首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants produce a variety of secondary metabolites to improve their performance upon exposure to pathogens, pests, herbivores, or environmental stresses. Secondary metabolism in plants is, therefore, highly regulated by presence of biotic or abiotic elicitors in the environment. The present research was undertaken to characterize plant growth‐promoting attributes of four plant growth‐promoting rhizobacteria (PGPR) including two Pseudomonas fluorescens (Pf Ap1, Pf Ap18) and two P. putida (Pp Ap9, Pp Ap14) strains, and to determine their role (individually or in consortium) on growth of Salvia officialis, and biosynthesis of secondary metabolites such as essential oils (EOs), total phenolics, and flavonoids. The antioxidant and antibacterial properties of the extracts and EOs obtained from the inoculated plants were also investigated. The PGPR inoculum was applied to soil, cuttings, and foliage. Results indicated that different PGPR strains varied in their efficiency for production of auxin, siderophore, 1‐aminocyclopropane‐1‐carboxylate deaminase, and phosphate solubilization. All individually inoculated plants had significantly higher shoot and root biomass, leaf P content, EOs yield, total phenolics, and flavonoids content compared to uninoculated control plants. The major constituents of EOs, cis‐thujene, camphor, and 1,8‐cineol, increased following inoculation with reference PGPRs. Although the extract from all inoculated plants had improved antioxidant activity, it was remarkable for the Pf Ap18 strain, which had the lowest IC50 value across treatments. Antibacterial assay of various EOs and their major constituents against pathogenic bacteria showed that the highest activity was observed against Staphylococcus aureus using EOs of Pp Ap14 source. Based on our findings, we suggest that individual inoculation with effective PGPR strains can substantially improve plant growth and secondary metabolism in S. officinalis plants.  相似文献   

2.
3.
Two plant growth promoting rhizobacteria (PGPR) Pseudomonas putida NBRIRA and Bacillus amyloliquefaciens NBRISN13 with ability to tolerate abiotic stress along with multiple PGP traits like ACC deaminase activity, minerals solubilisation, hormones production, biofilm formation, siderophore activity were evaluated for their synergistic effect to ameliorate drought stress in chickpea. Earlier we have reported both the strains individually for their PGP attributes and stress amelioration in host plants. The present study explains in detail the possibilities and benefits of utilizing these 2 PGPR in consortium for improving the chickpea growth under control and drought stressed condition. In vitro results clearly demonstrate that both the PGPR strains are compatible to each other and their synergistic growth enhances the PGP attributes. Greenhouse experiments were conducted to evaluate the effect of inoculation of both strains individually and consortia in drought tolerant and sensitive cultivars (BG362 and P1003). The growth parameters were observed significantly higher in consortium as compared to individual PGPR. Colonization of both PGPR in chickpea rhizosphere has been visualized by using gfp labeling. Apart from growth parameters, defense enzymes, soil enzymes and microbial diversity were significantly modulated in individually PGPR and in consortia inoculated plants. Negative effects of drought stress has been ameliorated and apparently seen by higher biomass and reversal of stress indicators in chickpea cultivars treated with PGPR individually or in consortia. Findings from the present study demonstrate that synergistic application has better potential to improve plant growth promotion under drought stress conditions.  相似文献   

