首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemokine receptors belong to the superfamily of G protein-coupled receptors, which regulate the trafficking and activation of leukocytes, and operate as coreceptors in the entry of HIV-1. To investigate the early steps in the signal transmission from the chemokine-binding site to the G protein-coupling region we engineered metal ion-binding sites at putative extracellular sites in the chemokine receptor CXCR1. We introduced histidines into sites located in the second and third putative extracellular loops of CXCR1, creating single, double, and triple mutant receptors: R199H, R203H, D265H, R199H/R203H, R199H/D265H, R203H/D265H, R203H/H207Q, and R199H/R203H/D265H. Cells expressing the double mutants R199H/D265H and R203H/D265H and the triple mutant R199H/R203H/D265H failed to trigger interleukin 8-dependent calcium responses. Interestingly, calcium responses mediated by the single mutant R203H and the double mutants R199H/R203H and R203H/H207Q were blocked by Zn(II), indicating the creation of a functional metal ion-binding site. On the other hand, cells expressing all single, double, or triple histidine-substituted CXCR1 demonstrated high affinity binding to interleukin 8 in the presence and absence of metal ions. These findings indicate that occupation of the engineered metal-binding site uncouples the chemokine-binding site from the activation mechanism in CXCR1. Most importantly, we identify for the first time elements of an early signal transduction switch of chemokine receptors before the activation of cytoplasmic G proteins.  相似文献   

2.
Y Huang  Z Lu  M Ma  N Liu  Y Chen 《BMB reports》2012,45(8):452-457
Diketoreductase (DKR) from Acinetobacter baylyi contains two tryptophan residues at positions 149 and 222. Trp-149 and Trp-222 are located along the entry path of substrate into active site and at the dimer interface of DKR, respectively. Single and double substitutions of these positions were generated to probe the roles of tryptophan residues. After replacing Trp with Ala and Phe, biochemical and biophysical characteristics of the mutants were thoroughly investigated. Enzyme activity and substrate binding affinity of W149A and W149F were remarkably decreased, suggesting that Trp-149 regulates the position of substrate at the binding site. Meanwhile, enzyme activity of W222F was increased by 1.7-fold while W222A was completely inactive. In addition to lower thermostability of Trp-222 mutants, molecular modeling of the mutants revealed that Trp-222 is vital to protein folding and dimerization of the enzyme. [BMB Reports 2012; 45(8): 452-457].  相似文献   

3.
The residues located at the carboxyl terminus of helix D in interleukin-7 (IL-7) have previously been targeted as important for recruitment and binding to the gamma chain component of the IL-7 receptor (IL-7R). In this study, Trp 143 of helix D was mutated to His, Phe, Tyr and Pro and these mutants, along with a W143A mutant previously described, were studied to determine the effects on activation of DNA synthesis and binding affinity to IL-7R positive 2E8 cells. The W143F and W143Y mutants were similar to wild type IL-7 in their binding properties and retained 85% and 74% of their activating properties, respectively. In contrast, the W143H mutant possessed a lower binding affinity and a corresponding decrease in activation, the W143A mutant possessed an over 100-fold decreased binding affinity and some residual activation activity and the W143P mutant possessed a greatly decreased binding affinity and did not activate. These results strongly suggest an aromatic residue is required at position 143 for IL-7R binding and subsequent signal transduction.  相似文献   

4.
In studies aimed at developing a high affinity IL-8 antagonist, our first objective was to generate a high-affinity IL-8 analogue. We targeted amino acids within the receptor-binding domain and found that IL-8((3-73))K11R induced significantly more neutrophil beta-glucuronidase release than either IL-8 or the alternate analogues and, in chemotaxis assays, induced 2-3-fold greater neutrophil responses than IL-8. Furthermore, in competitive radio- or biotinylated-ligand binding assays, IL-8((3-73))K11R was more effective than IL-8, IL-8((3-73)), or its T12S, H13F, and K11R/T12S/H13F analogues in blocking IL-8 binding to neutrophils; 1.8 pmol IL-8((3-73))K11R inhibited by 50% the binding of approximately 20 pmol (125)I-IL-8 to neutrophils. Both IL-8 (a CXCR1/CXCR2 ligand) and the CXCR2-specific ligand GROalpha differentially inhibited binding of (125)I-IL-8((3-73))K11R to neutrophils, albeit weakly, suggesting that IL-8((3-73))K11R is a high affinity ligand for both the CXCR1 and CXCR2. Thus IL-8((3-73))K11R is an excellent candidate for further studies aimed at generating a high affinity IL-8 antagonist.  相似文献   

