首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 154 毫秒
1.
Miquel, J., Torres, J., Foronda, P. and Feliu, C. 2010. Spermiogenesis and spermatozoon ultrastructure of the davaineid cestode Raillietina micracantha. — Acta Zoologica (Stockholm) 91 : 212–221 The spermiogenesis and the ultrastructural organization of the spermatozoon of the davaineid cestode Raillietina micracantha are described by means of transmission electron microscopy. Spermiogenesis begins with the formation of a zone of differentiation containing two centrioles. One of the centrioles develops a free flagellum that later fuses with a cytoplasmic extension. The nucleus migrates along the spermatid body after the proximodistal fusion of the flagellum and the cytoplasmic extension. During advanced stages of spermiogenesis a periaxonemal sheath and intracytoplasmic walls appear in the spermatids. Spermiogenesis finishes with the appearance of two helicoidal crested bodies at the base of spermatids and, finally, the narrowing of the ring of arched membranes detaches the fully formed spermatozoon. The mature spermatozoon of R. micracantha is a long and filiform cell, tapered at both ends, which lacks mitochondria. It exhibits two crested bodies of different lengths, one axoneme of the 9 + ‘1’ pattern of trepaxonematan Platyhelminthes, twisted cortical microtubules, a periaxonemal sheath, intracytoplasmic walls, granules of glycogen and a spiralled nucleus. The anterior extremity of the spermatozoon is characterized by the presence of an electron‐dense apical cone and two spiralled crested bodies while the posterior extremity of the male gamete exhibits only the axoneme and an electron‐dense posterior tip.  相似文献   

2.
Yoneva, A., Georgieva, K., Mizinska, Y., Nikolov, P. N., Georgiev, B. B. and Stoitsova, S. R. 2010. Ultrastructure of spermiogenesis and mature spermatozoon of Anonchotaenia globata (von Linstow, 1879) (Cestoda, Cyclophyllidea, Paruterinidae). — Acta Zoologica (Stockholm) 91 : 184–192 The ultrastructure of spermiogenesis and of the spermatozoon of a species of the family Paruterinidae is described for the first time. The spermiogenesis of Anonchotaenia globata starts with the formation of a differentiation zone with two centrioles associated with thin striated roots. One of the centrioles gives rise to a free flagellum followed by a slight flagellar rotation and a proximodistal fusion of the flagellum with the cytoplasmic protrusion. This pattern corresponds to Type III spermiogenesis in cestodes. The spermatozoon consists of five distinct regions. The anterior extremity possesses an apical cone and a single helically coiled crested body. The cortical microtubules are spirally arranged. The axoneme is surrounded by a periaxonemal sheath and a thin layer of cytoplasm filled with electron‐dense granules in Regions I–V. The periaxonemal sheath is connected with the peripheral microtubules by transverse intracytoplasmic walls in Regions III and IV. The nucleus is spirally coiled around the axoneme. Anonchotaenia globata differs from Dilepididae (where paruterinids have previously been classified) in the type of spermiogenesis, the lack of glycogen inclusions and the presence of intracytoplasmic walls. The pattern of spermiogenesis is similar to that in Metadilepididae and Taeniidae, which are considered phylogenetically close to Paruterinidae.  相似文献   

