首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
CRISPR–Cas systems silence plasmids and viruses in prokaryotes. CRISPR–Cas effector complexes contain CRISPR RNAs (crRNAs) that include sequences captured from invaders and direct CRISPR-associated (Cas) proteins to destroy corresponding invader nucleic acids. Pyrococcus furiosus (Pfu) harbors three CRISPR–Cas immune systems: a Cst (Type I-G) system with an associated Cmr (Type III-B) module at one locus, and a partial Csa (Type I-A) module (lacking known invader sequence acquisition and crRNA processing genes) at another locus. The Pfu Cmr complex cleaves complementary target RNAs, and Csa systems have been shown to target DNA, while the mechanism by which Cst complexes silence invaders is unknown. In this study, we investigated the function of the Cst as well as Csa system in Pfu strains harboring a single CRISPR–Cas system. Plasmid transformation assays revealed that the Cst and Csa systems both function by DNA silencing and utilize similar flanking sequence information (PAMs) to identify invader DNA. Silencing by each system specifically requires its associated Cas3 nuclease. crRNAs from the 7 shared CRISPR loci in Pfu are processed for use by all 3 effector complexes, and Northern analysis revealed that individual effector complexes dictate the profile of mature crRNA species that is generated.  相似文献   

2.
3.
4.
Clustered regularly interspaced short palindromic repeats (CRISPRs) and their associated Cas proteins comprise a prokaryotic RNA-guided adaptive immune system that interferes with mobile genetic elements, such as plasmids and phages. The type I-E CRISPR interference complex Cascade from Escherichia coli is composed of five different Cas proteins and a 61-nt-long guide RNA (crRNA). crRNAs contain a unique 32-nt spacer flanked by a repeat-derived 5′ handle (8 nt) and a 3′ handle (21 nt). The spacer part of crRNA directs Cascade to DNA targets. Here, we show that the E. coli Cascade can be expressed and purified from cells lacking crRNAs and loaded in vitro with synthetic crRNAs, which direct it to targets complementary to crRNA spacer. The deletion of even one nucleotide from the crRNA 5′ handle disrupted its binding to Cascade and target DNA recognition. In contrast, crRNA variants with just a single nucleotide downstream of the spacer part bound Cascade and the resulting ribonucleotide complex containing a 41-nt-long crRNA specifically recognized DNA targets. Thus, the E. coli Cascade-crRNA system exhibits significant flexibility suggesting that this complex can be engineered for applications in genome editing and opening the way for incorporation of site-specific labels in crRNA.  相似文献   

5.
6.
7.
CRISPR–Cas systems are adaptive immune systems in bacteria and archaea to defend against mobile genetic elements (MGEs) and have been repurposed as genome editing tools. Anti-CRISPR (Acr) proteins are produced by MGEs to counteract CRISPR–Cas systems and can be used to regulate genome editing by CRISPR techniques. Here, we report the cryo-EM structures of three type I-F Acr proteins, AcrIF4, AcrIF7 and AcrIF14, bound to the type I-F CRISPR–Cas surveillance complex (the Csy complex) from Pseudomonas aeruginosa. AcrIF4 binds to an unprecedented site on the C-terminal helical bundle of Cas8f subunit, precluding conformational changes required for activation of the Csy complex. AcrIF7 mimics the PAM duplex of target DNA and is bound to the N-terminal DNA vise of Cas8f. Two copies of AcrIF14 bind to the thumb domains of Cas7.4f and Cas7.6f, preventing hybridization between target DNA and the crRNA. Our results reveal structural detail of three AcrIF proteins, each binding to a different site on the Csy complex for inhibiting degradation of MGEs.  相似文献   

8.
9.
Adoption of CRISPR–Cas systems, such as CRISPR–Cas9 and CRISPR–Cas12a, has revolutionized genome engineering in recent years; however, application of genome editing with CRISPR type I—the most abundant CRISPR system in bacteria—remains less developed. Type I systems, such as type I-E, and I-F, comprise the CRISPR-associated complex for antiviral defense (‘Cascade’: Cas5, Cas6, Cas7, Cas8 and the small subunit) and Cas3, which degrades the target DNA; in contrast, for the sub-type CRISPR–Cas type I-D, which lacks a typical Cas3 nuclease in its CRISPR locus, the mechanism of target DNA degradation remains unknown. Here, we found that Cas10d is a functional nuclease in the type I-D system, performing the role played by Cas3 in other CRISPR–Cas type I systems. The type I-D system can be used for targeted mutagenesis of genomic DNA in human cells, directing both bi-directional long-range deletions and short insertions/deletions. Our findings suggest the CRISPR–Cas type I-D system as a unique effector pathway in CRISPR that can be repurposed for genome engineering in eukaryotic cells.  相似文献   

