首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In recent work, we reported the self-assembly of a comprehensive set of defined "bifunctional" chimeric cellulosomes. Each complex contained the following: (i) a chimeric scaffoldin possessing a cellulose-binding module and two cohesins of divergent specificity and (ii) two cellulases, each bearing a dockerin complementary to one of the divergent cohesins. This approach allowed the controlled integration of desired enzymes into a multiprotein complex of predetermined stoichiometry and topology. The observed enhanced synergy on recalcitrant substrates by the bifunctional designer cellulosomes was ascribed to two major factors: substrate targeting and proximity of the two catalytic components. In the present work, the capacity of the previously described chimeric cellulosomes was amplified by developing a third divergent cohesin-dockerin device. The resultant trifunctional designer cellulosomes were assayed on homogeneous and complex substrates (microcrystalline cellulose and straw, respectively) and found to be considerably more active than the corresponding free enzyme or bifunctional systems. The results indicate that the synergy between two prominent cellulosomal enzymes (from the family-48 and -9 glycoside hydrolases) plays a crucial role during the degradation of cellulose by cellulosomes and that one dominant family-48 processive endoglucanase per complex is sufficient to achieve optimal levels of synergistic activity. Furthermore cooperation within a cellulosome chimera between cellulases and a hemicellulase from different microorganisms was achieved, leading to a trifunctional complex with enhanced activity on a complex substrate.  相似文献   

2.
Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.  相似文献   

3.
Biomass deconstruction to small simple sugars is a potential approach to biofuels production; however, the highly recalcitrant nature of biomass limits the economic viability of this approach. Thus, research on efficient biomass degradation is necessary to achieve large‐scale production of biofuels. Enhancement of cellulolytic activity by increasing synergism between cellulase enzymes holds promise in achieving high‐yield biofuels production. Here we have inserted cellulase pairs from extremophiles into hyperstable α‐helical consensus ankyrin repeat domain scaffolds. Such chimeric constructs allowed us to optimize arrays of enzyme pairs against a variety of cellulolytic substrates. We found that endocellulolytic domains CelA (CA) and Cel12A (C12A) act synergistically in the context of ankyrin repeats, with both three and four repeat spacing. The extent of synergy differs for different substrates. Also, having C12A N‐terminal to CA provides greater synergy than the reverse construct, especially against filter paper. In contrast, we do not see synergy for these enzymes in tandem with CelK (CK) catalytic domain, a larger exocellulase, demonstrating the importance of enzyme identity in synergistic enhancement. Furthermore, we found endocellulases CelD and CA with three repeat spacing to act synergistically against filter paper. Importantly, connecting CA and C12A with a disordered linker of similar contour length shows no synergistic enhancement, indicating that synergism results from connecting these domains with folded ankyrin repeats. These results show that ankyrin arrays can be used to vary spacing and orientation between enzymes, helping to design and optimize artificial cellulosomes, providing a novel architecture for synergistic enhancement of enzymatic cellulose degradation. Proteins 2016; 84:1043–1054. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
The effect of N‐acetyl‐l ‐cysteine‐capped CdTe quantum dots (NAC‐CdTe QDs) with different sizes on lysozyme was investigated by isothermal titration calorimetry (ITC), enzyme activity assays, and multi‐spectroscopic methods. ITC results proved that NAC‐CdTe QDs can spontaneously bind with lysozyme and hydrophobic force plays a major role in stabilizing QDs–lysozyme complex. Multi‐spectroscopic measurements revealed that NAC‐CdTe QDs caused strong quenching of the lysozyme's fluorescence in a size‐dependent quenching manner. Moreover, the changes of secondary structure and microenvironment in lysozyme caused by the NAC‐CdTe QDs were higher with a bigger size. The results of enzyme activity assays showed that the interaction between lysozyme and NAC‐CdTe QDs inhibited the activity of lysozyme and the inhibiting effect was in a size‐dependent manner. Based on these results, we conclude that NAC‐CdTe QDs with larger particle size had a larger impact on the structure and function of lysozyme.  相似文献   

