首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Human T-cell leukemia viruses (HTLV) tend to induce some fatal human diseases like Adult T-cell Leukemia (ATL) by targeting human T lymphocytes. To indentify the protein-protein interactions (PPI) between HTLV viruses and Homo sapiens is one of the significant approaches to reveal the underlying mechanism of HTLV infection and host defence. At present, as biological experiments are labor-intensive and expensive, the identified part of the HTLV-human PPI networks is rather small. Although recent years have witnessed much progress in computational modeling for reconstructing pathogen-host PPI networks, data scarcity and data unavailability are two major challenges to be effectively addressed. To our knowledge, no computational method for proteome-wide HTLV-human PPI networks reconstruction has been reported.

Results

In this work we develop Multi-instance Adaboost method to conduct homolog knowledge transfer for computationally reconstructing proteome-wide HTLV-human PPI networks. In this method, the homolog knowledge in the form of gene ontology (GO) is treated as auxiliary homolog instance to address the problems of data scarcity and data unavailability, while the potential negative knowledge transfer is automatically attenuated by AdaBoost instance reweighting. The cross validation experiments show that the homolog knowledge transfer in the form of independent homolog instances can effectively enrich the feature information and substitute for the missing GO information. Moreover, the independent tests show that the method can validate 70.3% of the recently curated interactions, significantly exceeding the 2.1% recognition rate by the HT-Y2H experiment. We have used the method to reconstruct the proteome-wide HTLV-human PPI networks and further conducted gene ontology based clustering of the predicted networks for further biomedical research. The gene ontology based clustering analysis of the predictions provides much biological insight into the pathogenesis of HTLV retroviruses.

Conclusions

The Multi-instance AdaBoost method can effectively address the problems of data scarcity and data unavailability for the proteome-wide HTLV-human PPI interaction networks reconstruction. The gene ontology based clustering analysis of the predictions reveals some important signaling pathways and biological modules that HTLV retroviruses are likely to target.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-245) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
With an ever-increasing amount of available data on protein-protein interaction (PPI) networks and research revealing that these networks evolve at a modular level, discovery of conserved patterns in these networks becomes an important problem. Although available data on protein-protein interactions is currently limited, recently developed algorithms have been shown to convey novel biological insights through employment of elegant mathematical models. The main challenge in aligning PPI networks is to define a graph theoretical measure of similarity between graph structures that captures underlying biological phenomena accurately. In this respect, modeling of conservation and divergence of interactions, as well as the interpretation of resulting alignments, are important design parameters. In this paper, we develop a framework for comprehensive alignment of PPI networks, which is inspired by duplication/divergence models that focus on understanding the evolution of protein interactions. We propose a mathematical model that extends the concepts of match, mismatch, and gap in sequence alignment to that of match, mismatch, and duplication in network alignment and evaluates similarity between graph structures through a scoring function that accounts for evolutionary events. By relying on evolutionary models, the proposed framework facilitates interpretation of resulting alignments in terms of not only conservation but also divergence of modularity in PPI networks. Furthermore, as in the case of sequence alignment, our model allows flexibility in adjusting parameters to quantify underlying evolutionary relationships. Based on the proposed model, we formulate PPI network alignment as an optimization problem and present fast algorithms to solve this problem. Detailed experimental results from an implementation of the proposed framework show that our algorithm is able to discover conserved interaction patterns very effectively, in terms of both accuracies and computational cost.  相似文献   

4.

Background  

In recent years, a considerable amount of research effort has been directed to the analysis of biological networks with the availability of genome-scale networks of genes and/or proteins of an increasing number of organisms. A protein-protein interaction (PPI) network is a particular biological network which represents physical interactions between pairs of proteins of an organism. Major research on PPI networks has focused on understanding the topological organization of PPI networks, evolution of PPI networks and identification of conserved subnetworks across different species, discovery of modules of interaction, use of PPI networks for functional annotation of uncharacterized proteins, and improvement of the accuracy of currently available networks.  相似文献   

5.
Chikungunya is a fast-mutating virus causing Chikungunya virus disease (ChikvD) with a significant load of disability-adjusted life years (DALY) around the world. The outbreak of this virus is significantly higher in the tropical countries. Several experiments have identified crucial viral–host protein–protein interactions (PPIs) between Chikungunya Virus (Chikv) and the human host. However, no standard database that catalogs this PPI information exists. Here we develop a Chikv-Human PPI database, ChikvInt, to facilitate understanding ChikvD disease pathogenesis and the progress of vaccine studies. ChikvInt consists of 109 interactions and is available at www.chikvint.com .  相似文献   

6.

