首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The structure of ovaries has been analysed in advanced aphids only. In this paper we report the results of ultrastructural studies on the ovarioles of Adelges laricis, a representative of the primitive aphid family, Adelgidae. The ovaries of the studied species are composed of five telotrophic‐meroistic ovarioles that are subdivided into a terminal filament, tropharium (= trophic chamber) and vitellarium. The tropharium houses trophocytes (= nurse cells) and arrested oocytes. The vitellarium consists of one or two ovarian follicles. The total number of germ cells (trophocytes + oocytes) in the ovarioles analysed varies from 50 to 92 and is substantially higher than in previously studied aphids. The centre of the tropharium is occupied by a cell‐free region, termed a trophic core, which is connected both with trophocytes and oocytes. Trophocytes are connected to the core by means of cytoplasmic strands, whereas oocytes by nutritive cords. Both trophic core and nutritive cords are filled with parallel arranged microtubules. In the light of obtained results the anagenesis of hemipteran ovaries is discussed.  相似文献   

2.
Telotrophic ovarioles of scale insects are subdivided into tropharia (=trophic chambers) and vitellaria that contain single developing oocytes. Tropharium encloses trophocytes (=nurse cells) and arrested oocytes. The central area of the tropharium, termed the trophic core, is devoid of cells. Both trophocytes and oocytes are connected to the trophic core: trophocytes by cytoplasmic processes, oocytes by means of nutritive cords. The trophic core, processes and nutritive cords are filled with bundles of microtubules. The trophocytes contain large lobated nuclei with giant nucleoli. Fluorescent labelling with DAPI has shown that trophocyte nuclei are characterized by high contents of DNA. In the cortical cytoplasm of trophocytes, numerous microfilaments are present. The developing oocyte is surrounded by a simple follicular epithelium. The cortical cytoplasm of follicular cells contains numerous microtubules and microfilaments.  相似文献   

3.
The ovaries of Orthezia urticae and Newsteadia floccosa are paired and composed of numerous short ovarioles. Each ovariole consists of an anterior trophic chamber and a posterior vitellarium that contains one developing oocyte. The trophic chamber contains large nurse cells (trophocytes) and arrested oocytes. The total number of germ cells per ovariole (i.e., cluster) is variable, but it is always higher than 32 and less than 64. This suggests that five successive mitotic cycles of a cystoblast plus additional divisions of individual cells are responsible for the generation of the cluster. Cells of the trophic chamber maintain contact with the oocyte via a relatively broad nutritive cord. The trophic chamber and oocyte are surrounded by somatic cells that constitute the inner epithelial sheath around the former and the follicular epithelium around the latter. Anagenesis of hemipteran ovarioles is discussed in relation to the findings presented. © 1995 Wiley-Liss, Inc.  相似文献   

4.
The ultra- and microstructure of the female reproductive system of Matsucoccus matsumurae was studied using light microscopy, scanning and transmission electron microscopy. The results revealed that the female reproductive system of M. matsumurae is composed of a pair of ovaries, a common oviduct, a pair of lateral oviducts, a spermatheca and two pairs of accessory glands. Each ovary is composed of approximately 50 telotrophic ovarioles that are devoid of terminal filaments. Each ovariole is subdivided into an apical tropharium, a vitellarium and a short pedicel connected to a lateral oviduct. The tropharium contains 8–10 trophocytes and two early previtellogenic oocytes termed arrested oocytes. The trophocytes degenerate after egg maturation, and the arrested oocytes are capable of further development. The vitellarium contains 3–6 oocytes of different developmental stages: previtellogenesis, vitellogenesis and choriogenesis. The surface of the vitellarium is rough and composed of a pattern of polygonal reticular formations with a center protuberance. The oocyte possesses numerous yolk spheres and lipid droplets, and is surrounded by a mono-layered follicular epithelium that becomes binucleate at the beginning of vitellogenesis. Accessory nuclei are observed in the peripheral ooplasm during vitellogenesis.  相似文献   

5.
The paired ovaries of young larva of the 3rd instar of Orthezia urticae are filled with numerous germ cell clusters that can be regarded as ovariole anlagen. Germ cells (cystocytes) belonging to one cluster form a rosette, in the centre of which a polyfusome occurs. Staining with rhodamine-phalloidin has revealed that polyfusomes contain numerous microfilaments. The number of cystocytes per cluster is not stable and varies considerably. The ovaries of older larva become elongated with numerous young ovarioles protruding into the body cavity. The ovarioles are not subdivided into the tropharium and vitellarium. In this stage germ cells differentiate into oocytes and trophocytes (nurse cells). The ovaries of adult females are composed of about 20 (Newsteadia floccosa) or 30 (O. urticae) ovarioles. Their trophic chambers contain trophocytes and arrested oocytes. In the vitellarium, at the given moment, only one oocyte develops. It has been observed that after maturation of the first egg the arrested oocytes may develop.  相似文献   

