首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Many ecosystems contain sympatric predator species that hunt in different places and times. We tested whether this provides vacant hunting domains, places and times where and when predators are least active, that prey use to minimize threats from multiple predators simultaneously. We measured how northern Yellowstone elk (Cervus elaphus) responded to wolves (Canis lupus) and cougars (Puma concolor), and found that elk selected for areas outside the high‐risk domains of both predators consistent with the vacant domain hypothesis. This enabled elk to avoid one predator without necessarily increasing its exposure to the other. Our results demonstrate how the diel cycle can serve as a key axis of the predator hunting domain that prey exploit to manage predation risk from multiple sources. We argue that a multi‐predator, spatiotemporal framework is vital to understand the causes and consequences of prey spatial response to predation risk in environments with more than one predator.  相似文献   

3.
The reintroduction of wolves (Canis lupus) to Yellowstone provided the unusual opportunity for a quasi-experimental test of the effects of wolf predation on their primary prey (elk – Cervus elaphus) in a system where top-down, bottom-up, and abiotic forces on prey population dynamics were closely and consistently monitored before and after reintroduction. Here, we examined data from 33 years for 12 elk population segments spread across southwestern Montana and northwestern Wyoming in a large scale before-after-control-impact analysis of the effects of wolves on elk recruitment and population dynamics. Recruitment, as measured by the midwinter juvenile∶female ratio, was a strong determinant of elk dynamics, and declined by 35% in elk herds colonized by wolves as annual population growth shifted from increasing to decreasing. Negative effects of population density and winter severity on recruitment, long recognized as important for elk dynamics, were detected in uncolonized elk herds and in wolf-colonized elk herds prior to wolf colonization, but not after wolf colonization. Growing season precipitation and harvest had no detectable effect on recruitment in either wolf treatment or colonization period, although harvest rates of juveniles∶females declined by 37% in wolf-colonized herds. Even if it is assumed that mortality due to predation is completely additive, liberal estimates of wolf predation rates on juvenile elk could explain no more than 52% of the total decline in juvenile∶female ratios in wolf-colonized herds, after accounting for the effects of other limiting factors. Collectively, these long-term, large-scale patterns align well with prior studies that have reported substantial decrease in elk numbers immediately after wolf recolonization, relatively weak additive effects of direct wolf predation on elk survival, and decreased reproduction and recruitment with exposure to predation risk from wolves.  相似文献   

4.
Field studies that rely on fixes from GPS‐collared predators to identify encounters with prey will often underestimate the frequency and strength of antipredator responses. These underestimation biases have several mechanistic causes. (1) Step bias: The distance between successive GPS fixes can be large, and encounters that occur during these intervals go undetected. This bias will generally be strongest for cursorial hunters that can rapidly cover large distances (e.g., wolves and African wild dogs) and when the interval between GPS fixes is long relative to the duration of a hunt. Step bias is amplified as the path travelled between successive GPS fixes deviates from a straight line. (2) Scatter bias: Only a small fraction of the predators in a population typically carry GPS collars, and prey encounters with uncollared predators go undetected unless a collared group‐mate is present. This bias will generally be stronger for fission–fusion hunters (e.g., spotted hyenas, wolves, and lions) than for highly cohesive hunters (e.g., African wild dogs), particularly when their group sizes are large. Step bias and scatter bias both cause underestimation of the frequency of antipredator responses. (3) Strength bias: Observations of prey in the absence of GPS fix from a collared predator will generally include a mixture of cases in which predators were truly absent and cases in which predators were present but not detected, which causes underestimation of the strength of antipredator responses. We quantified these biases with data from wolves and African wild dogs and found that fixes from GPS collars at 3‐h intervals underestimated the frequency and strength of antipredator responses by a factor >10. We reexamined the results of a recent study of the nonconsumptive effects of wolves on elk in light of these results and confirmed that predation risk has strong effects on elk dynamics by reducing the pregnancy rate.  相似文献   