5.
Song J  Laskowski M  Qasim MA  Markley JL 《Biochemistry》2003,42(10):2847-2856
From the larger set of 191 variants at all the variable contact positions in the turkey ovomucoid third domain, we selected a subset that consists of Asp, Glu, His, and Lys residues at eight of the nine contiguous P6-P3' positions (residues 13-21), the exception being P3-Cys16 which is involved in a conserved disulfide bridge. Two-dimensional [1H,1H]-TOCSY data were collected for each variant as a function of sample pH. This allowed for the evaluation of 31 of the 32 pK(a) values for these residues, the exception being that of P5-Lys14, whose signals at high pH could not be resolved from those of other Lys residues in the molecule. Only two of the titrating residues are present in the wild-type protein (P6-Lys13 and P1'-Glu19); hence, these measurements complement earlier measurements by A. D. Robertson and co-workers. This data set was supplemented with results from the pH dependence of NMR spectra of four additional single mutants, P1-Leu18Gly, P1-Leu18Ala, P2-Thr17Val, and P3'-Arg21Ala, and two double mutants, P2-Thr17Val/P3'-Arg21Ala and P8-Tyr11Phe/P6-Lys13Asp. Probably the most striking result was observation of a P2-Thr17...P1'-Glu19 hydrogen bond and a P1'-Glu19-P3'-Arg21 electrostatic interaction within the triad of P2, P1', and P3' (residues 17, 19, and 21, respectively). In several cases, the pK(a) of a particular residue was sensed by resonances not only in that residue but also in residue(s) with which it interacts. Remarkably, in several interacting systems, resonances from different protons within the same residue yielded different pHmid values.  相似文献   

6.
A glucose dehydrogenase gene was isolated from Bacillus megaterium IWG3, and its nucleotide sequence was identified. The amino acid sequence of the enzyme deduced from the nucleotide sequence is very similar to the protein sequence of the enzyme from B. megaterium M1286 reported by Jany et al. (Jany, K.-D., Ulmer, W., Froschle, M., and Pfleiderer, G. (1984) FEBS Lett. 165, 6-10). The isolated gene was mutagenized with hydrazine, formic acid, or sodium nitrite, and 12 clones (H35, H39, F18, F20, F191, F192, N1, N13, N14, N28, N71, and N72) containing mutant genes for thermostable glucose dehydrogenase were obtained. The nucleotide sequences of the 12 genes show that they include 8 kinds of mutants having the following amino acid substitutions: H35 and H39, Glu-96 to Gly; F18 and F191, Glu-96 to Ala; F20, Gln-252 to Leu; F192, Gln-252 to Leu and Ala-258 to Gly; N1, Glu-96 to Lys and Val-183 to Ile; N13 and N14, Glu-96 to Lys, Val-112 to Ala, Glu-133 to Lys, and Tyr-217 to His; N28, Glu-96 to Lys, Asp-108 to Asn, Pro-194 to Gln, and Glu-210 to Lys; and N71 and N72, Tyr-253 to Cys. These mutant enzymes have higher stability at 60 degrees C than the wild-type enzyme. The results of this study indicate that the tetrameric structure of glucose dehydrogenase is stabilized by several kinds of mutation, and at least one of the following amino acid substitutions stabilizes the enzyme: Glu-96 to Gly, Glu-96 to Ala, Gln-252 to Leu, and Tyr-253 to Cys.  相似文献   