6.
Ovaries of phylloxerids consist of short telotrophic ovarioles. Ovaries of wingless morphs contain four ovarioles whereas those of winged morphs contain one or two ovarioles. The individual ovariole of the adult female is differentiated into a terminal filament, trophic chamber (tropharium), vitellarium and short ovariole stalk (pedicel). The number of germ cells constituting ovarioles is not stable and ranges between 49 and 64. The tropharia enclose individual trophocytes and arrested oocytes. The vitellaria contain usually two oocytes, which develop through three stages: previtellogenesis, vitellogenesis and choriogenesis. Endosymbiotic microorganisms do not occur in the germ cells. In the light of the obtained results, the phylogenetic relationships between aphid families are discussed.  相似文献   

7.
Telotrophic ovariole of Raphidia spp. is composed of the anteriorly located terminal filament, tube-shaped tropharium, the vitellarium and the ovariole stalk. The tropharium consists of a central syncytial core surrounded by one cell thick layer of tapetum cells. Early previtellogenic oocytes differentiate at the base of tropharium. Both the oocytes and the tapetum cells are connected with the central syncytium by delicate intercellular bridges. At the onset of previtellogenic growth, the anterior parts of the oocytes become extended and form long cytoplasmic projections--nutritive cords. Each nutritive cord contains numerous microtubules that show no preferential orientation within the cord but diminishing anterior-posterior gradient of distribution. Irregular arrangement of microtubules indicates that this cytoskeletal scaffold does not play any role in directed transport within the ovariole but instead constitutes one of the elements of the structural framework of the nutritive cord. Besides microtubules, the stability of the nutritive cords in Raphidia ovarioles is maintained by the rim-shaped membrane foldings lined with microfilaments.  相似文献   

8.
The structure of aphid ovaries, including ovipare and virginopare morphs of five species, was investigated by light and electron microscopy. Aphids contain telotrophic meroistic ovarioles. The amount and distribution of cytoplasmic components of nurse cells, nutritive cords, and young oocytes are nearly identical to those known from scale insects and heteropterans. Each ovariole has a constant number of nurse cells and oocytes. In ovaries of ovipare morphs, the nurse cell nuclei enlarge by endomitosis (n = 28n?210n), whereas in virginopare morphs the nurse cell nuclei remain small (n = 22n?24n). Furthermore, in virginoparae the previtellogenic growth of oocytes is highly reduced, and vitellogenesis and chorionogenesis are blocked totally. Embryogenesis starts immediately after the shortened previtellogenic growth. In each ovariole, all germ cell descendants belong to one germ cell cluster that follows the 2n rule. The cluster normally contains 25 = (32) cells, but other mostly smaller numbers also occur. In contrast to polytrophic meroistic ovarioles, more than one cell of each cluster will develop into an oocyte. In Drepanosiphum platanoides, 16 (2n?1) nurse cells and 16 (2n?1) oocytes exist in each cluster, whereas, in Metopolophium dirhodum, 8 (2n?2) oocytes and 24 (2n?1 + 2n?2) nurse cells are normally found. In many ovarioles of Macrosiphum rosae, 21 nurse cells nourish 11 oocytes. Models of germ cell cluster formation in aphid ovaries are discussed.  相似文献   

9.
Histochemical and electron microscopic methods have revealed that there are four types of cell inclusions in the late vitellogenic oocytes of Oncopeltus. (a) Type 1 is a vacuole which seems to be contributed from the tropharium via the nutritive tubes. It is suggested that this type consists partly at least of nucleolus-like material (ribonucleoprotein) emitted from the nuclei of the Zone III trophocytes. (b) Type 2 is lipid yolk which in early stage oocytes seems to be produced in the “Balbiani body.” In the vitellogenic oocytes these lipid spheres are apparently imported by the oocyte from the haemolymph either through the follicle cells, or through the extracellular space in the follicular epithelium. (c) Type 3 is carbohydrate/protein yolk where at least part of the protein (“vitellogenic protein”) is taken up from the haemolymph, transported through the extracellular space in the follicular epithelium, and deposited into the oocyte by pinocytosis. (d) Glycogen is deposited from the early phases of vitellogenesis. The tropharium may contribute, besides Type 1 vacuoles, ribosomes, mitochondria, stacks of annulated lamellae, and “food vacuoles” to the oocytes. Specialized cells which line the tropharium and send projections toward the trophic core have been called “peripheral trophocytes.” Contrary to the regular trophocytes, they contain glycogen and an abundance of Golgi complexes.  相似文献   