5.
Non‐consumptive predator effects (NCEs) are now widely recognised for their capacity to shape ecosystem structure and function. Yet, forecasting the propagation of these predator‐induced trait changes through particular communities remains a challenge. Accordingly, focusing on plasticity in prey anti‐predator behaviours, we conceptualise the multi‐stage process by which predators trigger direct and indirect NCEs, review and distil potential drivers of contingencies into three key categories (properties of the prey, predator and setting), and then provide a general framework for predicting both the nature and strength of direct NCEs. Our review underscores the myriad factors that can generate NCE contingencies while guiding how research might better anticipate and account for them. Moreover, our synthesis highlights the value of mapping both habitat domains and prey‐specific patterns of evasion success (‘evasion landscapes’) as the basis for predicting how direct NCEs are likely to manifest in any particular community. Looking ahead, we highlight two key knowledge gaps that continue to impede a comprehensive understanding of non‐consumptive predator–prey interactions and their ecosystem consequences; namely, insufficient empirical exploration of (1) context‐dependent indirect NCEs and (2) the ways in which direct and indirect NCEs are shaped interactively by multiple drivers of context dependence.  相似文献   

6.
Predators play integral roles in shaping ecosystems through cascading effects to prey and vegetation. Such effects occur when prey species alter their behavior to avoid predators, a phenomenon called the risk effects of predators. Risk effects of wild predators such as wolves are well documented for wild prey, but not for free ranging domestic animals such as cattle despite their importance for ecosystem function and conservation. We compared risk effects of satellite‐collared wolves (n = 16) on habitat selection by global‐positioning‐system‐collared elk (n = 10) and cattle (n = 31). We calculated resource selection functions (RSFs) in periods before, during and after wolf visits in elk home ranges or cattle pastures. The habitat variables tested included: distance to roads and trails, terrain ruggedness, food‐quality and distance to forest. When wolves were present, elk stayed closer to forest cover and selected less for high‐quality‐food habitat. Thus, the risk effects of wolf presence on elk produced a change in the tradeoff between food and cover selection. Cattle responded by avoiding high‐quality‐food habitat and selecting areas closer to roads and trails (where people likely provided security), but these effects manifested only after wolves had left. Artificial selection in cattle may have attenuated natural anti‐predator behaviors. The effects of predators on ecosystems are likely different when mediated through risk effects on domestic compared to wild animals. Furthermore, predator control in response to livestock predation, an important conservation issue, may produce broad ecosystem effects triggered by decrease of an important predator species. Conservation planners should consider these effects where domestic herbivores are dominant species in the ecosystem.  相似文献   

7.
We examined chase distances of gray wolves Canis lupus Linnaeus, 1758 hunting moose Alces alces and roe deer Capreolus capreolus, and recorded details of encounters between wolves and prey on the Scandinavian Peninsula, 1997–2003. In total, 252 wolf attacks on moose and 64 attacks on roe deer were registered during 4200 km of snow tracking in 28 wolf territories. Average chase distances were 76 m for moose and 237 m for roe deer, a difference likely due to variation in body size and vigilance between prey species. A model including prey species, outcome of the attack, and snow depth explained 15–19% of the variation found in chase distances, with shorter chase distances associated with greater snow depth and with successful attacks on moose but not on roe deer. Wolf hunting success did not differ between prey species (moose 43%, roe deer 47%) but in 11% of the wolf attacks on moose at least one moose was injured but not killed, whereas no injured roe deer survived. Compared with most North American wolf studies chase distances were shorter, hunting success was greater, and fewer moose made a stand when attacked by wolves in our study. Differences in wolf encounters with moose and roe deer likely result from different anti-predator behaviour and predator-prey history between prey species.  相似文献   