4.
  • The ability of plant growth‐promoting rhizobacteria (PGPR) to enhance Lathyrus sativus tolerance to lead (Pb) stress was investigated.
  • Ten consortia formed by mixing four efficient and Pb‐resistant PGPR strains were assessed for their beneficial effect in improving Pb (0.5 mM) uptake and in inducing the host defence system of L. sativus under hydroponic conditions based on various physiological and biochemical parameters.
  • Lead stress significantly decreased shoot (SDW) and root (RDW) dry weight, but PGPR inoculation improved both dry weights, with highest increases in SDW and RDW of plants inoculated with I5 (R. leguminosarum (M5) + P. fluorescens (K23) + Luteibacter sp. + Variovorax sp.) and I9 (R. leguminosarum (M5) + Variovorax sp. + Luteibacter sp. + S. meliloti) by 151% and 94%, respectively. Additionally, inoculation significantly enhanced both chlorophyll and soluble sugar content, mainly in I5 inoculated leaves by 238% and 71%, respectively, despite the fact that Pb decreased these parameters. We also found that PGPR inoculation helps to reduce oxidative damage and enhances antioxidant enzyme activity, phenolic compound biosynthesis, carotenoids and proline content. PGPR inoculation increased Pb uptake in L. sativus, with highest increase in shoots of plants inoculated with I5 and I7, and in roots and nodules of plants inoculated with I1. Moreover, PGPR inoculation enhanced mineral homeostasis for Ca, Cu and Zn under Pb stress, mainly in plants inoculated with I1, I5, I7 and I9.
  • Results of our study suggest the potential of efficient and Pb‐resistant PGPR in alleviating harmful effects of metal stress via activation of various defence mechanisms and enhancing Pb uptake that promotes tolerance of L. sativus to Pb stress.
  相似文献   

5.
Effects of root colonization by plant growth promoting rhizobacteria (PGPR) on biomass, and qualitative and quantitative composition of essential oils, were determined in the aromatic crop Origanum majorana L. (sweet marjoram). PGPR strains evaluated were Pseudomonas fluorescens, Bacillus subtilis, Sinorhizobium meliloti, and Bradyrhizobium sp. Only P. fluorescens and Bradyrhizobium sp. showed significant increases in shoot length, shoot weight, number of leaf, number of node, and root dry weight, in comparison to control plants or plants treated with other PGPR. Essential oil yield was also significantly increased relative to non-inoculated plants, without alteration of oil composition. P. fluorescens has clear commercial potential for economic cultivation of O. majorana.  相似文献   

6.
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and exert beneficial effects on plant health and development. We are investigating the mechanisms by which PGPR elicit plant growth promotion from the viewpoint of signal transduction pathways within plants. We report here our first study to determine if well-characterized PGPR strains, which previously demonstrated growth promotion of various other plants, also enhance plant growth in Arabidopsis thaliana. Eight different PGPR strains, including Bacillus subtilis GB03, B. amyloliquefaciens IN937a, B. pumilus SE-34, B. pumilus T4, B. pasteurii C9, Paenibacillus polymyxa E681, Pseudomonas fluorescens 89B-61, and Serratia marcescens 90-166, were evaluated for elicitation of growth promotion of wild-type and mutant Arabidopsis in vitro and in vivo. In vitro testing on MS medium indicated that all eight PGPR strains increased foliar fresh weight of Arabidopsis at distances of 2, 4, and 6 cm from the site of bacterial inoculation. Among the eight strains, IN937a and GB03 inhibited growth of Arabidopsis plants when the bacteria were inoculated 2 cm from the plants, while they significantly increased plant growth when inoculated 6 cm from the plants, suggesting that a bacterial metabolite that diffused into the agar accounted for growth promotion with this strain. In vivo, eight PGPR strains promoted foliar fresh weight under greenhouse conditions 4 weeks after sowing. To define signal transduction pathways associated with growth promotion elicited by PGPR, various plant-hormone mutants of Arabidopsis were evaluated in vitro and in vivo. Elicitation of growth promotion by PGPR strains in vitro involved signaling of brassinosteroid, IAA, salicylic acid, and gibberellins. In vivo testing indicated that ethylene signaling was involved in growth promotion. Results suggest that elicitation of growth promotion by PGPR in Arabidopsis is associated with several different signal transduction pathways and that such signaling may be different for plants grown in vitro vs. in vivo.  相似文献   