10.
The developing ovaries of S. quercus contain a limited number of oogonial cells which undergo a series of incomplete mitotic divisions resulting in the formation of clusters of cystocytes. Ovaries of viviparous generations contain 6 to 9 clusters, containing 32 cystocytes each, whereas ovaries of oviparous generations contain 5 clusters containing 45-60 cystocytes. During further development, clusters become surrounded by a single layer of follicular cells, and within each cluster the cystocytes differentiate into oocytes and trophocytes (nurse cells). Concurrently, cysts transform into ovarioles. The anterior part of the ovariole containing the trophocytes becomes the tropharium, whereas its posterior part containing oocytes transforms into the vitellarium. The vitellaria of viviparous females are composed of one or two oocytes, which develop until previtellogenesis. The nuclei of previtellogenic oocytes enter cycles of mitotic divisions which lead to the formation of the embryo. Ovarioles of oviparous females contain a single oocyte which develops through three stages: previtellogenesis, vitellogenesis and choriogenesis. The ovaries are accompanied by large cells termed bacteriocytes which harbor endosymbiotic microorganisms.  相似文献   

11.
The fine structure of the female gonad of Varroa jacobsoni is described. There are two components: the ovary proper and the so-called lyrate organ. The ovary is the place where oocytes mature, embedded in a supporting tissue composed of two cell types: somacells 1 and somacells 2. The lyrate organ has a nutrimentary function and is comprised of two components: supporting cells and nutritive tissue. The supporting cells are similar to the somacells 2 in that they contain abundant microtubules. The nutritive tissue is an extensive syncytium. It is connected with the oocytes via intercellular bridges, the nutritive cords. Oocytes and nutritive tissue are thought to have derived from common stem cells. From fine structural evidence it is concluded that ribosomes are one of the most important components to be transported via the nutritive cords into the oocytes. However, an increase in number of mitochondria in the middle-stage oocytes may also be a consequence of transport of these organelles from the nutritive tissue into the oocytes. Further characteristics make plausible that the interdependences of oocytes and nutritive tissue are comparable to those found in meroistic ovarioles of insects. The somatic components do not seem to be as important as the follicle cells of insects, however. It is assumed that the evolution of a nutrimentary oogenesis speeds up embryogenesis. Thus, the differentiation of the female gonad of Varroa jacobsoni may have facilitated the species' adaptation to a development completed in a short and limited time within the shelter of the covered brood cell of the bee.  相似文献   

12.
The ovaries of aphids belonging to the families Eriosomatidae, Anoeciidae, Drepanosiphidae, Thelaxidae, Aphididae, and Lachnidae were examined at the ultrastructural level. The ovaries of these aphids are composed of several telotrophic ovarioles. The individual ovariole is differentiated into a terminal filament, tropharium, vitellarium, and pedicel (ovariolar stalk). Terminal filaments of all ovarioles join together into the suspensory ligament, which attaches the ovary to the lobe of the fat body. The tropharium houses individual trophocytes and early previtellogenic oocytes termed arrested oocytes. Trophocytes are connected with the central part of the tropharium, the trophic core, by means of broad cytoplasmic processes. One or more oocytes develop in the vitellarium. Oocytes are surrounded by a single layer of follicular cells, which do not diversify into distinct subpopulations. The general organization of the ovaries in oviparous females is similar to that of the ovaries in viviparous females, but there are significant differences in their functioning: (1) in viviparous females, all ovarioles develop, whereas in oviparous females, some of them degenerate; (2) the number of germ cells per ovariole is usually greater in females of the oviparous generation than in females of viviparous generations; (3) in oviparous females, oocytes in the vitellarium develop through three stages (previtellogenesis, vitellogenesis, and choriogenesis), whereas in viviparous females, the development of oocytes stops after previtellogenesis; and (4) in the oocyte cytoplasm of oviparous females, lipid droplets and yolk granules accumulate, whereas in viviparous females, oocytes accrue only lipid droplets. Our results indicate that a large number of germ cells per ovariole represent the ancestral state within aphids. This trait may be helpful in inferring the phylogeny of Aphidoidea.  相似文献   