10.
CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR–Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune response. Primed adaptation requires all Cas proteins and a CRISPR RNA recognizing a partially matching target. It leads to selective acquisition of spacers from DNA molecules recognized by priming CRISPR RNA, with most spacers capable of protecting the host. Here, we studied spacer acquisition by a type I-F CRISPR–Cas system. We observe both naïve and primed adaptation. Both processes require not just Cas1 and Cas2, but also intact Csy complex and CRISPR RNA. Primed adaptation shows a gradient of acquisition efficiency as a function of distance from the priming site and a strand bias that is consistent with existence of single-stranded adaption intermediates. The results provide new insights into the mechanism of spacer acquisition and illustrate surprising mechanistic diversity of related CRISPR–Cas systems.  相似文献   

11.
12.
Clustered regularly interspaced palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) nuclease protect bacteria and archeae from foreign DNA by site-specific cleavage of incoming DNA. Type-II CRISPR–Cas systems, such as the Streptococcus pyogenes CRISPR–Cas9 system, can be adapted such that Cas9 can be guided to a user-defined site in the chromosome to introduce double-stranded breaks. Here we have developed and optimized CRISPR–Cas9 function in the lactic acid bacterium Lactobacillus reuteri ATCC PTA 6475. We established proof-of-concept showing that CRISPR–Cas9 selection combined with single-stranded DNA (ssDNA) recombineering is a realistic approach to identify at high efficiencies edited cells in a lactic acid bacterium. We show for three independent targets that subtle changes in the bacterial genome can be recovered at efficiencies ranging from 90 to 100%. By combining CRISPR–Cas9 and recombineering, we successfully applied codon saturation mutagenesis in the L. reuteri chromosome. Also, CRISPR–Cas9 selection is critical to identify low-efficiency events such as oligonucleotide-mediated chromosome deletions. This also means that CRISPR–Cas9 selection will allow identification of recombinant cells in bacteria with low recombineering efficiencies, eliminating the need for ssDNA recombineering optimization procedures. We envision that CRISPR–Cas genome editing has the potential to change the landscape of genome editing in lactic acid bacteria, and other Gram-positive bacteria.  相似文献   

13.
14.
CRISPR–Cas systems require discriminating self from non-self DNA during adaptation and interference. Yet, multiple cases have been reported of bacteria containing self-targeting spacers (STS), i.e. CRISPR spacers targeting protospacers on the same genome. STS has been suggested to reflect potential auto-immunity as an unwanted side effect of CRISPR–Cas defense, or a regulatory mechanism for gene expression. Here we investigated the incidence, distribution, and evasion of STS in over 100 000 bacterial genomes. We found STS in all CRISPR–Cas types and in one fifth of all CRISPR-carrying bacteria. Notably, up to 40% of I-B and I-F CRISPR–Cas systems contained STS. We observed that STS-containing genomes almost always carry a prophage and that STS map to prophage regions in more than half of the cases. Despite carrying STS, genetic deterioration of CRISPR–Cas systems appears to be rare, suggesting a level of escape from the potentially deleterious effects of STS by other mechanisms such as anti-CRISPR proteins and CRISPR target mutations. We propose a scenario where it is common to acquire an STS against a prophage, and this may trigger more extensive STS buildup by primed spacer acquisition in type I systems, without detrimental autoimmunity effects as mechanisms of auto-immunity evasion create tolerance to STS-targeted prophages.  相似文献   

15.
CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use ‘cascade’ [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5–Cas7–crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA.  相似文献   

16.
CRISPR–Cas immune systems process and integrate short fragments of DNA from new invaders as spacers into the host CRISPR locus to establish molecular memory of prior infection, which is also known as adaptation in the field. Some CRISPR–Cas systems rely on Cas1 and Cas2 to complete the adaptation process, which has been characterized in a few systems. In contrast, many other CRISPR–Cas systems require an additional factor of Cas4 for efficient adaptation, the mechanism of which remains less understood. Here we present biochemical reconstitution of the Synechocystis sp. PCC6803 type I-D adaptation system, X-ray crystal structures of Cas1–Cas2–prespacer complexes, and negative stained electron microscopy structure of the Cas4–Cas1 complex. Cas4 and Cas2 compete with each other to interact with Cas1. In the absence of prespacer, Cas4 but not Cas2 assembles with Cas1 into a very stable complex for processing the prespacer. Strikingly, the Cas1-prespacer complex develops a higher binding affinity toward Cas2 to form the Cas1–Cas2–prespacer ternary complex for integration. Together, we show a two-step sequential assembly mechanism for the type I-D adaptation module of Synechocystis, in which Cas4–Cas1 and Cas1–Cas2 function as two exclusive complexes for prespacer processing, capture, and integration.  相似文献   