7.
  • High temperature induces several proteins in plants that enhance tolerance to high temperature shock. The fate of proteins synthesised in microbial cells or secreted into culture media by interacting microbes has not been fully elucidated. The present investigation aimed to characterise plant growth‐promoting rhizobacteria (PGPR) isolated from the rhizosphere of wheat genotypes (differing in tolerance to high temperature stress) and evaluate their performance as bioinoculant for use in wheat.
  • Four bacterial strains, viz. Pseudomonas brassicacearum, Bacillus thuringiensis, Bacillus cereus strain W6 and Bacillus subtilis, were isolated from the rhizosphere of heat‐stressed and unstressed wheat genotypes. The wheat genotypes were exposed to high temperature stress at 45 °C for 10 days (3 h daily) at pre‐anthesis phase. Isolates were identified on the basis of morphology and biochemical characteristics, 16S rRNA gene sequencing and whole cell protein profiles. Results were further complemented by size exclusion chromatography (SEC) with fast protein liquid chromatography (FPLC) and SDS PAGE of 80% ammonium sulphate precipitates of the cell‐free supernatants.
  • Isolates were positive for catalase, oxidases and antimicrobial activity . P. brassicacearum from the rhizosphere of the heat‐tolerant genotype was more efficient in phosphate solubilisation, bacteriocin production, antifungal and antibacterial activity against Helminthosporium sativum, Fusarium moniliforme and Klebsiella pneumonia, respectively. The inoculated seedlings had significantly higher root and shoot fresh weight, enhanced activity of antioxidant enzymes, proline and protein content. Total profiling of the culture with SDS‐PAGE indicated expression of new protein bands in 95 kDa in P. brassicacearum.
  • Temperature‐induced changes in PGPR isolates are similar to those in the host plant. P. brassicacearum may be a good candidate for use in biofertiliser production for plants exposed to high temperature stress.
  相似文献   

8.
9.
Biocontrol of the root-knot nematode Meloidogyne javanica was studied on lentil using plant growth-promoting rhizobacteria (PGPR) namely Pseudomonas putida, P. alcaligenes, Paenibacillus polymyxa and Bacillus pumilus and root nodule bacterium Rhizobium sp. Pseudomonas putida caused greater inhibitory effect on the hatching and penetration of M. javanica followed by P. alcaligenes, P. polymyxa and B. pumilus. Inoculation of any PGPR species alone or together with Rhizobium increased plant growth both in M. javanica-inoculated and -uninoculated plants. Inoculation of Rhizobum caused greater increase in plant growth than caused by any species of plant growth-promoting rhizobacteria in nematode-inoculated plants. Among PGPR, P. putida caused greater increase in plant growth and higher reduction in galling and nematode multiplication followed by P. alcaligenes, P. polymyxa and B. pumilus. Combined use of Rhizobium with any species of PGPR caused higher reduction in galling and nematode multiplication than their individual inoculation. Use of Rhizobium plus P. putida caused maximum reduction in galling and nematode multiplication followed by Rhizobium plus P. alcaligens. Pseudomonas putida caused greater root colonization and siderophore production followed by P. alcaligenes, P. polymyxa and B. pumilus. Analysis of the protein bands of these four species by SDS-PAGE revealed that P. putida had a different protein band profile compared to the protein profiles of P. alcaligenes, P. polymyxa and B. pumilus. However, the protein profiles of P. acaligenes, P. polymyxa and B. pumilus were similar.  相似文献   

10.
Potential of non-symbiotic plant growth promoting rhizobacteria (PGPR) to influence the endogenous indole-3-acetic acid (IAA) content and growth of Vigna radiata (L.) was evaluated. The bacterial strains used belonged to Pseudomonas, Escherichia, Micrococcus and Staphylococcus genera. All strains were able to produce IAA (1.16–8.22 μg ml−1) in the presence of 1,000 μg ml−1 of l-tryptophan as revealed by gas chromatography and mass spectrometric (GC–MS) analysis. However, strains exhibited variable results for other growth promoting traits such as phosphate solubilization and siderophore or hydrogen cyanide production. Bacterial IAA production showed significant positive correlation with endogenous IAA content of roots (r = 0.969; P = 0.01) and leaves (r = 0.905; P = 0.01) under axenic conditions. Bacterization of V. radiata seeds significantly enhanced shoot length (up to 48.10%) and shoot fresh biomass (up to 43.80%) under fully axenic conditions. Bacterial strains applied under wire-house conditions also improved shoot length, number of pods, and grain weight up to 58, 65, and 17.15% respectively, over control. Hence, free living (non-symbiotic) PGPR have the ability to influence endogenous IAA content and growth of leguminous plants.  相似文献   