7.
Interleukin-8 (IL-8), a member of the chemokine superfamily, exists as both monomers and dimers, and mediates its function by binding to neutrophil CXCR1 and CXCR2 receptors that belong to the G protein-coupled receptor class. It is now well established that the monomer functions as a high-affinity ligand, but the binding affinity of the dimer remains controversial. The approximately 1000-fold difference between monomer-dimer equilibrium constant (microM) and receptor binding constant (nM) of IL-8 does not allow receptor-binding affinity measurements of the native IL-8 dimer. In this study, we overcame this roadblock by creating a "trapped" nondissociating dimer that contains a disulfide bond across the dimer interface at the 2-fold symmetry point. The NMR studies show that the structure of this trapped dimer is indistinguishable from the native dimer. The trapped dimer, compared to a trapped monomer, bound CXCR1 with approximately 70-fold and CXCR2 with approximately 20-fold lower affinities. Receptor binding involves two interactions, between the IL-8 N-loop and receptor N-domain residues, and between IL-8 N-terminal and receptor extracellular loop residues. In contrast to a trapped monomer that bound an isolated CXCR1 N-domain peptide with microM affinity, the trapped dimer failed to show any binding, indicating that dimerization predominantly perturbs the binding of only the N-loop residues. These results demonstrate that only the monomer is a high-affinity ligand for both receptors, and also provide a structural basis for the lower binding affinity of the dimer.  相似文献   

8.
We recently reported that CXCL8((3-73))K11R is a high affinity agonist of neutrophil activation and chemotactic responses. In this report we employed CXCL8((3-73))K11R as a template to generate CXCL8/IL-8 analogues with antagonist activities, using site-directed mutagenesis to introduce conservative amino acid substitutions into the first turn within the molecule's beta-pleated sheet region (G31P, P32G) and, in association with these, into the putative receptor-recognition site (T12S, H13F, F17S). We then examined their impact on the analogues' biological activities and found that a G31P substitution rendered CXCL8((3-73))K11R a high affinity antagonist of CXCL8/IL-8. The ranking (in the order of decreasing CXCL8/IL-8 antagonist activities) of the CXCL8((3-73))K11R analogues we generated was, G31P>T12S/G31P>H13F/G31P>T12S/H13F/G31P>P32G approximately T12S/P32G approximately H13F/P32G>T12S/H13F/P32G; CXCL8((3-73))K11R/F17S did not inhibit CXCL8/IL-8-dependent responses. CXCL8((3-73))K11R/G31P had no discernible agonist (beta-glucuronidase release, chemotactic) activity, but at 12.5 ng/ml it bound to purified neutrophils more avidly than did 1.25 microg/ml CXCL8/IL-8. Furthermore, CXCL8((3-73))K11R/G31P competitively antagonized the binding of CXCR1- and CXCR2-specific antibodies to these receptors. Taken together, these data thus provide further impetus to the study of the potential efficacy of CXCL8((3-73))K11R/G31P as a broad-spectrum antagonist of the ELR-CXC chemokines in experimental and clinical settings.  相似文献   

9.
The involvement of the strictly conserved Trp354 residue in the catalysis of the Yersinia protein tyrosine phosphatase (PTPase) has been investigated by site-directed mutagenesis and kinetic studies. Crystallographic structural data have revealed that Trp354 interacts with the active site Arg409 and is located at one of the hinge positions of the flexible surface loop (WpD loop) which also harbors the general acid/base (Asp356) essential for catalysis [Schubert, H. L., Fauman, E. B., Stuckey, J. A., Dixon, J. E. & Saper, M. A. (1995) Protein Sci. 4, 1904-1913]. Two mutants were constructed and expressed that contained the Trp354-->Phe and Trp354-->Ala substitutions. The K(m) of the W354F and W354A mutants were not significantly different from that of the wild-type. However, a major decrease in the affinity for oxyanions was observed for the mutants, which is consistent with Trp354 playing a role in aligning Arg409 for oxyanion binding. In addition replacement of Trp354 with Phe or Ala caused a decrease in kcat of 200-fold and 480-fold, respectively, and impaired the ability of the mutant enzymes to stabilize the negative charge in the leaving group at the transition state. In fact, the W354F and W354A mutants exhibited catalytic efficiency and leaving group dependency similar to those observed for the general acid-deficient PTPase D356N. These results indicate that Trp354 is an important residue that keeps the WpD loop in a catalytically competent conformation and positions the general acid/base Asp356 in the correct orientation for proton transfer.  相似文献   