3.
An ultrastructural study of spermatogenesis, spermiogenesis, and spermatozoa in Postorchigenes gymnesicus is presented. Cytoplasmic projections originating in nurse cells surround the spermatogonia, which are located at the periphery of the testes. Primary spermatocytes attached to a cytophore show synaptonemal complexes and a pair of centrioles. Spermiogenesis begins with the appearance of a cytoskeletal structure formed by an intercentriolar body and two perpendicular centrioles. An axoneme and a striated rootlet emerge from each centriole. The progressive rotation and fusion of both flagella with the median process occurs simultaneously with the migration of nucleus to the distal tip of the forming spermatozoon. The mature spermatozoon consists of three regions: (1) the nuclear region, containing the nucleus, one mitochondrion, two 9+1 axonemes, and cortical microtubules; (2) the intermitochondrial region, containing two axonemes; and (3) the mitochondrial region with another mitochondrion, two axonemes, cortical microtubules, and external ornamentation symmetrically and asymmetrically arranged coincidental with the cortical microtubules. Glycogen particles, absent in testicular cells, are abundant in the spermatozoon. Ultrastructural features of the non-nuclear region of the spermatozoon are specific for P. gymnesicus and are proposed to characterize the spermatozoon of digenean species. J. Morphol. 234:223–232, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
This study presents the ultrastructure of the mature spermatozoon of Opechona bacillaris, a digenean belonging to the family Lepocreadiidae. The sperm cell of O. bacillaris exhibits the general pattern described in most of the Lepocreadioidea: two axonemes of the 9 + ‘1’ pattern of the Trepaxonemata, mitochondria, a cortical mitochondrion, a nucleus, electron‐dense material in the anterior extremity of the spermatozoon, external ornamentation of the plasma membrane with associated spinelike bodies, and granules of glycogen. However, particularities of O. bacillaris are the simultaneous presence in the anterior extremity of the spermatozoon of the electron‐dense material, a mitochondrion, and the absence of cortical microtubules. In the Lepocreadiidae, we describe for the first time in O. bacillaris spinelike bodies associated with the external ornamentation of the plasma membrane and two mitochondria. The first mitochondrion is moniliform and composed of a mitochondrial cord with joined mitochondrial bulges. The second mitochondrion shows a regular form. The posterior tip of the spermatozoon has only singlets to owing to the disorganization of the second axoneme and granules of glycogen as occurs in Hypocreadium caputvadum, the other studied species of the family Lepocreadiidae.  相似文献   

5.
Ultrastructure of spermiogenesis and the main characters of the mature spermatozoon of Troglotrema acutum are described by means of transmission electron microscopy. Specimens were obtained from the nasolacrimal sinuses of an American mink (Mustela vison). Spermiogenesis in T. acutum follows the general pattern of digeneans. The zone of differentiation is a conical-shaped area bordered by cortical microtubules and delimited at its base by a ring of arched membranes. This area contains 2 centrioles associated with striated rootlets and an intercentriolar body between them. The centrioles develop 2 free flagella that grow ortogonally to the median cytoplasmic process. The posterior flagellar rotation and proximodistal fusion of the free flagella with the median cytoplasmic process originate the spermatozoon. The mature spermatozoon of T. acutum is characterized by the presence of 2 axonemes of different lengths presenting the 9+'1' trepaxonematan pattern, 2 bundles of parallel cortical microtubules, 2 mitochondria, a nucleus, and granules of glycogen. These ultrastructural characters are compared with other digenean species previously studied and the importance of different spermatological features is discussed.  相似文献   

6.
Spermiogenesis in M. herpestisbegins with the formation of a differentiation zone which contains two centrioles associated with an electron–dense, finely granular material. This granular material very quickly becomes striated, a median cytoplasmic extension forms, one of the centrioles becomes laterally oriented in a cytoplasmic bud and the other gives rise to a flagellum. After the migration of the nucleus, a helicoidal crested–like body forms, then the old spermatid separates from the residual cytoplasm. The mature M. herpestisspermatozoon exhibits an apical cone of electron–dense material, a crested–like body and cortical microtubules which are electron–dense centred and spiralized except at their posterior extremity where they are parallel to the spermatozoon axis. The axoneme is of the 9 + ‘1’ pattern. It reaches the posterior extremity of the gamete where the cytoplasm is very electron–dense. The presence of centrioles flanked by ‘striated roots’ has never, to our knowledge, been reported in a platyhelminth. Likewise, a nucleus with an annular cross–section and unevenly distributed electron–dense peri–axonemal material has never been described in a cestod.  相似文献   

