selection while the biochar CEC was influenced by HTT, generally reaching its highest values between 450–550 °C. Biochar produced at ≥550 °C showed high combined values for C stability, pH and CEC while lower HTTs favoured nutrient availability. Therefore attempts to maximize biochar's C sequestration potential could reduce the availability of biochar nutrients. Developing our understanding of how feedstock selection and processing conditions influence key biochar properties can be used to refine the pyrolysis process and design of ‘bespoke biochar’ engineered to deliver specific environmental functions.  相似文献   

19.
Understanding how populations and communities respond to competition is a central concern of ecology. A seminal theoretical solution first formalised by Levins (and re‐derived in multiple fields) showed that, in theory, the form of a trade‐off should determine the outcome of competition. While this has become a central postulate in ecology it has evaded experimental verification, not least because of substantial technical obstacles. We here solve the experimental problems by employing synthetic ecology. We engineer strains of Escherichia coli with fixed resource allocations enabling accurate measurement of trade‐off shapes between bacterial survival and multiplication in multiple environments. A mathematical chemostat model predicts different, and experimentally verified, trajectories of gene frequency changes as a function of condition‐specific trade‐offs. The results support Levins' postulate and demonstrates that otherwise paradoxical alternative outcomes witnessed in subtly different conditions are predictable.  相似文献   

20.
Animals select resources to maximize fitness but associated costs and benefits are spatially and temporally variable. Differences in wetland management influence resource availability for ducks and mortality risk from duck hunting. The local distribution of the Mallard (Anas platyrhynchos) is affected by this resource heterogeneity and variable risk from hunting. Regional conservation strategies primarily focus on how waterfowl distributions are affected by food resources during the nonbreeding season. To test if Mallard resource selection was related to the abundance of resources, risks, or a combination, we studied resource selection of adult female Mallards during autumn and winter. We developed a digital spatial layer for Lake St. Clair, Ontario, Canada, that classified resources important to Mallards and assigned these resources a risk level based on ownership type and presumed disturbance from hunting. We monitored 59 individuals with GPS back‐pack transmitters prior to, during, and after the hunting season and used discrete choice modeling to generate diurnal and nocturnal resource selection estimates. The model that classified available resources and presumed risk best explained Mallard resource selection strategies. Resource selection varied within and among seasons. Ducks selected for federal, state and private managed wetland complexes that provided an intermediate or relatively greater amount of refuge and foraging options than public hunting areas. Across all diel periods and seasons, there was selection for federally managed marshes and private supplemental feeding refuges that prohibited hunting. Mallard resource selection demonstrated trade‐offs related to the management of mortality risk, anthropogenic disturbances, and foraging opportunities. Understanding how waterfowl respond to heterogeneous landscapes of resources and risks can inform regional conservation strategies related to waterfowl distribution during the nonbreeding season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号