首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Soil-borne plant pathogens such as Rhizoctonia solani (Kuhn), Pythium ultimum (Trow) and Sclerotinia trifoliorum (Eriks) can reduce grass and forage legume establishment. The potential for biocontrol of these pathogens by Trichoderma fungi was evaluated. Following dual culture assays, nine Trichoderma isolates (five of Trichoderma atroviride and one each of Trichoderma hamatum, Trichoderma koningiopsis, Trichoderma viride and Trichoderma virens) were chosen for assessment in pot experiments. In the presence of R. solani, perennial ryegrass (Lolium perenne L.) emergence was increased by 60–150% by two isolates of T. atroviride and by 35–212% by the isolate of T. virens, with the increase depending on growing medium and amount of pathogen inoculum. Red clover (Trifolium pratense L.) emergence in the presence of S. trifoliorum was significantly increased by two T. atroviride isolates and the T. hamatum isolate. In the presence of P. ultimum, white clover (Trifolium repens L.) emergence was increased by 25–42% by one isolate of T. atroviride and the T. hamatum isolate. However, for all three pasture species, some Trichoderma isolates reduced seedling emergence. Seedling growth (shoot and root fresh weight/plant) of the three pasture species was significantly increased by one or more T. atroviride isolates. On the basis of these results for both disease reduction and growth promotion, four T. atroviride isolates were selected for field assessment as biocontrol agents of soil-borne pathogens of pasture species.  相似文献   

3.
Many different species of fungi are often isolated from rotted cassava root tubers and pathogenicity studies have often implicated Botryodiplodia theobromae and Fusarium solani as the major causal pathogens. Consequently, more attention has often been focused on Botryodiplodia theobromae and Fusarium solani with little or no attention on the other minor pathogens. Considering the increasing importance of cassava to the Nigerian economy and the fact that minor root rot pathogens of cassava today could become major tomorrow, the aim of this research is to determine the incidence, pathogenicity and symptoms of the minor root rot pathogens in cassava from cassava fields within the derived savanna and the humid forest of Nigeria. Isolation of associated fungi was done on rotted root samples and the pathogenicity of these isolates were established by inoculating them into healthy cassava tuberous roots and subsequently reisolating them from resulting rotted tissue. The less frequently isolated fungi where Macrophomina sp., Trichoderma sp., Aspergillus niger, Aspergillus flavus, Sclerotium rolfsii and Fungus ‘A’ (a yet to be identified fungus). Repeated experiments confirmed a constant relationship between inoculated fungus and the resulting rotted tissue colour. The root rot tissue colours associated with inoculated pathogens in the laboratory were identical with the pathogens colony colour on potato dextrose agar.  相似文献   

4.
The effects of co‐inoculation of Rhizoctonia solani and Colletotrichum lindemuthianum or Uromyces appendiculatus at different inoculum levels were studied on the disease dynamics and on the growth of bean plants under greenhouse conditions. Bean seeds were sown in R. solani‐infested soil. Additional experiments in which seedlings were transplanted to infested soil were also carried out. Conidial suspensions of C. lindemuthianum or uredospores of U. appendiculatus were inoculated onto leaves at plant developmental stages V2 and V3, respectively. Interactions between root rot and the aerial diseases were observed depending on the inoculum levels and on the timing of R. solani inoculation. Anthracnose severity tended to be higher on R. solani‐infected plants. Conversely, R. solani infection significantly reduced diameter of pustules and rust severity. When seedlings were transplanted to soil infested with low levels of R. solani, root rot severity and density of R. solani in the soil were magnified at high levels of C. lindemuthianum or U. appendiculatus. In these experiments, a synergistic interaction between root rot and anthracnose was observed to affect the plant dry weight. Antagonistic effects on the plant dry weight were found for the combination root rot/rust only when seeds were sown in infested soil.  相似文献   