Background

Proteins dynamically interact with each other to perform their biological functions. The dynamic operations of protein interaction networks (PPI) are also reflected in the dynamic formations of protein complexes. Existing protein complex detection algorithms usually overlook the inherent temporal nature of protein interactions within PPI networks. Systematically analyzing the temporal protein complexes can not only improve the accuracy of protein complex detection, but also strengthen our biological knowledge on the dynamic protein assembly processes for cellular organization.

Results

In this study, we propose a novel computational method to predict temporal protein complexes. Particularly, we first construct a series of dynamic PPI networks by joint analysis of time-course gene expression data and protein interaction data. Then a Time Smooth Overlapping Complex Detection model (TS-OCD) has been proposed to detect temporal protein complexes from these dynamic PPI networks. TS-OCD can naturally capture the smoothness of networks between consecutive time points and detect overlapping protein complexes at each time point. Finally, a nonnegative matrix factorization based algorithm is introduced to merge those very similar temporal complexes across different time points.

Conclusions

Extensive experimental results demonstrate the proposed method is very effective in detecting temporal protein complexes than the state-of-the-art complex detection techniques.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-335) contains supplementary material, which is available to authorized users.  相似文献   

7.
We model the evolution of eukaryotic protein-protein interaction (PPI) networks. In our model, PPI networks evolve by two known biological mechanisms: (1) Gene duplication, which is followed by rapid diversification of duplicate interactions. (2) Neofunctionalization, in which a mutation leads to a new interaction with some other protein. Since many interactions are due to simple surface compatibility, we hypothesize there is an increased likelihood of interacting with other proteins in the target protein's neighborhood. We find good agreement of the model on 10 different network properties compared to high-confidence experimental PPI networks in yeast, fruit flies, and humans. Key findings are: (1) PPI networks evolve modular structures, with no need to invoke particular selection pressures. (2) Proteins in cells have on average about 6 degrees of separation, similar to some social networks, such as human-communication and actor networks. (3) Unlike social networks, which have a shrinking diameter (degree of maximum separation) over time, PPI networks are predicted to grow in diameter. (4) The model indicates that evolutionarily old proteins should have higher connectivities and be more centrally embedded in their networks. This suggests a way in which present-day proteomics data could provide insights into biological evolution.  相似文献   

8.
Protein-protein interaction (PPI) networks contain a large amount of useful information for the functional characterization of proteins and promote the understanding of the complex molecular relationships that determine the phenotype of a cell. Recently, large human interaction maps have been generated with high throughput technologies such as the yeast two-hybrid system. However, they are static and incomplete and do not provide immediate clues about the cellular processes that convert genetic information into complex phenotypes. Refined multiple-aspect PPI screening and confirmation strategies will have to be put in place to increase the validity of interaction maps. Integration of interaction data with other qualitative and quantitative information (e.g. protein expression or localization data), will be required to construct networks of protein function that reflect dynamic processes in the cell. In this way, combined PPI networks can become valuable resources for a systems-level understanding of cellular processes and complex phenotypes.  相似文献   

9.
Protein-protein interaction (PPI) networks are commonly explored for the identification of distinctive biological traits, such as pathways, modules, and functional motifs. In this respect, understanding the underlying network structure is vital to assess the significance of any discovered features. We recently demonstrated that PPI networks show degree-weighted behavior, whereby the probability of interaction between two proteins is generally proportional to the product of their numbers of interacting partners or degrees. It was surmised that degree-weighted behavior is a characteristic of randomness. We expand upon these findings by developing a random, degree-weighted, network model and show that eight PPI networks determined from single high-throughput (HT) experiments have global and local properties that are consistent with this model. The apparent random connectivity in HT PPI networks is counter-intuitive with respect to their observed degree distributions; however, we resolve this discrepancy by introducing a non-network-based model for the evolution of protein degrees or "binding affinities." This mechanism is based on duplication and random mutation, for which the degree distribution converges to a steady state that is identical to one obtained by averaging over the eight HT PPI networks. The results imply that the degrees and connectivities incorporated in HT PPI networks are characteristic of unbiased interactions between proteins that have varying individual binding affinities. These findings corroborate the observation that curated and high-confidence PPI networks are distinct from HT PPI networks and not consistent with a random connectivity. These results provide an avenue to discern indiscriminate organizations in biological networks and suggest caution in the analysis of curated and high-confidence networks.  相似文献   