10.
Chemokine IL-8 (CXCL8) binds to its cognate receptors CXCR1 and CXCR2 to induce inflammatory responses, wound healing, tumorogenesis, and neuronal survival. Here we identify the N-loop residues in IL-8 (H18 and F21) and the receptor N-termini as the major structural determinants regulating the rate of receptor internalization, which in turn controlled the activation profile of ERK1/2, a central component of the receptor/ERK signaling pathway that dictates signal specificity. Our data further support the idea that the chemokine receptor core acts as a plastic scaffold. Thus, the diversity and intensity of inflammatory and noninflammatory responses mediated by chemokine receptors appear to be primarily determined by the initial interaction between the receptor N-terminus and the N-loop of chemokines.  相似文献   

11.
A ligand binding pocket has been created on the proximal side of the heme in porcine myoglobin by site-directed mutagenesis. Our starting point was the H64V/V68H double mutant which has been shown to have bis-histidine (His68 and His93) heme coordination [Dou, Y., Admiraal, S. J., Ikeda-Saito, M., Krzywda, S., Wilkinson, A. J., Li, T., Olson, J. S., Prince, R. C., Pickering, I. J., George, G. N. (1995) J. Biol. Chem. 270, 15993-16001]. The replacement of the proximal His93 ligand by noncoordinating Ala (H64V/V68H/H93A) or Gly (H64V/V68H/H93G) residues resulted unexpectedly in a six-coordinate low-spin species in both ferric and ferrous states. To test the hypothesis that the sixth coordinating ligand in the triple mutants was the imidazole of His97, this residue was mutated to Phe, in the quadruple mutants, H64V/V68H/H93A/H97F and H64V/V68H/H93G/H97F. The ferric quadruple mutants show a clear water/hydroxide alkaline transition and high cyanide and CO affinities, characteristics similar to those of wild-type myoglobin. The nu(Fe-CO) and nu(C-O) stretching frequencies in the ferrous-CO state of the quadruple mutants indicate that the "proximal" ligand binding heme pocket is less polar than the distal pocket in the wild-type protein. Thus, we conclude that the proximal heme pocket in the quadruple mutants has a similar affinity for exogenous ligands to the distal pocket of wild-type myoglobin but that the two pockets have different polarities. The quadruple mutants open up new approaches for developing heme chemistry on the myoglobin scaffold.  相似文献   

12.
Transfer of a phosphoryl group from autophosphorylated CheA (P-CheA) to CheY is an important step in the bacterial chemotaxis signal transduction pathway. This reaction involves CheY (i) binding to the P2 domain of P-CheA and then (ii) acquiring the phosphoryl group from the P1 domain. Crystal structures indicated numerous side chain interactions at the CheY-P2 binding interface. To investigate the individual contributions of the P2 side chains involved in these contacts, we analyzed the effects of eight alanine substitution mutations on CheA-CheY binding interactions. An F214A substitution in P2 caused ~1,000-fold reduction in CheA-CheY binding affinity, while Ala substitutions at other P2 positions had small effects (E171A, E178A, and I216A) or no detectable effects (H181A, D202A, D207A, and C213A) on binding affinity. These results are discussed in relation to previous in silico predictions of hot-spot and anchor positions at the CheA-CheY interface. We also investigated the consequences of these mutations for chemotaxis signal transduction in living cells. CheA(F214A) was defective in mediating localization of CheY-YFP to the large clusters of signaling proteins that form at the poles of Escherichia coli cells, while the other CheA variants did not differ from wild-type (wt) CheA (CheA(wt)) in this regard. In our set of mutants, only CheA(F214A) exhibited a markedly diminished ability to support chemotaxis in motility agar assays. Surprisingly, however, in FRET assays that monitored receptor-regulated production of phospho-CheY, CheA(F214A) (and each of the other Ala substitution mutants) performed just as well as CheA(wt). Overall, our findings indicate that F214 serves as an anchor residue at the CheA-CheY interface and makes an important contribution to the binding energy in vitro and in vivo; however, loss of this contribution does not have a large negative effect on the overall ability of the signaling pathway to modulate P-CheY levels in response to chemoattractants.  相似文献   