5.
Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.  相似文献   

6.
Artificial designer minicellulosomes comprise a chimeric scaffoldin that displays an optional cellulose-binding module (CBM) and bacterial cohesins from divergent species which bind strongly to enzymes engineered to bear complementary dockerins. Incorporation of cellulosomal cellulases from Clostridium cellulolyticum into minicellulosomes leads to artificial complexes with enhanced activity on crystalline cellulose, due to enzyme proximity and substrate targeting induced by the scaffoldin-borne CBM. In the present study, a bacterial dockerin was appended to the family 6 fungal cellulase Cel6A, produced by Neocallimastix patriciarum, for subsequent incorporation into minicellulosomes in combination with various cellulosomal cellulases from C. cellulolyticum. The binding of the fungal Cel6A with a bacterial family 5 endoglucanase onto chimeric miniscaffoldins had no impact on their activity toward crystalline cellulose. Replacement of the bacterial family 5 enzyme with homologous endoglucanase Cel5D from N. patriciarum bearing a clostridial dockerin gave similar results. In contrast, enzyme pairs comprising the fungal Cel6A and bacterial family 9 endoglucanases were substantially stimulated (up to 2.6-fold) by complexation on chimeric scaffoldins, compared to the free-enzyme system. Incorporation of enzyme pairs including Cel6A and a processive bacterial cellulase generally induced lower stimulation levels. Enhanced activity on crystalline cellulose appeared to result from either proximity or CBM effects alone but never from both simultaneously, unlike minicellulosomes composed exclusively of bacterial cellulases. The present study is the first demonstration that viable designer minicellulosomes can be produced that include (i) free (noncellulosomal) enzymes, (ii) fungal enzymes combined with bacterial enzymes, and (iii) a type (family 6) of cellulase never known to occur in natural cellulosomes.  相似文献   

7.
The cellulosome is a supramolecular multienzyme complex formed by species-specific interactions between the cohesin modules of scaffoldin proteins and the dockerin modules of a wide variety of polysaccharide-degrading enzymes. Cellulosomal enzymes bound to the scaffoldin protein act synergistically to degrade crystalline cellulose. However, there have been few attempts to reconstitute intact cellulosomes due to the difficulty of heterologously expressing full-length scaffoldin proteins. We describe the synthesis of a full-length scaffoldin protein containing nine cohesin modules, CipA; its deletion derivative containing two cohesin modules, ΔCipA; and three major cellulosomal cellulases, Cel48S, Cel8A, and Cel9K, of the Clostridium thermocellum cellulosome. The proteins were synthesized using a wheat germ cell-free protein synthesis system, and the purified proteins were used to reconstitute cellulosomes. Analysis of the cellulosome assembly using size exclusion chromatography suggested that the dockerin module of the enzymes stoichiometrically bound to the cohesin modules of the scaffoldin protein. The activity profile of the reconstituted cellulosomes indicated that cellulosomes assembled at a CipA/enzyme molar ratio of 1/9 (cohesin/dockerin = 1/1) and showed maximum synergy (4-fold synergy) for the degradation of crystalline substrate and ∼2.4-fold-higher synergy for its degradation than minicellulosomes assembled at a ΔCipA/enzyme molar ratio of 1/2 (cohesin/dockerin = 1/1). These results suggest that the binding of more enzyme molecules on a single scaffoldin protein results in higher synergy for the degradation of crystalline cellulose and that the stoichiometric assembly of the cellulosome, without excess or insufficient enzyme, is crucial for generating maximum synergy for the degradation of crystalline cellulose.  相似文献   

8.
Defined chimeric cellulosomes were produced in which selected enzymes were incorporated in specific locations within a multicomponent complex. The molecular building blocks of this approach are based on complementary protein modules from the cellulosomes of two clostridia, Clostridium thermocellum and Clostridium cellulolyticum, wherein cellulolytic enzymes are incorporated into the complexes by means of high-affinity species-specific cohesin-dockerin interactions. To construct the desired complexes, a series of chimeric scaffoldins was prepared by recombinant means. The scaffoldin chimeras were designed to include two cohesin modules from the different species, optionally connected to a cellulose-binding domain. The two divergent cohesins exhibited distinct specificities such that each recognized selectively and bound strongly to its dockerin counterpart. Using this strategy, appropriate dockerin-containing enzymes could be assembled precisely and by design into a desired complex. Compared with the mixture of free cellulases, the resultant cellulosome chimeras exhibited enhanced synergistic action on crystalline cellulose.  相似文献   