11.
Salinity is one of the major environmental threats for successful crop production, hampering plant growth due to the osmotic effect and nutritional and hormonal imbalances. The application of naturally occurring plant growth-promoting rhizobacteria (PGPR) is an emerging technology aimed at ameliorating the negative impact of salinity. However, the results obtained in the laboratory can sometimes not be reproduced in the field. The aim of the study reported here was to evaluate the effect of PGPR inoculation on seed germination in a saline environment under axenic conditions and on enhancement of the growth and yield of wheat under natural salt-affected field conditions. Wheat seeds were inoculated with pre-isolated strains of Pseudomonas putida, Enterobacter cloacae, Serratia ficaria, and Pseudomonas fluorescens and sown at different salinity levels (1, 2, 3, 6, 9, 12, 15 dS m-1). Inoculation with these strains was found to enhance the germination percentage, germination rate, and index of wheat seeds up to 43, 51, and 123 %, respectively, over the uninoculated control at the highest salinity level. The potential of these PGPR for improving the growth and yield of wheat was also evaluated at two natural salt-affected sites. Inoculation with PGPR resulted a significant increase in the growth and yield parameters of wheat at both sites. The inoculated plants also improved the nutrient status of the wheat plants. The inoculated plants had low sodium and high nitrogen, phosphorus, and potassium contents. Our results show that such rhizobacterial strains may be used as an effective tool for enhancing plant growth under salinity stress and for maximizing the utilization of salt-affected soils.  相似文献   

12.
Rhizosphere bacteria that colonize plant roots and confer beneficial effects are referred as plant growth promoting rhizobacteria (PGPR). Among all PGPR, some rhizobacteria have an ability to produce ACC deaminase enzyme. This enzyme catalyzes stress ACC into a-ketobutyrate and ammonia instead of letting it to be converted to ethylene. Ethylene level rises in plants under stress conditions i.e., drought, salinity, poor soil fertility etc. As poor soil fertility is a big hurdle to achieve the optimum yield of crops, inoculation of ACC deaminase PGPR can overcome this problem to some extent. The aim of the current study was to examine the influence of multi-strain and single-strain inoculation of different ACC deaminase producing PGPR on wheat growth and yield. There were three PGPR strains, Enterobacter cloacae, Serratia ficaria and Burkholderia phytofirmans which were used as consortia and single-strain inoculations. The results showed that inoculation of E. cloacae + S. ficaria + B. phytofirmans significantly increased plant height (63%), spike length (61%), number of spikelets spike-1 (61%), number of grains spike-1 (131%), 1000 grains weight (33%), grains yield (71%), straw yield (71%) and biological yield (68%) of wheat as compared to control. A significant improvement in N (37 and 200%), P (46 and 166%) and K (39 and 61%) of seeds and shoot respectively, validated the efficacious and more effective role of multi-strain (E. cloacae + S. ficaria + B. phytofirmans) inoculation over control. It is obviously concluded that multi-strain ACC deaminase producing PGPR inoculation is a better approach as compared to singlestrain inoculation for the improvement in growth and yield of wheat.  相似文献   

13.
We investigated the effects of three plant growth promoting rhizobacteria (PGPR), on Biological Nitrogen Fixation (BNF), nodulation and growth promotion by soybean (Glycine max) var. Osumi plants. The strains, Aur 6, Aur 9 and Cell 4, belong toPsedomonas fluorescens, Chryseobacterium balustinum andSerratia fonticola, respectively. Inoculation modes for the PGPRs andSinorhizobium fredii (carried out through irrigation), were examined. In the first mode, PGPRs andS. fredii were co-inoculated. In the second mode, we first inoculatedS. fredii and after the PGPRs, which were added 5 or 10 days later (each inoculation being an independent treatment). In the third mode, the PGPRs were inoculated first, and theS. fredii was inoculated 5 days later. We also included treatments inoculated with only the PGPRs (one PGPR per treatment) and only withS. fredii. Plants were maintained in a greenhouse under controlled environmental conditions, and were sampled 3 months after sowing. The results obtained showed the effects of the inoculation sequence. The most significant effects on growth parameters (stem plus leaf weight and fresh root weight) were found when inoculations with PGPR andS. fredii were at different times or when we inoculated only with PGPR and the plants were watered with nitrogen. Co-inoculation had no positive effects on any parameter, probably due to competition between the PGPR andS. fredii. Our results indicate that the inoculation modes with PGPR and rhizobia play a very important role in the effects produced. Thus, although plant growth promoting rhizobacteria may interact synergistically with root-nodulating rhizobia, plant growth promoting rhizobacteria selected for one crop should be assessed for potentially hazardous effects on other crops before being used as inoculants.  相似文献   