10.
Tanaka R  Yi TM  Doyle J 《FEBS letters》2005,579(23):5140-5144
It has been claimed that protein-protein interaction (PPI) networks are scale-free, and that identifying high-degree "hub" proteins reveals important features of PPI networks. In this paper, we evaluate the claims that PPI node degree sequences follow a power law, a necessary condition for networks to be scale-free. We provide two PPI network examples which clearly do not have power laws when analyzed correctly, and thus at least these PPI networks are not scale-free. We also show that these PPI networks do appear to have power laws according to methods that have become standard in the existing literature. We explain the source of this error using numerically generated data from analytic formulas, where there are no sampling or noise ambiguities.  相似文献   

11.
Analysis of the protein-protein interaction network of a pathogen is a powerful approach for dissecting gene function, potential signal transduction, and virulence pathways. This study looks at the construction of a global protein-protein interaction (PPI) network for the human pathogen Mycobacterium tuberculosis H37Rv, based on a high-throughput bacterial two-hybrid method. Almost the entire ORFeome was cloned, and more than 8000 novel interactions were identified. The overall quality of the PPI network was validated through two independent methods, and a high success rate of more than 60% was obtained. The parameters of PPI networks were calculated. The average shortest path length was 4.31. The topological coefficient of the M. tuberculosis B2H network perfectly followed a power law distribution (correlation = 0.999; R-squared = 0.999) and represented the best fit in all currently available PPI networks. A cross-species PPI network comparison revealed 94 conserved subnetworks between M. tuberculosis and several prokaryotic organism PPI networks. The global network was linked to the protein secretion pathway. Two WhiB-like regulators were found to be highly connected proteins in the global network. This is the first systematic noncomputational PPI data for the human pathogen, and it provides a useful resource for studies of infection mechanisms, new signaling pathways, and novel antituberculosis drug development.  相似文献   

12.
Protein–protein interactions (PPIs) represent an essential aspect of plant systems biology. Identification of key protein players and their interaction networks provide crucial insights into the regulation of plant developmental processes and into interactions of plants with their environment. Despite the great advance in the methods for the discovery and validation of PPIs, still several challenges remain. First, the PPI networks are usually highly dynamic, and the in vivo interactions are often transient and difficult to detect. Therefore, the properties of the PPIs under study need to be considered to select the most suitable technique, because each has its own advantages and limitations. Second, besides knowledge on the interacting partners of a protein of interest, characteristics of the interaction, such as the spatial or temporal dynamics, are highly important. Hence, multiple approaches have to be combined to obtain a comprehensive view on the PPI network present in a cell. Here, we present the progress in commonly used methods to detect and validate PPIs in plants with a special emphasis on the PPI features assessed in each approach and how they were or can be used for the study of plant interactions with their environment.  相似文献   

13.
Physical interactions between proteins are central to all biological processes. Yet, the current knowledge of who interacts with whom in the cell and in what manner relies on partial, noisy, and highly heterogeneous data. Thus, there is a need for methods comprehensively describing and organizing such data. LEVELNET is a versatile and interactive tool for visualizing, exploring, and comparing protein–protein interaction (PPI) networks inferred from different types of evidence. LEVELNET helps to break down the complexity of PPI networks by representing them as multi-layered graphs and by facilitating the direct comparison of their subnetworks toward biological interpretation. It focuses primarily on the protein chains whose 3D structures are available in the Protein Data Bank. We showcase some potential applications, such as investigating the structural evidence supporting PPIs associated to specific biological processes, assessing the co-localization of interaction partners, comparing the PPI networks obtained through computational experiments versus homology transfer, and creating PPI benchmarks with desired properties.  相似文献   