5.
Strain improvement was carried out to obtain higher chitinase and protein by inter-specific protoplast fusion between Trichoderma harzianum and Trichoderma viride. Fusant HF9 and parental strains of Trichoderma were compared for chitinase and protein production. 1% of glucose, sucrose and fungal cell wall (Rhizoctonia solani), were used as carbon source for cultivation of Trichoderma and fungal cell wall was the best to induce chitinase and protein. Usage of 0.5% colloidal chitin for the fungal growth under aerated conditions at pH 6.5 and 28°C led to higher chitinase and protein production. In these conditions fusant Trichoderma HF9 in comparison with parent strains had 3-, 2.5- and 1.5-fold increase of total chitinase, specific chitinase and protein, respectively. SDS-PAGE analysis revealed that it had 9 major protein bands with up-regulation compared to parent strains. Amino acid analysis showed that protein of culture filtrate of T. harzianum, T. viride and fusant Trichoderma HF9 had 8, 6 and 10 amino acids, respectively. The results obtained suggested that fusant HF9 could be an integration of T. harzianum and T. viride through protoplast fusion.  相似文献   

6.
The root-surface mycoflora of cassava were isolated from roots washed in serial changes of sterile distilled water and plated out on potato-dextrose agar. A small group of fungi which included Aspergillus niger, Botryodiplodia theobromae, Fusarium solani, Penicillium javanicum, Penicillium sp., and Trichoderma sp. were found to be consistently associated with the root surface. While the isolates, B. theobromae and F. solani were found to be aggressively pathogenic on freshly harvested cassava tubers causing extensive rot, A. niger was only mildly so. The root-surface mycoflora, therefore, includes fungi which have been reported as the most important in postharvest deterioration of the tubers. The removal of the rhizoplane microflora by surface-sterilization using calcium hypochlorite or Clorox and subsequent incubation in loosely tied polyethylene bags extended the storage life of the tubers considerably.  相似文献   

7.
Ganoderma boninense is a white rot basidiomycete that causes basal stem rot disease of oil palm (Elaeis guineensis). The aims of this study were to identify endophytic basidiomycetes occurring naturally within oil palm and to assess their potential as biocontrol agents against G. boninense strain PER71 in vitro. In total, 376 isolates were recovered from samples collected from the root, stem and leaves of oil palm using Ganoderma‐selective medium. Ten of these isolates (2.7% of the total 376 isolates) were identified as basidiomycetes on the basis of clamp connections and the production of poroid basidiomes after incubation in glass jars containing PDA medium for 7–12 days. The isolates were identified using ITS rDNA sequencing as Neonothopanus nambi (five isolates), Schizophyllum commune (four isolates) and Ganoderma orbiforme (one isolate). The N. nambi isolates showed the greatest antagonistic activity against G. boninense, based on 73–85% inhibition of the radial growth measurements of G. boninense in dual culture and 76–100% inhibition of G. boninense growth in a culture filtrate assay. Possible modes of action for the antagonism shown by N. nambi against G. boninense in vitro include competition for substrate availability, space and the production of non‐volatile metabolites or antibiotics that inhibited the growth of G. boninense. Further in vivo investigations are required to determine the ability of N. nambi isolates to colonize oil palm seedlings and to protect oil palm from infection when challenged with G. boninense.  相似文献   

8.
Biological control of fungi causing root rot on sugar beet by native Streptomyces isolates (C and S2) was evaluated in this study. The dry weight and colony forming unit (CFU) of S2 and C increased when 300 mM NaCl was added to medium. The in vitro antagonism assays showed that both isolates had inhibitory effect against Rhizoctonia solani AG-2, Fusarium solani and Phytophthora drechsleri. In dual culture, Streptomyces isolate C inhibited mycelial growth of R. solani, F. solani and P. drechsleri 45%, 53% and 26%, respectively. NaCl treatment of medium increased biocontrol activity of soluble and volatile compounds of isolate C and S2. After salt treatment, growth inhibition of R. solani, F. solani and P. drechsleri by isolate C increased up to 59%, 70% and 79%, respectively. To elucidate the mode of antagonism, protease, chitinase, beta glucanase, cellulase, lipase and α-amylase activity and siderophore and salicylic acid (SA) production were evaluated. Both isolates showed protease, chitinase and α-amylase activity. Also, biosynthesis of siderophore was detectable for both isolates. Production of siderophore and activity of protease and α-amylase increased after adding salt for both isolates. In contrast, chitinase activity decreased significantly. Production of SA, beta glucanase and lipase by isolate S2 and biosynthesis of cellulase by isolate C were observed in presence and absence of NaCl. Soil treatment with Streptomyces isolate C inhibited root rot of sugar beet caused by P. drechsleri, R. solani and F. solani. Results of this study showed that these two Streptomyces isolates had potential to be utilized as biocontrol agent against fungal diseases especially in saline soils.  相似文献   