8.
Abstract: Numerous studies have documented how prey may use antipredator strategies to reduce the risk of predation from a single predator. However, when a recolonizing predator enters an already complex predator—prey system, specific antipredator behaviors may conflict and avoidance of one predator may enhance vulnerability to another. We studied the patterns of prey selection by recolonizing wolves (Canis lupus) and cougars (Puma concolor) in response to prey resource selection in the northern Madison Range, Montana, USA. Elk (Cervus elaphus) were the primary prey for wolves, and mule deer (Odocoileus hemionus) were the primary prey for cougars, but elk made up an increasingly greater proportion of cougar kills annually. Although both predators preyed disproportionately on male elk, wolves were most likely to prey on males in poor physical condition. Although we found that the predators partitioned hunting habitats, structural complexity at wolf kill sites increased over time, whereas complexity of cougar kill sites decreased. We concluded that shifts by prey to structurally complex refugia were attempts by formerly naïve prey to lessen predation risk from wolves; nevertheless, shifting to more structurally complex refugia might have made prey more vulnerable to cougars. After a change in predator exposure, use of refugia may represent a compromise to minimize overall risk. As agencies formulate management strategies relative to wolf recolonization, the potential for interactive predation effects (i.e., facilitation or antagonism) should be considered.  相似文献   

9.
Coreen Forbes  Edd Hammill 《Oikos》2013,122(12):1662-1668
The total effect of predators on prey is a combination of direct consumption, and non‐consumptive effects (NCEs), such as predator‐induced changes to prey morphology, behaviour and life history. Past research into NCEs has tended to focus on pair‐wise interactions between predators and prey, while in natural ecosystems, species exist in complex communities with several trophic levels made up of multiple autotrophic and heterotropic species. To address how predator NCEs alter the photosynthetic and heterotrophic components of communities, we exposed microbial microcosms to one of three predator treatments: live predators (full predator effect), freeze‐killed predators (NCEs only) or no predators (control), and incubated them under either 12 h:12 h light:dark conditions or continual darkness. Under 12 h:12 h light:dark conditions, NCEs‐only communities never differed from predator‐free communities, but differed from live predator communities. Under conditions of continual darkness, the structure of NCEs‐only communities differed from predator‐free controls, but not from live predator communities, suggesting NCEs can be strong enough to structure communities. Predation threat may cause certain prey to induce defences, such as reductions in movement, which make them less competitive in a community setting. This reduction in competitive ability could lead to these species being driven to extinction through interspecific competition, resulting in similar communities to those in which live predators are present. Heterotrophic species whose rates of resource acquisition depend on movement rates may be affected to a greater extent than autotrophs by predator‐induced reductions in movement, accounting for our observed differences in predator NCEs in ‘dark’ and ‘light’ communities. Our results suggest that the community‐level consequences of fear are greater in the dark. Synthesis Predators affect prey through consumptive and non‐consumptive effects (NCEs) such as alterations to prey behaviour, morphology, and life history. However, predators and prey do not exist in isolated pairs, but in complex communities where they interact with many other species. Using a long term study (>10 predator generations), we show that predator NCEs alone can alter community structure under conditions of darkness, but not in a 12h:12h light:dark cycle. Our results demonstrate for the first time that although the community‐level consequences of predator NCEs may be dramatic, they depend upon the abiotic conditions of the ecosystem.  相似文献   

10.
Over 6,000 GPS fixes from two wolves (Canis lupus) and 30,000 GPS fixes from five moose (Alces alces) in a wolf territory in southern Scandinavia were used to assess the static and dynamic interactions between predator and prey individuals. Our results showed that wolves were closer to some of the moose when inside their home ranges than expected if they had moved independently of each other, and we also found a higher number of close encounters (<500 m) than expected. This suggests that the wolves were actively seeking the individual moose within their territory. Furthermore, the wolves showed a preference for moving on gravel forest roads, which may be used as convenient travel routes when patrolling the territory and seeking areas where the moose are. However, due to the particularly large size of the wolf territory combined with relatively high moose densities, the wolves generally spent a very small proportion of their time inside the home range of each individual moose, and the frequency of encounters between the wolves and any particular moose was very low. We suggest that the high moose:wolf ratio in this large Scandinavian wolf territory compared to that typically occurring in North America, results in a relatively low encounter frequency and a low predation risk for individual moose, as the predation pressure is spread over a high number of prey individuals.  相似文献   