14.
Larvae of Ostrinia nubilalis (Hübner) cause significant damage to maize ears and reduce market value of fresh sweet corn. Females rely on volatile cues to locate and oviposit preferentially on maize plants. In addition, oviposition behavior of females is influenced by soil management practices as they usually lay more eggs on maize plants grown on conventional soil than on organic soils that harbor rich microbial diversity. Since some plant growth‐promoting rhizobacteria (PGPR) are known to mediate plant health via suppression of soil pathogens and enhanced uptake of nutrients; we hypothesized that inoculation of maize seeds with PGPR will alter emission of maize volatile and reduce the attractiveness of plants to ovipositing O. nubilalis. Plants treated with the single PGPR strain Bacillus pumilus INR‐7, two PGPR mixtures (Blend‐8 or Blend‐9) or untreated plants were presented to O. nubilalis females in oviposition choice bioassays. Headspace volatile organic compounds (VOCs) from the plants were analyzed by gas chromatography–mass spectrometry (GC–MS). Ostrinia nubilalis laid significantly fewer eggs on PGPR‐treated plants compared to untreated plants. In two‐choice oviposition experiments, significantly higher numbers of eggs were laid on untreated plants compared to PGPR‐treated plants. PGPR‐treated plants emitted fewer VOCs than untreated plants which, in part, explains the relatively fewer eggs on PGPR‐treated plants. These results indicate that selected PGPR treatments can alter maize plant volatiles with important ramifications for plant‐insect interactions. The implication of this finding is discussed in the context of integrated management of soil health to improve crop resistance to biotic stressors.  相似文献   

15.
  • The research conducted including its rationale: Spodoptera litura is the major pest of tomato causing significant reduction in tomato yield. Application of Plant growth promoting rhizobacteria(PGPR) prevent use of chemical fertilizer and synthetic pesticides through enhancement of plant growth and yield and induction of systemic resistance. Present investigation is an attempt to evaluate the role of PGPR, Pseudomonas putida and Rothia sp. on the physiology and yield of tomato fruit infested with the S. litura.
  • Central methods applied : The surface sterilized seeds of tomato were inoculated with 48 h culture of P. putida and Rothia sp. At 6–7 branching stage of the plant, the larvae of S. litura at 2nd in star was used to infect the tomato plant leaves.
  • Key results: The S. litura infestation decreased dry weight of shoots and roots by 46% and 22%, and significant reduction was recorded in tomato fruit yield. The P. putida and Rothia sp. inoculations alleviated the adverse effects of insect infestation and resulted in 60% increase in plant biomass and 40% increase in yield over infested plants.
  • Main conclusions including key points of discussion: PGPR: Defense appears to be mediated via increase in proline production, enhanced activities of antioxidant enzymes, stimulation in the activities of protease and polyphenol oxidases, increased contents of phenolics, protein and chlorophyll. The formulation of biopesticide involving PGPR comprise an environment friendly and sustainable approach to overcome insect infestation.
  相似文献   

16.
Nitrogen‐fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen‐13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen‐limiting conditions when inoculated with an ammonium‐excreting strain of Azospirillum brasilense. 11C‐labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen‐starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen‐sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.  相似文献   