17.
CRISPR-Cas immune systems function to defend prokaryotes against potentially harmful mobile genetic elements including viruses and plasmids. The multiple CRISPR-Cas systems (Types I, II, and III) each target destruction of foreign nucleic acids via structurally and functionally diverse effector complexes (crRNPs). CRISPR-Cas effector complexes are comprised of CRISPR RNAs (crRNAs) that contain sequences homologous to the invading nucleic acids and Cas proteins specific to each immune system type. We have previously characterized a crRNP in Pyrococcus furiosus (Pfu) that contains Cmr (Type III-B) Cas proteins associated with one of two size classes of crRNAs and cleaves complementary target RNAs. Here, we have isolated and characterized two additional native Pfu crRNPs containing either Csa (Type I-A) or Cst (Type I-G) Cas proteins and distinct profiles of associated crRNAs. For each complex, the Cas proteins were identified by mass spectrometry and immunoblotting and the crRNAs by RNA sequencing and Northern blot analysis. The crRNAs associated with both the Csa and Cst complexes originate from all seven Pfu CRISPR loci and contain identical 5′ ends (8-nt repeat-derived 5′ tag sequences) but heterogeneous 3′ ends (containing variable amounts of downstream repeat sequences). These crRNA forms are distinct from Cmr-associated crRNAs, indicating different 3′ end processing pathways following primary cleavage of common pre-crRNAs. Like other previously characterized Type I CRISPR-Cas effector complexes, we predict that the newly identified Pfu Csa and Cst crRNPs each function to target invading DNA, adding an additional layer of protection beyond that afforded by the previously characterized RNA targeting Cmr complex.  相似文献   

18.
CRISPR RNAs (crRNAs) that direct target DNA cleavage by Type V Cas12a nucleases consist of constant repeat-derived 5′-scaffold moiety and variable 3′-spacer moieties. Here, we demonstrate that removal of most of the 20-nucleotide scaffold has only a slight effect on in vitro target DNA cleavage by a Cas12a ortholog from Acidaminococcus sp. (AsCas12a). In fact, residual cleavage was observed even in the presence of a 20-nucleotide crRNA spacer moiety only. crRNAs split into separate scaffold and spacer RNAs catalyzed highly specific and efficient cleavage of target DNA by AsCas12a in vitro and in lysates of human cells. In addition to dsDNA target cleavage, AsCas12a programmed with split crRNAs also catalyzed specific ssDNA target cleavage and non-specific ssDNA degradation (collateral activity). V-A effector nucleases from Francisella novicida (FnCas12a) and Lachnospiraceae bacterium (LbCas12a) were also functional with split crRNAs. Thus, the ability of V-A effectors to use split crRNAs appears to be a general property. Though higher concentrations of split crRNA components are needed to achieve efficient target cleavage, split crRNAs open new lines of inquiry into the mechanisms of target recognition and cleavage and may stimulate further development of single-tube multiplex and/or parallel diagnostic tests based on Cas12a nucleases.  相似文献   

19.
20.
Small RNAs undergo maturation events that precisely determine the length and structure required for their function. CRISPRs (clustered regularly interspaced short palindromic repeats) encode small RNAs (crRNAs) that together with CRISPR-associated (cas) genes constitute a sequence-specific prokaryotic immune system for anti-viral and anti-plasmid defense. crRNAs are subject to multiple processing events during their biogenesis, and little is known about the mechanism of the final maturation step. We show that in the Staphylococcus epidermidis type III CRISPR-Cas system, mature crRNAs are measured in a Cas10·Csm ribonucleoprotein complex to yield discrete lengths that differ by 6-nucleotide increments. We looked for mutants that impact this crRNA size pattern and found that an alanine substitution of a conserved aspartate residue of Csm3 eliminates the 6-nucleotide increments in the length of crRNAs. In vitro, recombinant Csm3 binds RNA molecules at multiple sites, producing gel-shift patterns that suggest that each protein binds 6 nucleotides of substrate. In vivo, changes in the levels of Csm3 modulate the crRNA size distribution without disrupting the 6-nucleotide periodicity. Our data support a model in which multiple Csm3 molecules within the Cas10·Csm complex bind the crRNA with a 6-nucleotide periodicity to function as a ruler that measures the extent of crRNA maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号