7.
The ultrastructure of spermiogenesis and the mature spermatozoon in Catenotaenia pusilla (Cestoda: Catenotaeniidae) is described. Spermiogenesis is characterized by the presence of a single axoneme which grows on the outside of a cytoplasmic extension at an angle of 45 degrees. Flagellar rotation and proximodistal fusion are produced in this process. The centrioles lack striated roots and an intercentriolar body. In the mature spermatozoon four different regions are described. The anterior extremity is capped by an apical cone and presents two helical crest-like bodies of unequal length. The axoneme, of the 9 + '1' pattern of the Trepaxonemata, presents a periaxonemal sheath. The cortical microtubules form a spiral pattern at an angle of about 40 degrees to the hypothetical spermatozoon axis. The nucleus is kidney- to horseshoe-shaped in cross section. Granules and proteinaceus walls are not observed in the spermatozoon of C. pusilla.  相似文献   

8.
9.
Marigo, A.M., Bâ, C.T. and Miquel, J. 2011. Spermiogenesis and spermatozoon ultrastructure of the dilepidid cestode Molluscotaenia crassiscolex (von Linstow, 1890), an intestinal parasite of the common shrew Sorex araneus. —Acta Zoologica (Stockholm) 92 : 116–125. Spermiogenesis in Molluscotaenia crassiscolex begins with the formation of a differentiation zone containing two centrioles. One of the centrioles develops a flagellum directly into the cytoplasmic extension. The nucleus elongates and later migrates along the spermatid body. During advanced stages of spermiogenesis, a periaxonemal sheath appears in the spermatid. Spermiogenesis finishes with the appearance of a single helicoidal crested body at the base of the spermatid and, finally, the narrowing of the ring of arched membranes causes the detachment of the fully formed spermatozoon. The mature spermatozoon of M. crassiscolex exhibits a partially detached crested body in the anterior region of the spermatozoon, one axoneme, twisted cortical microtubules, a periaxonemal sheath, and a spiralled nucleus. The anterior spermatozoon extremity is characterized by the presence of an electron‐dense apical cone and a single spiralled crested body, which is attached to the sperm cell in the anterior and posterior areas of region I, whereas in the middle area it is partially detached from the cell. This crested body is described for the first time in cestodes. The posterior extremity of the male gamete exhibits only the disorganizing axoneme. Results are discussed and compared particularly with the available ultrastructural data on dilepidids sensu lato.  相似文献   

10.
Spermiogenesis in the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009 shows typical characteristics of the type I spermiogenesis. These include the formation of distal cytoplasmic protrusions forming the differentiation zones, lined by cortical microtubules and containing two centrioles. An electron-dense material is present in the apical region of the differentiation zone during the early stages of spermiogenesis. Each centriole is associated to a striated rootlet, being separated by an intercentriolar body. Two free and unequal flagella originate from the centrioles and develop on the lateral sides of the differentiation zone. A median cytoplasmic process is formed between the flagella. Later these flagella rotate, become parallel to the median cytoplasmic process and finally fuse proximodistally with the latter. It is interesting to note that both flagellar growth and rotation are asynchronous. Later, the nucleus enlarges and penetrates into the spermatid body. Finally, the ring of arching membranes is strangled and the young spermatozoon is detached from the residual cytoplasm.The mature spermatozoon presents two axonemes of the 9 + ‘1’ trepaxonematan pattern, crested body, parallel nucleus and cortical microtubules, and glycogen granules. Thus, it corresponds to the type II spermatozoon, described in almost all Proteocephalidea. The anterior extremity of the gamete is characterized by the presence of an apical cone surrounded by the lateral projections of the crested body. An arc formed by some thick and parallel cortical microtubules appears at the level of the centriole. They surround the centriole and later the first axoneme. This arc of electron-dense microtubules disorganizes when the second axoneme appears, and then two parallel rows of thin cortical microtubules are observed. The posterior extremity of the male gamete exhibits some cortical microtubules. This type of posterior extremity has never been described in proteocephalidean cestodes. The ultrastructural features of the spermatozoon/spermiogenesis of the Proteocephalidea species are analyzed and compared.  相似文献   