13.
The paired, spindle-shaped ovaries of the second instar of the Polish cochineal, Porphyrophora polonica (L.) (Hemiptera: Coccinea) are filled with cystocytes that are arranged into rosettes. In the centre of each rosette, there is a polyfusome. During the third instar, cystocytes differentiate into oocytes and trophocytes (nurse cells) and ovarioles are formed. Ovaries of adult females are composed of about 300 ovarioles of the telotrophic type. Each of them is subdivided into a tropharium (trophic chamber) and vitellarium. The tropharium consists of trophocytes and arrested oocytes that may develop. The number of germ cells in the trophic chambers varies from 11 to 18 even between the ovarioles of the same ovary. The obtained results seem to confirm the concept of a monophyletic origin of the primitive scale insects (Archaeococcoidea).  相似文献   

14.
The telotrophic ovary of Epilachna vigintioctopunctata is composed of 32-40 ovarioles, each with an apical germarium and a basal vitellarium. The germarium encloses mononucleate and binucleate trophocytes, prefollicular tissue and oogonia, while the vitellarium contains 2-5 oocytes arranged in order of maturity. Definite nutritive cords are absent. When females are exposed to 75 mg 4,4,6-trimethyl-1h, 4H-pyrimidine-2-thiol by contact, the trophocytes and the follicular epithelial cells disintegrate to form dark-staining clumps and thus fail to supply nourishment to the developing oocytes, which consequently remain yolk-less and are ultimately reduced to shrunken masses.  相似文献   

15.
The ovaries of female lac insects, Kerria chinensis Mahd (Sternorrhyncha: Coccoidea: Kerridae), at the last nymphal stage are composed of several balloon‐like clusters of cystocytes with different sizes. Each cluster consists of several clusters of cystocytes arranging in rosette forms. At the adult stage, the pair of ovaries consists of about 600 ovarioles of the telotrophic‐meroistic type. An unusual feature when considering most scale insects is that the lateral oviducts are highly branched, each with a number of short ovarioles. Each ovariole is subdivided into an anterior trophic chamber (tropharium) containing six or seven large trophocytes and a posterior vitellarium harbouring one oocyte which is connected with the trophic chamber via a nutritive cord. No terminal filament is present. Late‐stage adult females show synchronized development of the ovarioles, while in undernourished females, a small proportion of ovarioles proceed to maturity.  相似文献   

16.
The ovary in Callosobruchus analis consists of telotrophic ovarioles with the so called nurse cells confined to one chamber at the anterior end of the ovariole. There are three types of lipids in the ovary: (1) L1 bodies that are present in the early oocytes, in the posterior prefollicular tissue and in the follicular epithelium and contain unsaturated phospholipids; (2) L2 bodies that have a complete or incomplete sheath of phospholipids and a triglyceride core; (3) L3 bodies that are formed of highly saturated triglycerides. Lipids are absent from the trophic tissue. In a mature oocyte the L1 and L2 bodies are cortical in distribution while the L3 bodies are centrally located. The mitochondria contain lipoproteins with RNA. The yolk spheres are acid mucopolysaccharides and protein in nature. The precursors of the yolk spheres appear first in the cortical coplasm and are absent from the follicular epithelium or the trophic tissue. The nucleolus of the oocyte shows evidence of extrusions that are believed to pass into the ooplasm. There are no nutritive cords connecting the trophic tissue to the oocytes; nor is there any evidence of any histochemically demonstrable nutritive material being contributed to the oocyte by the trophic tissue. The circumstantial evidence points towards a contribution of the raw materials to the oocyte by the haemolymph either through or in between the follicular epithelium in some soluble form or as submicroscopic particles.  相似文献   

17.
Marchalina hellenica (Gennadius) (Hemiptera: Margarodidae) is a scale insect, endemic in pine (Pinus halepensis) forests of Greece and other Mediterranean countries, which plays a major role in the production of honeydew honey. We investigated the morphological and the biological characteristics of M. hellenica in the pine forests of Mt. Parnis in comparison with those in the high-altitude fir (Abies cephalonica) forest of Mt. Helmos where it has been recently established, after anthropogenic intervention. Morphologically, the final body size of the 1st instar and the adult stages of M. hellenica in the fir forest were equal to those in the pine forest. Biologically, in the fir forest, the insect exhibited a long 1st instar’s period, which was the stage of its overwintering. In the pine forest, the 1st instar period was short and the insect overwinters in the stage of 2nd instar. The number of eggs per female in the fir forest was quite low (25–145) compared with the number of eggs in the pine forest (200–300). Concerning the qualitative parameters of the resulting honeydew-honey, statistically significant differences were found in Diastase and HMF (p < 0.0001). No difference was found in sucrose, fructose + glucose and water content, neither to electrical conductivity and total acidity. All values were within the EU limits (EU Directive 2001).  相似文献   