14.
Xiang Z  Tian Y  He Y 《Genome biology》2007,8(7):R150
The Pathogen-Host Interaction Data Integration and Analysis System (PHIDIAS) is a web-based database system that serves as a centralized source to search, compare, and analyze integrated genome sequences, conserved domains, and gene expression data related to pathogen-host interactions (PHIs) for pathogen species designated as high priority agents for public health and biological security. In addition, PHIDIAS allows submission, search and analysis of PHI genes and molecular networks curated from peer-reviewed literature. PHIDIAS is publicly available at .  相似文献   

15.
As protein–protein interactions (PPIs) are involved in many cellular events, development of mammalian cytosolic PPI detection systems is important for drug discovery as well as understanding biological phenomena. We have previously reported a c-kit-based PPI screening (KIPPIS) system, in which proteins of interest were fused with a receptor tyrosine kinase c-kit, leading to intracellular PPI-dependent cell growth. However, it has not been investigated whether PPI can be detected using other receptors. In this study, we employed a thrombopoietin receptor, which belongs to the Type I cytokine receptor family, to develop a thrombopoietin receptor-based PPI screening (THROPPIS) system. To improve the sensitivity of THROPPIS, we examined two strategies of (i) localization of the chimeric receptors on the cell membrane, and (ii) addition of a helper module to the chimeric receptors. Intriguingly, the nonlocalized chimeric receptor showed the best performance of THROPPIS. Furthermore, the addition of the helper module dramatically improved the detection sensitivity. In total, 5 peptide–domain interactions were detected successfully, demonstrating the versatility of THROPPIS. In addition, a peptide–domain interaction was detected even when insulin receptor or epidermal growth factor receptor was used as a signaling domain, demonstrating that this PPI detection system can be extended to other receptors.  相似文献   

16.
Elucidating the complex pathogen-host interaction is essential for a comprehensive understanding of how these remarkable agents invade their hosts and how the hosts defend against these invaders. During the infection, pathogens interact intensively with host to enable their survival, which can be revealed through their interactome. Edwardsiella tarda is a Gram-negative bacterial pathogen causing huge economic loss in aquaculture and a spectrum of intestinal and extraintestinal diseases in humans. E. tarda is an ideal model for host-pathogen investigation as it infects fish in three distinct steps: entering the host, circulating through the blood and establishing infection. We adopted a previous established proteomic approach that inactivated E. tarda cells and covalent crosslink fish plasma proteins were used to capture plasma proteins and bacterial outer membrane proteins, respectively. By the combinatorial use of proteomic and biochemical approaches, six plasma proteins and seven outer membrane proteins (OMPs) were identified. Interactions among these proteins were validated with protein-array, far-Western blotting and co-immunoprecipitation. At last, seventeen plasma protein-bacteria protein⿿protein interaction were confirmed to be involved in the interaction network, forming a complex interactome. Compared to our previous results, different host proteins were detected, whereas some of the bacterial proteins were similar, which indicates that hosts adopt tissue-specific strategies to cope with the same pathogen during infection. Thus, our results provide a robust demonstration of both bacterial initiators and host receptors or interacting proteins to further explore infection and anti-infective mechanisms between hosts and microbes.  相似文献   

17.
MOTIVATION: Algorithmic and modeling advances in the area of protein-protein interaction (PPI) network analysis could contribute to the understanding of biological processes. Local structure of networks can be measured by the frequency distribution of graphlets, small connected non-isomorphic induced subgraphs. This measure of local structure has been used to show that high-confidence PPI networks have local structure of geometric random graphs. Finding graphlets exhaustively in a large network is computationally intensive. More complete PPI networks, as well as PPI networks of higher organisms, will thus require efficient heuristic approaches. RESULTS: We propose two efficient and scalable heuristics for finding graphlets in high-confidence PPI networks. We show that both PPI and their model geometric random networks, have defined boundaries that are sparser than the 'inner parts' of the networks. In addition, these networks exhibit 'uniformity' of local structure inside the networks. Our first heuristic exploits these two structural properties of PPI and geometric random networks to find good estimates of graphlet frequency distributions in these networks up to 690 times faster than the exhaustive searches. Our second heuristic is a variant of a more standard sampling technique and it produces accurate approximate results up to 377 times faster than the exhaustive searches. We indicate how the combination of these approaches may result in an even better heuristic. AVAILABILITY: Supplementary information is available at http://www.cs.toronto.edu/~natasha/BIOINF-2005-0946/Supplementary.pdf. Software implementing the algorithms is available at http://www.cs.toronto.edu/~natasha/BIOINF-2005-0946/estimate_grap-hlets.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