11.
Observations were performed in the uterus of a female Gonapodasmius sp., a gonochoristic didymozoid Trematode. The oocyte is a round cell 6 μm in diameter, which shows a ‘nucleolus-like cytoplasmic body’ and cortical granules. The spermatozoon is filiform, mobile and about 50 μm long. There is no acrosome. The anterior tip of the spermatozoon contains two centrioles made up of singlets and cortical microtubules with associated glycocalyx. The centrioles are continued as two axonemes of the classical 9 + ‘1’ pattern of flatworms, accompanied by a mitochondrion and a short row of cortical longitudinal microtubules. It is the posterior part of the sperm cell which contains the nucleus. At the outset of fertilization, the anterior part of the spermatozoon coils around the oocyte and penetrates it by lateral fusion. The posterior region of the spermatozoon, with the nucleus, is the last part to enter the oocyte, after passing through a perforation in the forming eggshell. The whole spermatozoon thus penetrates the female cell.  相似文献   

12.
Spermiogenesis and the ultrastructural organization of the spermatozoon of the digenean Neoapocreadium chabaudi are described by means of transmission electron microscopy.Spermiogenesis follows the usual pattern found in the digeneans. It begins with the formation of a zone of differentiation bordered by cortical microtubules, characterized by the presence of an intercentriolar body composed of seven electron-dense plates situated between two striated rootlets and two centrioles. These centrioles give rise to two free flagella. Later, both flagella undergo a rotation of 90° and fuse with the median cytoplasmic process. Spermiogenesis finishes when the ring of arched membranes constricts. The mature spermatozoon of N. chabaudi is characterized by the presence of 2 axonemes of different lengths presenting the 9 + “1” trepaxonematan pattern, 2 bundles of parallel cortical microtubules, 2 mitochondria, a nucleus, and granules of glycogen. Nevertheless, several characters such as the morphology of sperm extremities and the presence of spinelike bodies allow us to distinguish N. chabaudi from other digenetic trematodes. The present paper provides the first ultrastructural results of a digenean belonging to the family Apocreadiidae that may be useful for the understanding of digenean relationships and phylogenetic studies.  相似文献   

13.
This is the first study investigating spermatogenesis and spermatozoan ultrastructure in the polyclad flatworm Prosthiostomum siphunculus. The testes are numerous and scattered as follicles ventrally between the digestive ramifications. Each follicle contains the different stages of sperm differentiation. Spermatocytes and spermatids derive from a spermatogonium and the spermatids remain connected by intercellular bridges. Chromatoid bodies are present in the cytoplasm of spermatogonia up to spermatids. During early spermiogenesis, a differentiation zone appears in the distal part of spermatids. A ring of microtubules extends along the entire sperm shaft just beneath the cell membrane. An intercentriolar body is present and gives rise to two axonemes, each with a 9 + “1” micro‐tubular pattern. Development of the spermatid leads to cell elongation and formation of a filiform, mature spermatozoon with two free flagella and with cortical microtubules along the sperm shaft. The flagella exit the sperm shaft at different levels, a finding common for acotyleans, but so far unique for cotylean polyclads. The Golgi complex produces numerous electron‐dense bodies of two types and of different sizes. These bodies are located around a perinuclear row of mitochondria. The elongated nucleus extends almost along the entire sperm body. The nucleus is wide in the proximal part and becomes narrow going towards the distal end. Thread‐like chromatin mixed with electron‐dense intranuclear spindle‐shaped bodies are present throughout nucleus. The general sperm ultrastructure, the presence of intranuclear bodies and a second type of cytoplasmic electron‐dense bodies may provide characters useful for phylogenetic analysis.  相似文献   