18.
Hymenopteran insects have meroistic polytrophic ovaries characterised by trophocytes associated with oocytes inside the follicles. In pro-ovigenic species, all oocytes mature before emergence and no trace of oogenesis is visible in adult females. Pro-ovigeny is a rare condition among Hymenoptera, but common in pollinating fig wasps. In the present investigation, we studied adult and pupa females of three fig wasp species with different trophic strategies. We demonstrated that females of Pegoscapus aerumnosus and Idarnes spp. have an unusual ovarian organisation (i.e. each ovariole has only one mature egg and no oocyte) that has led to misleading interpretation of fig wasp reproductive anatomy. The ovaries of these studied species have several ovarioles, recognisable by the presence of nuclei of tunica propria cells surrounding them. Each adult wasp ovariole had one mature egg. None of the pupae had mature eggs, but all of them had follicles with oocytes in different developmental stages. The studied fig wasps are pro-ovigenic, irrespective of their trophic strategy, since there were no signs of ovigeny in adult females. We discuss ecological and phylogenetic factors that could play a role in fig wasps reproductive strategies.  相似文献   

19.
Germ line cell cluster formation in ovarioles of three different stages, each from a different mayfly species, was studied using ultra-thin serial sectioning. In the analysed ovariole of Cloeön sp., only one linear, zigzag germ line cell cluster was found, consisting of sibling cells connected by intercellular bridges which represent remnants of preceding synchronized mitotic cycles followed by incomplete cytokinesis. A polyfusome stretched through all sibling cells. At the tip of the ovariole, cytokinesis occurred without preceding division of nuclei; thus, intercellular bridges were lined up but the remaining cytoplasm between the bridges had no nuclei. The analysed Siphlonurus armatus vitellarium contained five oocytes at different stages of development. Each oocyte in the vitellarium was connected via a nutritive cord to the linear cluster of its sibling cells in the terminal trophic chamber. Each cluster had the same architecture as was found in Cloëon. The 3-dimensional arrangement and distribution of closed intercellular bridges strongly suggest that all five clusters are derived from a single primary clone. The position of oocytes within each cluster is random. However, each oocyte is embraced by follicular or prefollicular cells whilst all other sibling cells are enclosed by somatic inner sheath cells, clearly distinguishable from prefollicular cells. In the analysed ovariole of Ephemerella ignita, two small linear clusters were found in the tropharium beside two single cells, two isolated cytoplasmic bags with intercellular bridges but no nuclei, and some degenerating aggregates. One cluster was still connected to a growing oocyte via a nutritive cord. In all species the nurse cells remained small and no indications of polyploidization were found. We suggest that this ancient and previously unknown telotrophic meroistic ovary has evolved directly from panoistic ancestors.  相似文献   

20.
In Hirudo medicinalis and Haemopis sanguisuga, two convoluted ovary cords are found within each ovary. Each ovary cord is a polarized structure composed of germ cells (oogonia, developing oocytes, nurse cells) and somatic cells (apical cell, follicular cells). One end of the ovary cord is club-shaped and comprises one huge apical cell, numerous oogonia, and small cysts (clusters) of interconnected germ cells. The main part of the cord contains fully developed cysts composed of numerous nurse cells connected via intercellular bridges with the cytophore, which in turn is connected by a cytoplasmic bridge with the growing oocyte. The opposite end of the cord degenerates. Cord integrity is ensured by flattened follicular cells enveloping the cord; moreover, inside the cord, some follicular cells (internal follicular cells) are distributed among germ cells. As oogenesis progresses, the growing oocytes gradually protrude into the ovary lumen; as a result, fully developed oocytes arrested in meiotic metaphase I float freely in the ovary lumen. This paper describes the successive stages of oogenesis of H. medicinalis in detail. Ovary organization in Hirudinea was classified within four different types: non-polarized ovary cords were found in glossiphoniids, egg follicles were described in piscicolids, ovarian bodies were found characteristic for erpobdellids, and polarized ovary cords in hirudiniforms. Ovaries with polarized structures equipped with apical cell (i.e. polarized ovary cords and ovarian bodies) (as found in arhynchobdellids) are considered as primary for Hirudinea while non-polarized ovary cords and the occurrence of egg follicles (rhynchobdellids) represent derived condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号