13.
Ribonuclease MC1 (RNase MC1) isolated from bitter gourd (Momordica charantia) seeds specifically cleaves phosphodiester bonds on the 5'-side of uridine. The crystal structures of RNase MC1 in complex with 2'-UMP or 3'-UMP reveal that Gln9, Asn71, Leu73, and Phe80 are involved in uridine binding by hydrogen bonding and hydrophobic interactions [Suzuki et al. (2000) Biochem. Biophys. Res. Commun. 275, 572-576]. To evaluate the contribution of Gln9 and Phe80 to uridine binding, Gln9 was replaced with Ala, Phe, Glu, or His, and Phe80 with Ala by site-directed mutagenesis. The kinetic properties of the resulting mutant enzymes were characterized using cytidylyl-3',5'-uridine (CpU) as a substrate. The mutant Q9A exhibited a 3.7-fold increased K(m) and 27.6-fold decreased k(cat), while three other mutations, Q9F, Q9E, and Q9H, predominantly affected the k(cat) value. Replacing Phe80 with Ala drastically reduced the catalytic efficiency (k(cat)/K(m)) with a minimum K(m) value equal to 8 mM. It was further found that the hydrolytic activities of the mutants toward cytidine-2',3'-cyclic monophosphate (cCMP) were reduced. These results demonstrate that Gln9 and Phe80 play essential roles not only in uridine binding but also in hydrolytic activity. Moreover, we produced double Ala substituted mutants at Gln9, Asn71, Leu73, and Phe80, and compared their kinetic properties with those of the corresponding single mutants. The results suggest that these four residues may contribute to uridine binding in a mutually independent manner.  相似文献   

14.
A quadruple mutant of sperm whale myoglobin was constructed to mimic the structure found in Ascaris suum hemoglobin. The replacements include His(E7)-->Gln, Leu(B10)-->Tyr, Thr(E10)--> Arg, and Ile(G8)-->Phe. Single, double, and triple mutants were characterized to dissect out the effects of the individual substitutions. The crystal structures of the deoxy and oxy forms of the quadruple mutant were determined and compared with that of native Ascaris hemoglobin. Tyr(B10) myoglobin displays low O(2) affinity, high dissociation rate constants, and heterogeneous kinetic behavior, suggesting unfavorable steric interactions between the B10 phenol side chain and His(E7). In contrast, all mutants containing the Tyr(B10)/Gln(E7) pair show high O(2) affinity, low dissociation rate constants, and simple, monophasic kinetic behavior. Replacement of Ile(107) with Phe enhances nanosecond geminate recombination singly and in combination with the Tyr(B10)/Gln(E7)/Arg(E10) mutation by limiting access to the Xe4 site. These kinetic results and comparisons with native Ascaris hemoglobin demonstrate the importance of distal pocket cavities in governing the kinetics of ligand binding. The approximately 150-fold higher O(2) affinity of Ascaris hemoglobin compared with that for Tyr(B10)/Gln(E7)-containing myoglobin mutants appears to be the result of favorable proximal effects in the Ascaris protein, due to a staggered orientation of His(F8), the lack of a hydrogen bonding lattice between the F4, F7, and F8 residues, and the presence of a large polar Trp(G5) residue in the interior portion of the proximal heme pocket.  相似文献   

15.
The mutational specificity of N-ethyl-N-nitrosourea (ENU) was determined in Drosophila melanogaster using the vermilion locus as a target gene. 25 mutants (16 F1 and 9 F2 mutants) were cloned and sequenced. Only base-pair changes were observed; three of the mutants represented double base substitutions. Transition mutations were the most prominent sequence change: 61% were GC----AT and 18% AT----GC substitutions. Both sequence changes can be explained by the miscoding properties of the modified guanine and thymine bases. A strong bias of neighboring bases on the occurrence of the GC----AT transitions or a strand preference of both types of transition mutations was not observed. The spectrum of ENU mutations in D. melanogaster includes a significant fraction (21%) of transversion mutations. Our data indicate that like in other prokaryotic and eukaryotic systems also in D. melanogaster the O6-ethylguanine adduct is the most prominent premutational lesion after ENU treatment. The strong contribution of the O6-ethylguanine adduct to the mutagenicity of ENU possibly explains the absence of distinct difference between the type of mutations observed in the F1 and F2 mutants. Although the latter arise later during development, the spectrum of mosaic mutations is also dominated by GC----AT transition mutations.  相似文献   