18.
Pathogens have evolved numerous strategies to infect their hosts, while hosts have evolved immune responses and other defenses to these foreign challenges. The vast majority of host-pathogen interactions involve protein-protein recognition, yet our current understanding of these interactions is limited. Here, we present and apply a computational whole-genome protocol that generates testable predictions of host-pathogen protein interactions. The protocol first scans the host and pathogen genomes for proteins with similarity to known protein complexes, then assesses these putative interactions, using structure if available, and, finally, filters the remaining interactions using biological context, such as the stage-specific expression of pathogen proteins and tissue expression of host proteins. The technique was applied to 10 pathogens, including species of Mycobacterium, apicomplexa, and kinetoplastida, responsible for "neglected" human diseases. The method was assessed by (1) comparison to a set of known host-pathogen interactions, (2) comparison to gene expression and essentiality data describing host and pathogen genes involved in infection, and (3) analysis of the functional properties of the human proteins predicted to interact with pathogen proteins, demonstrating an enrichment for functionally relevant host-pathogen interactions. We present several specific predictions that warrant experimental follow-up, including interactions from previously characterized mechanisms, such as cytoadhesion and protease inhibition, as well as suspected interactions in hypothesized networks, such as apoptotic pathways. Our computational method provides a means to mine whole-genome data and is complementary to experimental efforts in elucidating networks of host-pathogen protein interactions.  相似文献   

19.
Detection of protein complexes by analyzing and understanding PPI networks is an important task and critical to all aspects of cell biology. We present a technique called PROtein COmplex DEtection based on common neighborhood (PROCODE) that considers the inherent organization of protein complexes as well as the regions with heavy interactions in PPI networks to detect protein complexes. Initially, the core of the protein complexes is detected based on the neighborhood of PPI network. Then a merging strategy based on density is used to attach proteins and protein complexes to the core-protein complexes to form biologically meaningful structures. The predicted protein complexes of PROCODE was evaluated and analyzed using four PPI network datasets out of which three were from budding yeast and one from human. Our proposed technique is compared with some of the existing techniques using standard benchmark complexes and PROCODE was found to match very well with actual protein complexes in the benchmark data. The detected complexes were at par with existing biological evidence and knowledge.  相似文献   

20.
MOTIVATION: Extracting functional information from protein-protein interactions (PPI) poses significant challenges arising from the noisy, incomplete, generic and static nature of data obtained from high-throughput screening. Typical proteins are composed of multiple domains, often regarded as their primary functional and structural units. Motivated by these considerations, domain-domain interactions (DDI) for network-based analyses have received significant recent attention. This article performs a formal comparative investigation of the relationship between functional coherence and topological proximity in PPI and DDI networks. Our investigation provides the necessary basis for continued and focused investigation of DDIs as abstractions for functional characterization and modularization of networks. RESULTS: We investigate the problem of assessing the functional coherence of two biomolecules (or segments thereof) in a formal framework. We establish essential attributes of admissible measures of functional coherence, and demonstrate that existing, well-accepted measures are ill-suited to comparative analyses involving different entities (i.e. domains versus proteins). We propose a statistically motivated functional similarity measure that takes into account functional specificity as well as the distribution of functional attributes across entity groups to assess functional similarity in a statistically meaningful and biologically interpretable manner. Results on diverse data, including high-throughput and computationally predicted PPIs, as well as structural and computationally inferred DDIs for different organisms show that: (i) the relationship between functional similarity and network proximity is captured in a much more (biologically) intuitive manner by our measure, compared to existing measures and (ii) network proximity and functional similarity are significantly more correlated in DDI networks than in PPI networks, and that structurally determined DDIs provide better functional relevance as compared to computationally inferred DDIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号