9.
In Brazil, Meloidogyne mayaguensis has become a threat to guava production. Approximately a third of the cultivated area is infested, leading almost inevitably to the decimation of the orchards. Because parasitized trees develop rotten roots as the disease progresses, the possibility that a soil‐borne pathogen could be involved was investigated. From several nematode‐free or nematode‐infested orchards, nearly 2000 root fragments were tested for bacteria and fungi. Positive isolations were obtained from nematode‐infested areas only and were predominantly identified as Fusarium sp. In a 5‐month microplot experiment, guava seedlings were uninoculated (control) or were inoculated with M. mayaguensis only or with this nematode and 21 days later with one of 11 Fusarium sp. isolates. A Scott–Knot analysis of several vegetative variables and of the extent of root rot allowed the generation of a dissimilarity dendrogram that indicated that four Fusarium sp. isolates were particularly associated with damage to the seedlings. Upon identification of these isolates as Fusarium solani, a 6‐month microplot experiment was set up, in which guava seedlings were uninoculated or were inoculated with one of the following: (i) M. mayaguensis only, (ii) four F. solani isolates, separately, (iii) four F. solani isolates separately, combined with physical injury of the roots with a knife, (iv) M. mayaguensis, and 21 days later with four F. solani isolates, separately. No root rot and virtually no effect on all variables were observed in the seedlings inoculated with the fungus isolates, with or without physical injury. Major root rot and a negative effect on all variables were observed in the seedlings inoculated with M. mayaguensis and all four F. solani isolates. This characterizes guava decline as a complex disease caused by the synergistic effect of these organisms, in which parasitism by the nematode predisposes the plants to root decay caused by the fungus.  相似文献   

10.
The mycelial weight of eight out of nine isolates of Trichoderma spp. and Gliocladium virens increased in media supplemented with 2000 mg/l of nitrogen (N) from the fertilizers NH4Cl, NaNO3, and a commercial 20–20–20. In general, the greatest increase in growth (up to 311 %) occurred with 20–20–20. The extent of growth was similar with either NH4Cl or NaNO3, but was less than that with 20–20–20. Measured by radial development on agar surfacesgrowth of isolates was either not affected or was constricted by supplemental fertilizers. Production of conidia by six out of eight isolates was stimulated by 20–20–20 but not by NH4Cl or NaNO3. Germination of conidia of all isolates, generally was high (> 85 %) on amended and nonamended agar. Chlamydospore formation by three Trichoderma isolates in liquid media was not affected by fertilizers. Antagonism or overgrowth of the pathogen Rhizoctonia solani by Trichoderma isolates in culture was reduced appreciably by NaNO3, but was not affected by NH4Cl or 20–20–20. Addition of 20–20–20 to natural soil did not reduce further the survival of R. solani caused by germling preparations of six out of seven Trichoderma isolates. However, reduction in survival of the pathogen caused by a T. hamatum isolate was stimulated further (45 %) by the fertilizer.  相似文献   

11.
Biological control of wilt of egg plant (Solanum melongena L.) caused by Fusarium solani was made with the application of five Trichoderma species, T. harzianum, T. viride, T. lignorum, T. hamatum and T. reesei. The effect of volatile and non-volatile antibiotics of Trichoderma origin on growth inhibition of the wilt pathogen was studied. T. harzianum showed maximum growth inhibition (86.44 %) of the pathogen through mycoparasitism. The non-volatiles produced by the Trichoderma species exhibited 100 % growth inhibition of the pathogen under in vitro condition. Production of siderophores and fungal cell wall degrading enzymes, chitinase and β-1,3-glucanase were found. Treatments with two most efficient Trichoderma species, T. harzianum and T. viride resulted in the decreasing population of Fusarium solani in soil thereby deterring disease incidence in field condition.  相似文献   

12.
In vitro, Trichoderma album, Trichoderma harzianum, Trichoderma koningii, Trichoderma viride and Trichoderma virens showed antagonistic effect against the most pathogenic isolate (Sc2) of Sclerotium cepivorum, the cause of onion white rot disease. Five Trichoderma preparations of each Trichoderma sp. were prepared on wheat bran powder to be used for controlling white rot disease of onion. Greenhouse and field experiments followed the same trend where T. harzianum and T. koningii were the most effective in reducing the incidence and severity of white rot disease compared with the control. Trichoderma species preparations caused promotion to vegetative parameters of onion plants in pots and increase bulb productivity in filed. In this regard, T. harzianum and T. koningii were the most effective. A positive correlation was found between the biocontrol activity of Trichoderma species preparations and enhancement of peroxidase, polyphenoloxidase and chitinase enzymes in onion plants to resist infection with S. cepivorum.  相似文献   