14.
The mature spermatozoon of Aponurus laguncula, a parasite of the unicorn leatherjacket Aluterus monoceros, was studied by transmission electron microscopy. The spermatozoon possesses 2 axonemes of the 9 + “1” trepaxonematan pattern, attachment zones, a nucleus, a mitochondrion, external ornamentation of the plasma membrane and cortical microtubules. The major features are the presence of: 1) external ornamentation in the anterior part of the spermatozoon not associated with cortical microtubules; 2) one mitochondrion; and 3) cortical microtubules arranged as a single field in the ventral side. The maximum number of microtubules is in the nuclear region. The extremities of the axonemes are characterized by the disappearance of the central core and the presence of microtubule doublets or singlets. This study is the first undertaken with a member of the Lecithasteridae and exemplifies the sperm ultrastructure for the superfamily Hemiuroidea.  相似文献   

15.
Summary

Mature sperm of Prorhynchus sp. have an elongated nucleus, multiple mitochondria and dense bodies, and two free axonemes which are located in grooves of the main shaft for much of their length. The axonemes are subterminally inserted and have the typical 9+ ‘1’ arrangement unique to Platyhelminthes and synapomorphic for taxa of Trepaxonemata. The testis follicles examined had small numbers of developing spermatids and very few mature sperm were present. During spermiogenesis, spermatids remain joined in clusters by distinctive bridges. In each spermatid two centrioles (with an intercentriolar body between them) give rise to free axonemes which grow out in opposite directions from each other. Indistinct ciliary rootlets are present. The axonemes are carried distally from the main spermatid mass on an elongating process and turn back towards the main spermatid mass. Nucleus, mitochondria and dense bodies move into the shaft, and the spermatid elongates before detaching from others in the cluster. This is the first detailed study of sperm and spermiogenesis in Lecithoepitheliata. Mature sperm are distinctly different from those of prolecithophorans, to which they are reputedly related, the latter having aflagellate sperm without dense bodies.  相似文献   

16.
Spermiogenesis in Mesostoma viaregginum begins with the formation of a zone of differentiation containing striated rootlets, two centrioles, and an intercentriolar body in-between. These centrioles generate two parallel free-flagella with the 9+“1” pattern of the Trepaxonemata growing out in opposite directions. Spermatid differentiation is characterised by a 90° latero-ventral rotation of flagella and a subsequent disto-proximal centriolar rotation, with a distal cytoplasmic projection. The former rotation involves the compression of a row of cortical microtubules and allows recognising a flagellar side and an aflagellar side in the late spermatid and in the mature spermatozoon. At the end of the differentiation, centrioles and microtubules lie parallel to the spermatid axis. The disto-proximal centriolar rotation is proposed as a synapomorphy for the Rhabdocoela. The modifications of the intercentriolar body during spermiogenesis and the migration of the nucleus and the centrioles towards the cytoplasmic distal projection are also described. The mature spermatozoon of M. viaregginum is filiform and tapered at both ends and presents many features found in the Rhabdocoela gametes. The nucleus disappears before the flagellar insertion and a density gradient of mitochondria is observed along the sperm axis. The anterior end of the spermatozoon of M. viaregginum is characterised by a tapering capped by a membrane expansion. This study has enabled us to describe precisely the orientation of spermatozoa in the Rhabdocoela in general: the centriolar extremity is proposed as the anterior one for the Rhabdocoela.  相似文献   

17.
Spermiogenesis of Bothriocephalus scorpii (Cestoda, Pseudophyllidea) includes an orthogonal development of two flagella, followed by a flagellar rotation and a proximo-distal fusion with the median cytoplasmic process. The fusion occurs at the level of four attachment zones. The presence of dense material in the apical region of the differentiation zone in the early stage of spermiogenesis appears to be a characteristic feature for the Pseudophyllidea. The mature spermatozoon possesses two axonemes of 9+"1" pattern of the Trepaxonemata, nucleus, cortical microtubules, electron-dense granules and crested body. The anterior part of the gamete exhibits a centriole surrounded by electron-dense tubular structures arranged as incomplete spiral. When the crested body disappears, the electron-dense tubular structures are arranged into a ring encircling the axoneme. The electron-dense tubular structures and their arrangement appear to be a specific feature for the clade "Bothriocephalidea". The organization of the posterior extremity of the gamete with the nucleus is described for the first time in the Pseudophyllidea.  相似文献   