9.
The isolation of cellulosomes from clostridial sources has been extensively studied; however, the isolation of cellulosomes from facultative soil anaerobes of the family Bacillaceae is not as well characterized. The Bacillus cellulosome (celluloxylanosome) essentially consists of two complex components: C-I and C-II. This multi-component complex enables Bacillus to degrade a variety of carbonaceous compounds as it is composed of several enzymes, such as cellulases, xylanases and other degradative enzymes. The cellulosomal cellulases from Bacillus megaterium were purified using cellulose affinity chromatography, followed by Sepharose 4B gel filtration chromatography. The objective of this investigation was to establish the effect of sulfate and sulfide on cellulosomal 'cellulase' activity. An increase in sulfide concentration led to a general enhancement of cellulosomal-associated cellulolytic activity, whereas an increase in sulfate concentration resulted in an inhibition of the cellulosome-associated cellulolytic activity.  相似文献   

10.
Most bacteria use free enzymes to degrade plant cell walls in nature. However, some bacteria have adopted a different strategy wherein enzymes can either be free or tethered on a protein scaffold forming a complex called a cellulosome. The study of the structure and mechanism of these large macromolecular complexes is an active and ongoing research topic, with the goal of finding ways to improve biomass conversion using cellulosomes. Several mechanisms involved in cellulosome formation remain unknown, including how cellulosomal enzymes assemble on the scaffoldin and what governs the population of cellulosomes created during self-assembly. Here, we present a coarse-grained model to study the self-assembly of cellulosomes. The model captures most of the physical characteristics of three cellulosomal enzymes (Cel5B, CelS, and CbhA) and the scaffoldin (CipA) from Clostridium thermocellum. The protein structures are represented by beads connected by restraints to mimic the flexibility and shapes of these proteins. From a large simulation set, the assembly of cellulosomal enzyme complexes is shown to be dominated by their shape and modularity. The multimodular enzyme, CbhA, binds statistically more frequently to the scaffoldin than CelS or Cel5B. The enhanced binding is attributed to the flexible nature and multimodularity of this enzyme, providing a longer residence time around the scaffoldin. The characterization of the factors influencing the cellulosome assembly process may enable new strategies to create designers cellulosomes.  相似文献   

11.
Clostridium cellulovorans degrades cellulose efficiently to small oligosaccharides, which are used as an energy source. To characterize enzymes related to degrading small oligosaccharides, a gene was cloned for an extracellular non-cellulosomal beta-glucan glucohydrolase (BglA) classified as a family-1 glycosyl hydrolase in C. cellulovorans. Recombinant BglA (rBglA) had higher activity on long glucooligomers than on cellobiose. When cellulosomes and rBglA were incubated with cellulose, the oligosaccharides produced were degraded more effectively to cellobiose and glucose, than with cellulosomes alone, indicating that BglA facilitated the degradation of accessible cello-oligosaccharides produced from cellulose by C. cellulovorans cellulosomes. Thus, this is an example of an extracellular non-cellulosomal enzyme working in a cooperative manner with cellulosomes to degrade cellulose to sugars.  相似文献   

12.
During the course of our studies on the structure–function relationship of cellulosomes, we were interested in converting the free cellulase system of the aerobic bacterium, Thermobifida fusca, to a cellulosomal system. For this purpose, the cellulose-binding modules (CBM) of two T. fusca family-6 cellulases, endoglucanase Cel6A and exoglucanase Cel6B, were replaced by divergent dockerin modules. Thus far, family-6 cellulases have not been shown to be members of natural cellulosome systems. The resultant chimaeric proteins, 6A-c and t-6B, respectively, were purified and found to interact specifically and stoichiometrically with their corresponding cohesin modules, indicating their suitability for use as components in ‘designer cellulosomes’. Both chimaeric enzymes showed somewhat decreased but measurable levels of activity on carboxymethyl cellulose, consistent with the known endo- and exo-glucanase character of the parent enzymes. The activity of 6A-c on phosphoric acid swollen cellulose was also consistent with that of the wild-type endoglucanase Cel6A. The startling finding of the present research was the extent of degradation of this substrate by the chimaeric enzyme t-6B. Wild-type exoglucanase Cel6B exhibited very low activity on this substrate, while the specific activity of t-6B was 14-fold higher than the parent enzyme.  相似文献   