11.
ABSTRACT Minimizing risk of predation from multiple predators can be difficult, particularly when the risk effects of one predator species may influence vulnerability to a second predator species. We decomposed spatial risk of predation in a 2-predator, 2-prey system into relative risk of encounter and, given an encounter, conditional relative risk of being killed. Then, we generated spatially explicit functions of total risk of predation for each prey species (elk [Cervus elaphus] and mule deer [Odocoileus hemionus]) by combining risks of encounter and kill. For both mule deer and elk, topographic and vegetation type effects, along with resource selection by their primary predator (cougars [Puma concolor] and wolves [Canis lupus], respectively), strongly influenced risk of encounter. Following an encounter, topographic and vegetation type effects altered the risk of predation for both ungulates. For mule deer, risk of direct predation was largely a function of cougar resource selection. However, for elk, risk of direct predation was not only a function of wolf occurrence, but also of habitat attributes that increased elk vulnerability to predation following an encounter. Our analysis of stage-based (i.e., encounter and kill) predation indicates that the risk effect of elk shifting to structurally complex habitat may ameliorate risk of direct predation by wolves but exacerbate risk of direct predation by cougars. Information on spatiotemporal patterns of predation will be become increasingly important as state agencies in the western United States face pressure to integrate predator and prey management.  相似文献   

12.
Predators directly impact prey populations through lethal encounters, but understanding nonlethal, indirect effects is also critical because foraging animals often face trade‐offs between predator avoidance and energy intake. Quantifying these indirect effects can be difficult even when it is possible to monitor individuals that regularly interact. Our goal was to understand how movement and resource selection of a predator (wolves; Canis lupus) influence the movement behavior of a prey species (moose; Alces alces). We tested whether moose avoided areas with high predicted wolf resource use in two study areas with differing prey compositions, whether avoidance patterns varied seasonally, and whether daily activity budgets of moose and wolves aligned temporally. We deployed GPS collars on both species at two sites in northern Minnesota. We created seasonal resource selection functions (RSF) for wolves and modeled the relationship between moose first‐passage time (FPT), a method that discerns alterations in movement rates, and wolf RSF values. Larger FPT values suggest rest/foraging, whereas shorter FPT values indicate travel/fleeing. We found that the movements of moose and wolves peaked at similar times of day in both study areas. Moose FPTs were 45% lower in areas most selected for by wolves relative to those avoided. The relationship between wolf RSF and moose FPT was nonlinear and varied seasonally. Differences in FPT between low and high RSF values were greatest in winter (?82.1%) and spring (?57.6%) in northeastern Minnesota and similar for all seasons in the Voyageurs National Park ecosystem. In northeastern Minnesota, where moose comprise a larger percentage of wolf diet, the relationship between moose FPT and wolf RSF was more pronounced (ave. across seasons: ?60.1%) than the Voyageurs National Park ecosystem (?30.4%). These findings highlight the role wolves can play in determining moose behavior, whereby moose spend less time in areas with higher predicted likelihood of wolf resource selection.  相似文献   

13.
Animal species differ considerably in their response to predation risks. Interspecific variability in prey behaviour and morphology can alter cascading effects of predators on ecosystem structure and functioning. We tested whether species‐specific morphological defenses may affect responses of leaf litter consuming invertebrate prey to sit‐and‐wait predators, the odonate Cordulegaster boltonii larvae, in aquatic food webs. Partly or completely blocking the predator mouthparts (mandibles and/or extensible labium), thus eliminating consumptive (i.e. lethal) predator effects, we created a gradient of predator‐prey interaction intensities (no predator < predator – no attack < predator – non‐lethal attacks < lethal predator). A field experiment was first used to assess both consumptive and non‐consumptive predator effects on leaf litter decomposition and prey abundances. Laboratory microcosms were then used to examine behavioural responses of armored and non‐armored prey to predation risk and their consequences on litter decomposition. Results show that armored and non‐armored prey responded to both acute (predator – non‐lethal attacks) and chronic (predator – no attack) predation risks. Acute predation risk had stronger effects on litter decomposition, prey feeding rate and prey habitat use than predator presence alone (chronic predation risk). Predator presence induced a reduction in feeding activity (i.e. resource consumption) of both prey types but a shift to predator‐free habitat patches in non‐armored detritivores only. Non‐consumptive predator effects on prey subsequently decreased litter decomposition rate. Species‐specific prey morphological defenses and behaviour should thus be considered when studying non‐consumptive predator effects on prey community structure and ecosystem functioning.  相似文献   