18.
Abstract Spermiogenesis was studied by transmission electron microscopy in the acanthocotylid monogeneans Myxinidocotyle californica (from Eptatretus stoutii) and Acanthocotyle lobianchi (from Raja clavata). In Myxinidocotyle and Acanthocotyle, the zone of differentiation shows two 9+‘1’ axonemes, the elongating nucleus and mitochondrion, and a single cortical cytoplasmic microtubule. This single microtubule is found in the mature spermatozoon of both species and was also noted in capsalids. This requires a modified definition of ‘pattern 2’ of spermatozoa which becomes: ‘spermatozoa with two axonemes and no cortical microtubules, except one single element much shorter than the spermatozoon’. A very unusual structure was found in Myxinidocotyle, but not in Acanthocotyle: the centriolar derivative of one of the 9+‘1’ axonemes is made up of 18 diverging singlets of unequal length associated with electron-dense cytoplasm. This seems to be the first case of a centriolar derivative without nine-fold symmetry associated with an axoneme with nine-fold symmetry.  相似文献   

19.
The present study focuses on the ultrastructural characteristics of both spermiogenesis and the spermatozoon in the order Trypanorhyncha. New ultrastructural data are presented for two species of the unexplored superfamily Tentacularioidea, Nybelinia queenslandensis, and Kotorella pronosoma. The present study also provides supplementary data on the superfamily Eutetrarhynchoidea, with the analysis of spermiogenesis and spermatozoon of two progrillotiids, Progrillotia dasyatidis and Pro. pastinacae, and new ultrastructural data concerning spermiogenesis in the eutetrarhynchids Dollfusiella spinulifera and Parachristianella trygonis. Spermiogenesis in trypanorhynchs follows the Bâ and Marchand's type I and the ultrastructural organisation of the mature spermatozoon corresponds to the Levron et al.’s type I. The most remarkable characters concerns the number of electron-dense plates constituting the intercentriolar body during spermiogenesis and in the variability of the arc-like row of thick cortical microtubules present in the anterior areas of the spermatozoon because of its variability according to the species.  相似文献   

20.
Using transmission electron microscopy, spermiogenesis and the spermatozoon ultrastructural organization are described in Ligula intestinalis (Linnaeus, 1758) (Diphyllobothriidea), a parasite of the great crested grebe Podiceps cristatus (Linnaeus, 1758). Spermiogenesis starts with the differentiation zone of 2 striated rootlets, 2 centrioles giving rise to 2 flagella, and an intercentriolar body. The latter is composed of 5 electron-dense layers separating 4 electron-lucent layers. In the early stages of spermiogenesis, an electron-dense material is present in the apical region of the differentiation zone. Later, the flagella undergo a rotation and fuse with the cytoplasmic extension in a proximo-distal process. The spermatozoon contains 2 axonemes with a 9 + "1" trepaxonematan pattern, the nucleus, the cortical microtubules, and an electron-dense zone. The spermatozoon anterior extremity in L. intestinalis is characterized by the absence of crested bodies and a ring of electron-dense cortical microtubules. Some characters of spermiogenesis and spermatozoon in L. intestinalis confirm the recent splitting of "Pseudophyllidea" into 2 new orders, i.e., Bothriocephalidea and Diphyllobothriidea. The process of spermiogenesis is similar in both orders for the "type I" of spermiogenesis and the presence of electron-dense material. However, the intercentriolar body is clearly more developed in the Diphyllobothriidea than in the Bothriocephalidea. Moreover, these 2 orders seem to differ in the presence or absence of a ring of electron-dense cortical microtubules in the anterior extremity of the spermatozoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号