13.
Numerical solutions to the equations describing simultaneous mass transfer and enzymic reaction within porous spherical particles have been used to examine the effect of enzyme content and other parameters on the kinetic behavior of immobilized enzymes. These solutions have also been compared with experimental data for enzymes immobilized to DEAE-cellulose particles. The influence of particle size and enzyme content on catalyst design is discussed.  相似文献   

14.
The room temperature solid-phase ionic liquid (RTSPIL) co-lyophilized enzyme exhibited markedly enhanced activity in organic solvent. The enzyme co-lyophilized with a dodecyl-imidazolium salt was 660-fold more active compared to its RTSPIL-free counterpart. The activity enhancement by RTSPILs was mainly attributable to the reduced particle sizes and improved dispersion of enzymes suspended in organic solvent. Also, the RTSPIL co-lyophilized enzyme displayed significantly enhanced enantioselectivity. Its enantioselectivity was 2.5-fold higher than that of its RTSPIL-free counterpart.  相似文献   

15.
Quantum dots (QDs) are recognized as some of the most promising candidates for future applications in biomedicine. However, concerns about their safety have delayed their widespread application. Human serum albumin (HSA) is the main protein component of the circulatory system. It is important to explore the interaction of QDs with HSA for the potential in vivo application of QDs. Herein, using spectroscopy and isothermal titration calorimetry (ITC), the effect of glutathione-capped CdTe quantum dots of different sizes on the HSA was investigated. After correction for the inner filter effect, the fluorescence emission spectra and synchronous fluorescence spectra showed that the microenvironment of aromatic acid residues in the protein was slightly changed when the glutathione (GSH)–cadmium telluride (CdTe) QDs was added, and GSH–CdTe QDs with larger particle size exhibited a much higher effect on HSA than the small particles. Although a ground-state complex between HSA and GSH–CdTe QDs was formed, the UV–vis absorption and circular dichroism spectroscopic results did not find appreciable conformational changes of HSA. ITC has been used for the first time to characterize the binding of QDs with HSA. The ITC results revealed that the binding was a thermodynamically spontaneous process mainly driven by hydrophobic interactions, and the binding constant tended to increase as the GSH–CdTe QDs size increased. These findings are helpful in understanding the bioactivities of QDs in vivo and can be used to assist in the design of biocompatible and stable QDs.  相似文献   

16.
Lignocellulosic biomass is a renewable and abundant resource with great potential for bioconversion to value-added bioproducts. However, the biorefining process remains economically unfeasible due to a lack of biocatalysts that can overcome costly hurdles such as cooling from high temperature, pumping of oxygen/stirring, and, neutralization from acidic or basic pH. The extreme environmental resistance of bacteria permits screening and isolation of novel cellulases to help overcome these challenges. Rapid, efficient cellulase screening techniques, using cellulase assays and metagenomic libraries, are a must. Rare cellulases with activities on soluble and crystalline cellulose have been isolated from strains of Paenibacillus and Bacillus and shown to have high thermostability and/or activity over a wide pH spectrum. While novel cellulases from strains like Cellulomonas flavigena and Terendinibacter turnerae, produce multifunctional cellulases with broader substrate utilization. These enzymes offer a framework for enhancement of cellulases including: specific activity, thermalstability, or end-product inhibition. In addition, anaerobic bacteria like the clostridia offer potential due to species capable of producing compound multienzyme complexes called cellulosomes. Cellulosomes provide synergy and close proximity of enzymes to substrate, increasing activity towards crystalline cellulose. This has lead to the construction of designer cellulosomes enhanced for specific substrate activity. Furthermore, cellulosome-producing Clostridium thermocellum and its ability to ferment sugars to ethanol; its amenability to co-culture and, recent advances in genetic engineering, offer a promising future in biofuels. The exploitation of bacteria in the search for improved enzymes or strategies provides a means to upgrade feasibility for lignocellulosic biomass conversion, ultimately providing means to a ''greener'' technology.  相似文献   