17.
Two plant growth‐promoting rhizobacterial (PGPR) strains, Bacillus subtilis SU47 and Arthrobacter sp. SU18, were found to tolerate 8% NaCl. Wheat co‐inoculated with these two PGPR strains, and grown under different salinity regimes (2–6 dS m?1), showed an increase in dry biomass, total soluble sugars and proline content. Wheat sodium content was reduced under co‐inoculated conditions but not after single inoculation with either strain or in the control. The activity of antioxidant enzymes in wheat leaves decreased under salinity stress after PGPR co‐inoculation, suggesting these PGPR species could be used for amelioration of stress in wheat plants. Activity of three antioxidant enzymes in wheat grown with both PGPR strains was reduced, most notably that of catalase activity at a salinity of 6 dS m?1, when compared with the control. The results indicate that co‐inoculation with B. subtilis and Arthrobacter sp. could alleviate the adverse effects of soil salinity on wheat growth.  相似文献   

18.
Cicuta virosa L. plants can grow in a pond subjected to heavy‐metal inputs at the Hitachi mine, eastern Japan. They accumulate heavy‐metal elements, especially high concentrations of zinc (Zn), in their roots. We focused on the role that root bacterial endophytes play in the heavy‐metal uptake of plants and the provision of heavy‐metal tolerance within plants. Our purpose was to clarify the effects of endophytes on: (i) Zn accumulation in C. virosa roots; (ii) growth of C. virosa seedlings; and (iii) heavy‐metal tolerance of C. virosa plants. Root endophytic Pseudomonas putida and Rhodopseudomonas sp., which induced the high production of Zn‐chelating compounds, were selected for the seedling inoculation test. The results of the inoculation test demonstrated that both strains of endophytes increased Zn accumulation in C. virosa roots by solubilizing Zn in the sediment. Both strains also increased the growth of seedlings by possible production of indole‐3‐acetic acid in the plant. The heavy‐metal tolerance of C. virosa seedlings was likely promoted by producing metal‐chelating compounds that detoxify the metals in the plant tissues, and by decreasing the heavy‐metal contents in the tissues via rapid seedling growth. Thus, such mutualistic interactions between plants and bacteria contribute to the persistence of C. virosa in this severe environment.  相似文献   

19.
Salt‐tolerant plant growth‐promoting rhizobacteria (ST‐PGPR) significantly influence the growth and yield of wheat crops in saline soil. Wheat growth improved in pots with inoculation of all nine ST‐PGPR (ECe = 4.3 dS·m?1; greenhouse experiment), while maximum growth and dry biomass was observed in isolate SU18 Arthrobacter sp.; simultaneously, all ST‐PGPR improved soil health in treated pot soil over controls. In the field experiment, maximum wheat root dry weight and shoot biomass was observed after inoculation with SU44 B. aquimaris, and SU8 B. aquimaris, respectively, after 60 and 90 days. Isolate SU8 B. aquimaris, induced significantly higher proline and total soluble sugar accumulation in wheat, while isolate SU44 B. aquimaris, resulted in higher accumulation of reducing sugars after 60 days. Percentage nitrogen (N), potassium (K) and phosphorus (P) in leaves of wheat increased significantly after inoculation with ST‐PGPR, as compared to un‐inoculated plants. Isolate SU47 B. subtilis showed maximum reduction of sodium (Na) content in wheat leaves of about 23% at both 60 and 90 days after sowing, and produced the best yield of around 17.8% more than the control.  相似文献   

20.
Diazotrophic bacteria isolated from the rhizosphere of Chinese cabbage were assessed for other plant growth promoting characteristics viz., production of IAA, ethylene, ACC deaminase, phosphate solubilization, and gnotobiotic root elongation. Their effect on inoculation to Chinese cabbage was also observed under growth chamber conditions. A total of 19 strains that showed higher nitrogenase activity identified by 16S rRNA gene sequence analysis were found to be the members of the genera Pseudomonas and Agrobacterium belonging to α- and γ-Proteobacteria groups. These strains were also efficient in producing IAA and ACC deaminase though they produced low levels of ethylene and no phosphate solubilization. In addition, inoculation of selected diazotrophic bacterial strains significantly increased seedling length, dry weight, and total nitrogen when compared to uninoculated control. The colonization of crop plants by diazotrophic bacteria can be affected by many biotic and abiotic factors, and further studies are oriented towards investigating the factors that could influence the establishment of a selected bacterial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号