13.
Rhizoctonia solani isolates used in this investigation were identified as anastomosis-4 (AG-40), collected from different localities from Assiut governorate in Egypt. Pathogenicity test of seven isolates of R. solani was evaluated on soybean Giza 111 cultivar under greenhouse conditions. All tested isolates were able to infect soybean plants causing root rot with different degrees of severities, isolate No. 1, 2 and 3 showed significantly highest root rot severity, while isolate No. 5 gave the lowest percentage of root rot rating. The sodium dodecyl sulphate polyacrylamide gel electrophoresis patterns were used to compare three isolates of R. solani. There are no variations among R. solani isolates except a few exceptions according to their protein patterns. DNA markers obtained from all isolates showed genetic similarity among different isolates obtained from different geographical regions barring few exceptions. Correlation between DNA patterns of R. solani isolates and their virulence was detected, but no correlation with anastomosis groups (AG).  相似文献   

14.
The necrotrophic fungus Thanatephorus cucumeris (anamorph Rhizoctonia solani) is among the most important soil‐borne pathogens which causes tomato foot and root rot worldwide. We investigated virulence and genetic relationships among and within different taxonomic groups of R. solani from the tomato‐growing regions in the north‐east of Iran. Characterization of R. solani taxonomic groups revealed that, of 56 isolates, four were AG‐2‐1, 16 were AG‐3 PT, 21 were AG‐4 HG‐I and 15 were AG‐4 HG‐II. Because interprimer binding site (iPBS), which is based on amplification of retrotransposons, is known as novel and powerful DNA fingerprinting technology, we selected four iPBS primers, which can detect polymorphisms of tomato foot root and root rot pathogen, for investigating genotypic variability of the isolates. The iPBS analyses separated various taxonomic groups of R. solani and showed great diversity among the isolates, demonstrating that the R. solani isolates obtained from tomato were not a clonal population. Crop rotation strategies and geographic location seem to be important factors affecting genetic structure of the isolates. Pathogenicity tests on tomato cultivar ‘Mobil’ showed significant differences in the virulence of various isolates. The overall results indicated that isolates of AG‐3 and AG‐4 were more virulent than AG‐2‐1. There was no significant correlation between genetic diversity and virulence of the isolates. This is the first report of R. solani AG‐4 HG‐II, causing tomato foot and root rot. Also, our research is the first in assessment of genetic diversity in fungal populations using iPBS molecular markers.  相似文献   

15.
Trichoderma isolates were collected from different sources and screened for their in vitro parasitism of Rhizoctonia solani. They were grouped according to the different sources and each group compared statistically. 74% of the total isolates collected were regarded as antagonistic to R. solani in vitro. Isolates associated with pine bark source were very aggressive. The most aggressive strains were isolated from soil samples collected under the Speedling® trays of a commercial seedling nursery.  相似文献   

16.
Genetic enhancement of TCT4 and TCT10 was aimed in the present paper. Trichoderma reesei (TCT10/M18) mutant isolate evolved by ethyl methane sulfonate mutations was found to exhibit altered properties compared to its parent isolates. This mutant grew well in the potato dextrose agar (PDA) medium containing carbendazim (50 ppm). RAPD-PCR results suggested the uniqueness of mutants, which was useful in differentiating mutant and wild Trichoderma isolates. These mutants established well in the rhizosphere of rough lemon seedlings. The seedlings treated with carbendazim followed by an application of carbendazim-resistant mutant (TCT10/M18) resulted in a better seedling emergence and a less dry root rot disease caused by Fusarium solani in nursery conditions.  相似文献   