14.
A growing number of studies suggest ratio-dependence may be common in many predator–prey systems, yet in large mammal systems, evidence is limited to wolves and their prey in Isle Royale and Yellowstone. More importantly, the consequences of ratio-dependent predation have not been empirically examined to understand the implications for prey. Wolves recolonized Banff National Park in the early 1980s, and recovery was correlated with significant elk declines. I used time-series data of wolf kill rates of elk, wolf and elk densities in winter from 1985–2007 to test for support for prey-, ratio-, or predator dependent functional and numeric responses of wolf killing rate to elk density. I then combined functional and numeric responses to estimate the total predation response to identify potential equilibrium states. Evidence suggests wolf predation on elk was best described by a type II ratio-dependent functional response and a type II numeric response that lead to inversely density-dependent predation rate on elk. Despite support for ratio-dependence, like other wolf-prey systems, there was considerable uncertainty amongst functional response models, especially at low prey densities. Consistent with predictions from ratio-dependent models, however, wolves contributed to elk population declines of over 80 % in our Banff system. Despite the statistical signature for ratio-dependence, the biological mechanism remains unknown and may be related to multi-prey dynamics in our system. Regardless, ratio-dependent models strike a parsimonious balance between theory and empiricism, and this study suggests that large mammal ecologists need to consider ratio-dependent models in predator–prey dynamics.  相似文献   

15.
Hebblewhite M  Merrill EH 《Oecologia》2007,152(2):377-387
While migration is hypothesized to reduce predation risk for ungulates, there have been few direct empirical tests of this hypothesis. Furthermore, few studies examined multiscale predation risk avoidance by migrant ungulates, yet recent research reveals that predator–prey interactions occur at multiple scales. We test the predation risk reduction hypothesis at two spatial scales in a partially migratory elk (Cervus elaphus) population by comparing exposure of migrant and resident elk to wolf (Canis lupus) predation risk. We used GPS and VHF telemetry data collected from 67 migrant and 44 resident elk over the summers of 2002–2004 in and adjacent to Banff National Park (BNP), Canada. We used wolf GPS and VHF telemetry data to estimate predation risk as a function of the relative probability of wolf occurrence weighted by a spatial density model that adjusted for varying pack sizes. We validated the predation risk model using independent data on wolf-killed elk, and showed that combining wolf presence and spatial density best predicted where an elk was likely to be killed. Predation risk on summer ranges of migrant elk was reduced by 70% compared to within resident elk summer ranges. Because wolves avoided areas near high human activity, however, fine-scale selection by resident elk for areas near high human activity reduced their predation risk exposure to only 15% higher than migrants, a difference significant in only one of three summers. Finally, during actual migration, elk were exposed to 1.7 times more predation risk than residents, even though migration was rapid. Our results support the hypothesis that large-scale migrations can reduce predation. However, we also show that where small-scale spatial variation in predation risk exists, nonmigratory elk may equally reduce predation risk as effectively as migrants under some circumstances.  相似文献   