17.
The routing of fluorescent signals from NADH to quantum dots (QDs) has been a subject of extensive research for FRET based applications. In the present study, the spectral cross talk of NAD(+)/NADH with QDs was used to monitor the reaction of NAD(+)-dependent dehydrogenase enzyme. CdTe QD may undergo dipolar interaction with NADH as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, non-radiative energy transfer can take place from NADH to CdTe QD enhancing QDs fluorescence. Energy routing assay of NADH-QD was applied for detection of formaldehyde as a model analyte in the range 1000-0.01 ng/mL by the proposed technique. We observed proportionate quenching of CdTe QD fluorescence by NAD(+) and enhancement in the presence of NADH formed by various concentrations of enzyme (0.028-0.4 U). Hence, it was possible to detect formaldehyde in the range 1000-0.01 ng/mL with a limit of detection (LOD) at 0.01 ng/mL and regression coefficient R(2)=0.9982. Therefore, a unique optical sensor was developed for the detection of the formaldehyde in sensitive level based on the above mechanism. This method can be used to follow the activity of NAD(+)-dependent enzymes and detection of dehydrogenases in general.  相似文献   

18.
Cytochemical demonstrations of 5'-nucleotidase and alkaline phosphatase reveal the activity of these enzymes on regions of cell apposition from the late four-cell stage onward. These enzyme activities also appear on regions of artificial cell contact between aggregated embryos having more than four cells. Cytochemistry of single two-cell embryos does not reveal 5'-nucleotidase nor alkaline phosphatase activity, however, these enzyme activities appear at both the artificial and natural contacts in chimaeras of two two-cell embryos. We interpret these results as meaning: (1) that cell contact causes the regionalization of 5'-nucleotidase and alkaline phosphatase activity on the cell surface, (2) that these enzyme activities can be induced or enhanced by contact between two two-cell embryos, (3) that a signal is transmitted from the artificial to the natural contact.  相似文献   

19.
An original and novel assay system with urease as a catalyst and CdSe/ZnS quantum dots (QDs) as an indicator has been developed for quantitative analysis of urea. By mixing urease and QDs, the determination of urea can be performed in a quantitative manner. The detection is based on the enhancement of QD photoluminescence (PL) intensity, which is correlated to the enzymatic degradation of urea. By controlling the buffer concentration and pH, PL enhancement due to the degradation of urea is linear in the urea concentration ranging from 0.01 to 100mM. This property makes the urease/QDs system to be a promising urea-biosensing system. The newly developed system is a superior design and possesses many advantages, including its simple preparation, low cost, no enzyme immobilization required, high flexibility, and good sensitivity.  相似文献   

20.
Pancreatic lipase has been immobilized onto stainless steel beads by adsorption followed by crosslinking, and onto polyacrylamide by covalent bonding. The activities of the two types of immobilized enzyme toward the particulate substrate, tributyrin emulsion droplets, were determined experimentally, and rate constants based on Michaelis-Menten kinetics were calculated. The activity of the stainless steel-lipase was determined for various flow conditions and for various support sizes by the use of a differential fluidized bed recycle reactor. The rate constants calculated indicate that the experimental reaction rate is free from mass transfer influences, since the observed Michaelis constant does not vary with the fluidization velocity or with the support particle size. In addition, the Michaelis constant of the stainless steel-lipase was found to be equal to that of the free enzyme, suggesting that adsorption and subsequent crosslinking does not alter the enzyme-substrate affinity. The emulsion substrate mass transfer rates, calculated from the filtration theory, indicate that each substrate particle which contact the immobilized enzyme is hydrolyzed to a significant extent. The experimentally determined kinetic rate constants may be used directly to predict the size of integral fluidized bed reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号