17.
Randomly amplified polymorphic DNA (RAPD) analysis and the PCR assay were used in combination with dilution plating on a semiselective medium to detect and enumerate propagules of Trichoderma hamatum 382, a biocontrol agent utilized in compost-amended mixes. Distinct and reproducible fingerprints were obtained upon amplification of purified genomic DNA of T. hamatum 382 with the random primers OPE-16, OPH-19, and OPH-20. Three amplified DNA fragments of 0.35 (OPE-160.35), 0.6 (OPH-190.6), and 0.65 (OPH-200.65) kb were diagnostic for T. hamatum 382, clearly distinguishing it from 53 isolates of four other Trichoderma spp. tested. Some isolates of T. hamatum shared these low-molecular-weight fragments with T. hamatum 382. However, RAPD analysis of isolates of T. hamatum with all three random primers used in consecutive PCR tests distinguished T. hamatum 382 from other isolates of T. hamatum. These three RAPD amplicons were cloned and sequenced, and pairs of oligonucleotide primers for each cloned fragment were designed. Use of the primers in the PCR assay resulted in the amplification of DNA fragments of the same size as the cloned RAPD fragments from genomic DNA of T. hamatum 382. A combination of dilution plating on a semiselective medium for Trichoderma spp. and PCR, with the RAPD primers OPH-19, OPE-16, and OPH-20 or the three sequence-characterized primers, was used successfully to verify the presence of T. hamatum 382 propagules in nine different soil, compost, and potting mix samples. All 23 Trichoderma isolates recovered on semiselective medium from commercial potting mixes fortified with T. hamatum 382 were identified as T. hamatum 382, whereas 274 Trichoderma isolates recovered from the other nine samples were negative in the PCR assay. Thus, this highly specific combination of techniques allowed detection and enumeration of propagules of T. hamatum 382 in fortified compost-amended potting mixes. Sequence-characterized amplified region markers also facilitated the development of a very simple procedure to amplify DNA of T. hamatum 382 directly from fortified compost-amended potting mixes.  相似文献   

18.
The aim of this work was to study the antagonist effect of two Rhizobium strains Pch Azm and Pch S.Nsir2 to Rhizoctonia solani and for an evaluation of the relative impact of rhizobia on the expression of the plant's defence response against Rhizoctonia. First, these strains reduced fungal growth observed in vitro using the same or separately Petri dishes. Moreover, these isolates led to reduced chickpea infection by R. solani, resulting from the direct effect of rhizobia on pathogens and possible induced resistance in chickpea. Concomitantly, reduction in infection was accompanied by enhanced level of defence‐related enzymes, phenylalanine ammonia lyase (PAL) and peroxidase (POX). An increased level of phenol content was recorded in the roots of bacterized plants grown in the presence of pathogen. The results promise the use of rhizobia for protection of chickpea against R. solani.  相似文献   

19.
Nineteen Trichoderma isolates, collected from different locations in Bangladesh, were characterised through phenotypic, biochemical and molecular means. Besides, they were assessed for their antifungal action in vitro. The isolates were divided into three groups: T. asperellum, T. virens and T. harzianum. A dual culture assay and a culture filtrate assay against 6 phytopathogens revealed that 9 of the 19 isolates showed significant antifungal activities. The isolate T. harzianum TR05 showed the highest inhibition against Fusarium oxysporum, Rhizoctonia solani, Fusarium circinatum and Phomopsis vexans, followed by T. asperellum TR08 and T. virens TR06. TR08 had the highest inhibition against Sclerotium rolfsii and Pythium aphanidermatum, followed by TR05 and TR06. These findings were in agreement with their activities of extracellular hydrolytic enzymes, including chitinase, β-1,3-glucanase, and proteinase. Our results suggest that isolates TR05, TR06 and TR08 have the potential to be effective biocontrol agents against the phytopathogenic fungi.  相似文献   

20.
A comparative study on the extracellular ligninolytic enzymatic activity of five strains of Fusarium solani in a carbon-limited medium under shaking, revealed a differential production of these enzymes. Aryl alcohol oxidase (AAO) activity was observed only in the supernatant of strain CLPS no. 568 with levels higher than 57 mU ml−1. Free extracellular laccase activity was detected in strains CLPS nos. 493, 568 and 570, strain no. 568 being the one which showed the highest activity (over 8.6 mU ml−1). Free extracellular lignin peroxidase (LiP) activity was not detected in any isolate tested, whereas low levels of manganese-dependent peroxidase (MnP) and manganese-independent peroxidase (MIP) activities were detected in certain isolates used. The AAO activity of F. solani on primary α-alcohols such as veratryl alcohol, is reported for the first time; this enzyme activity is hydrogen-peroxide independent. This is also the first report for extracellular MnP and MIP activities of F. solani. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号