16.
Many studies have investigated the ecology of wolf populations of Eurasia, showing that although wolves are mostly opportunistic in seeking meso-large enough mammalian prey, they can also be selective, depending on local availability of prey and their population biomass. Yet prey preferences of the wolf have been poorly evaluated in situations of complex predator/prey systems because such ecological situations are extremely rare in Europe. In particular, the role of beaver is poorly known due to the extreme decline in its range and population over the last few centuries.We conducted a 15-year study (1999–2014) of wolf Canis lupus diet in the Naliboki forest of central-western Belarus to determine the dietary responses of the wolf population in a context of a rich prey supply (beaver 650 inds/100 km2, elk 47 inds/100 km2, red deer 98 inds/100 km, roe deer 398 inds/100 km2, wild boar 234 inds/100 km2). The bison, although present, is not preyed on. We compared the seasonal and annual diet variations of both wolf adults and pups, by scat analysis and hair identification. In winter 2012–2013, the winter was quite harsh with a long period of snow, which severely affected the roe deer and wild boar populations. Five severe summer droughts also occurred (1999, 2001, 2002, 2004 and 2013), greatly decreasing the water level in rivers and canals. We took advantage of these stressful events to evaluate the diet responses of the wolves.In “normal” years, we identified 11 food categories, essentially beaver and medium-sized ungulates (66%), and large ungulates to a lesser extent (9% in summer, 20% in winter). The adults were found to selectively supply pups with beaver, probably because of its easy transportability. Beaver consumption also increased during summer droughts when water levels were very low. After the harsh winter of 2012–2013, which was followed by a sharp decline in medium-sized prey, we observed a shift in the winter diet breadth of the wolves towards greater consumption of both large wild ungulates and small carnivores. We concluded that:1. Beaver is a functional element in wolf ecology, as a primary food for adults and pups;2. A large range of available prey species is important to maintaining a viable wolf population in cases of extreme climatic events.  相似文献   

17.
Wolf (Canis lupus) diets and potential effects on prey have been a prominent subject of interest to wildlife researchers and managers since reintroduction into Yellowstone National Park, Wyoming, USA, in 1995 and 1996. Post-reintroduction, wolves expanded south and recolonized areas in the southern Yellowstone ecosystem. Elk (Cervus elaphus) in this area are supplementally fed during winter (Dec–Mar) at state-managed feedgrounds, resulting in high-density congregations of elk. From December to March 2000–2007, we determined the winter predation patterns of wolves by examining the remains of 289 wolf kills on 3 state-managed feedgrounds and adjacent winter range near Jackson, Wyoming. During winters 2002–2005, we also monitored the movements of radio-collared elk on feedgrounds to describe the response of elk to the presence of wolf kills. Thirty-seven percent (n = 106) of kills were located on elk feedgrounds where elk composition included 49% calves, 42% adult females, 5% adult males, and 5% unknown. Sixty-three percent (n = 183) of kills were located on winter range adjacent to feedgrounds and prey species consisted of 90% elk (38% calves, 35% adult females, 24% adult males, 2% unknown), 9% moose (Alces alces; 13% calves, 69% adult females, 6% adult males, 1% unknown), 1% mule deer (Odocoileus hemionus; 1 fawn, 1 adult female), and 0.5% adult female bison (Bison bison). Mean age of elk killed on feedgrounds was 4.2 years (range = 0–20) and 4.6 years (range = 0–23) on winter range. Calves were selected more than available in most years with female elk killed less than expected. Adult males were killed more than expected in 2005–2007. Eighty-eight percent (n = 198) of the time elk remained on the feedground even when wolves made a kill. Less commonly, elk left the feedground, gathered in larger herds on adjacent feedgrounds absent of wolves, and returned within a few days (6%, n = 13) or left the feedground for another feedground and did not return for the rest of the winter (6%; n = 14). Elk were less likely to leave feedgrounds in the presence of a wolf kill when there were more elk on that feedground. Elk left feedgrounds with greater topography and tree cover (Alkali and Fish Creek) and gathered on the flat, open feedgrounds (Patrol Cabin) more frequently than they left flat, open feedgrounds for feedgrounds with greater topography and tree cover. Our results indicate wolves in our study area primarily preyed on elk and exhibited a strong preference for elk calves. High-density concentrations of elk on feedgrounds will continue to be an attractant for wolves. Although elk leave feedgrounds for reasons other than wolf presence, any displacement of elk from feedgrounds due to wolves will be temporary. State managers have the ability to alter management strategies (e.g., increasing wolf harvest, phasing out elk feeding, increasing the intensity of elk feeding) in an effort to affect predator-prey relationships. © 2019 The Wildlife Society.  相似文献   

18.
An intriguing aspect of social foraging behaviour is that large groups are often no better at capturing prey than are small groups, a pattern that has been attributed to diminished cooperation (i.e., free riding) in large groups. Although this suggests the formation of large groups is unrelated to prey capture, little is known about cooperation in large groups that hunt hard-to-catch prey. Here, we used direct observations of Yellowstone wolves (Canis lupus) hunting their most formidable prey, bison (Bison bison), to test the hypothesis that large groups are more cooperative when hunting difficult prey. We quantified the relationship between capture success and wolf group size, and compared it to previously reported results for Yellowstone wolves hunting elk (Cervus elaphus), a prey that was, on average, 3 times easier to capture than bison. Whereas improvement in elk capture success levelled off at 2–6 wolves, bison capture success levelled off at 9–13 wolves with evidence that it continued to increase beyond 13 wolves. These results are consistent with the hypothesis that hunters in large groups are more cooperative when hunting more formidable prey. Improved ability to capture formidable prey could therefore promote the formation and maintenance of large predator groups, particularly among predators that specialize on such prey.  相似文献   

19.
Population increases of primary prey can negatively impact alternate prey populations via demographic and behavioural responses of a shared predator through apparent competition. Seasonal variation in prey selection patterns by predators also can affect secondary and incidental prey by reducing spatial separation. Global warming and landscape changes in Alberta's bitumen sands have resulted in prey enrichment, which is changing the large mammal predator–prey system and causing declines in woodland caribou Rangifer tarandus caribou populations. We assessed seasonal patterns of prey use and spatial selection by wolves Canis lupus in two woodland caribou ranges in northeastern Alberta, Canada, that have undergone prey enrichment following recent white‐tailed deer Odocoileus virginianus invasion. We determined whether risk of predation for caribou (incidental prey) and the proportion of wolf‐caused‐caribou mortalities varied with season. We found that wolves showed seasonal variation in primary prey use, with deer and beaver Castor canadensis being the most common prey items in wolf diet in winter and summer, respectively. These seasonal dietary patterns were reflected in seasonal wolf spatial resource selection and resulted in contrasting spatial relationships between wolves and caribou. During winter, wolf selection for areas used by deer maintained strong spatial separation between wolves and caribou, whereas wolf selection for areas used by beaver in summer increased the overlap with caribou. Changing patterns in wolf resource selection were reflected by caribou mortality patterns, with 76.2% of 42 adult female caribou mortalities occurring in summer. Understanding seasonal patterns of predation following prey enrichment in a multiprey system is essential when assessing the effect of predation on an incidental prey species. Our results support the conclusion that wolves are proximately responsible for woodland caribou population declines throughout much of their range.  相似文献   

20.
Human-caused habitat change has been implicated in current woodland caribou (Rangifer tarandus caribou) population declines across North America. Increased early seral habitat associated with industrial footprint can result in an increase in ungulate densities and subsequently those of their predator, wolves (Canis lupus). Higher wolf densities can result in increased encounters between wolves and caribou and consequently higher caribou mortality. We contrasted changes in moose (Alces alces) and deer (Odocoileus spp.) densities and assessed their effects on wolf–caribou dynamics in northeastern Alberta, Canada, pre (1994–1997) versus post (2005–2009) major industrial expansion in the region. Observable white-tailed deer (O. virginianus) increased 17.5-fold but moose remained unchanged. Wolf numbers also increased from approximately 6–11.5/1,000 km2. Coincident with these changes, spatial overlap between wolf pack territories and caribou range was high relative to the mid-1990s. The high number of wolf locations in caribou range suggests that forays were not merely exploratory, but rather represented hunting forays and denning locations. Scat analysis indicated that wolf consumption of moose declined substantively during this time period, whereas use of deer increased markedly and deer replaced moose as the primary prey of wolves. Caribou increased 10-fold in the diet of wolves and caribou population trends in the region changed from stable to declining. Wolf use of beaver (Castor canadensis) increased since the mid-1990s. We suggest that recent declines in woodland caribou populations in the southerly extent of their range have occurred because high deer densities resulted in a numeric response by wolves and consequently higher incidental predation on caribou. Our results indicate that management actions to conserve caribou must now include deer in primary prey and wolf reduction programs. © 2010 The Wildlife Society  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号