16.
CXCR1, a classic GPCR that binds IL-8, plays a key role in neutrophil activation and migration by activating phospholipase C (PLC)β through Gα(15) and Gα(i) which generates diacylglycerol and inositol phosphates (IPs). In this study, two conserved amino acid residues of CXCR1 on the transmembrane domain (TM) 3 and TM6, Leu128(3.43) (L128) and Val247(6.40) (V247), respectively, were selectively substituted with other amino acids to investigate the role of these conserved residues in CXCR1 activation. Although two selective mutants on Leu128, Leu128Ala (L128A) and Leu128Arg (L128R), demonstrated high binding affinity to IL-8, they were not capable of coupling to G proteins and consequently lost the functional response of the receptors. By contrast, among the four mutants at residue Val247 (TM6.40), replacing Val247 with Ala (V247A) and Asn (V247N) led to constitutive activation of mutant receptors when cotransfected with Gα(15). The V247N mutant also constitutively activated the Gα(i) protein. These results indicate that L128 on TM3.43 is involved in G protein coupling and receptor activation but is unimportant for ligand binding. On the other hand, V247 on TM6.40 plays a critical role in maintaining the receptor in the inactive state, and the substitution of V247 impaired the receptor constraint and stabilized an active conformation. Functionally, there was an increase in chemotaxis in response to IL-8 in cells expressing V247A and V247N. Our findings indicate that Leu128(3.43) and Val247(6.40) are critical for G protein coupling and activation of signaling effectors, providing a valuable insight into the mechanism of CXCR1 activation.  相似文献   

17.
Recently, we reported that the mutation of His(207) to Phe located in the second extracellular loop of the cholecystokinin B receptor strongly affected cholecystokinin (CCK) binding (Silvente-Poirot, S., Escrieut, C., and Wank, S. A. (1998) Mol. Pharmacol. 54, 364-371). To characterize the functional group in CCK that interacts with His(207), we first substituted His(207) to Ala. This mutation decreased the affinity and the potency of CCK to produce total inositol phosphates 302-fold and 456-fold without affecting the expression of the mutant receptor. The screening of L-alanine-modified CCK peptides to bind and activate the wild type and mutant receptors allowed the identification of the interaction of the C-terminal Asp(8) of CCK with His(207). The H207A-CCKBR mutant, unlike the wild type receptor, was insensitive to substitution of Asp(8) of CCK to other amino acid residues. This interaction was further confirmed by mutating His(207) to Asp. The affinity of CCK for the H207D-CCKBR mutant was 100-fold lower than for the H207A-CCKBR mutant, consistent with an electrostatic repulsion between the negative charges of the two interacting aspartic acids. Peptides with neutral amino acids in position eight of CCK reversed this effect and displayed a gain of affinity for the H207D mutant compared with CCK. To date, this is the first report concerning the identification of a direct contact point between the CCKB receptor and CCK.  相似文献   

18.
The influence of the two histidine and two arginine residues of mast cell degranulating peptide (MCD) in activity and binding was studied by replacing these amino acids in the MCD sequence with L-alanine. Their histamine releasing activity was determined on rat peritoneal mast cells. Their binding affinity to the FcepsilonRIalpha binding subunit of the human mast cell receptor protein, was carried out using fluorescence polarization. The histamine assay showed that replacement of His13 by Ala o ccurred without loss of activity compared with the activity of MCD. Alanine substitutions for Arg7 and His8 resulted in an approximately 40 fold increase, and for Arg16 in a 14-fold increase in histamine-releasing activity of MCD. The binding affinities of the analogs were tested by competitive displacement of bound fluorescent MCD peptide from the FcepsilonRIalpha binding protein of the mast cell receptor by the Ala analogs using fluorescence polarization. The analogs Ala8 (for His) and Ala16 (for Arg) showed the same binding affinities as MCD, whereas analog Ala7 (for Arg) and analog Ala13 (for His) showed slightly better binding affinity than the parent compound. This study showed that the introduction of alanine residues in these positions resulted in MCD agonists of diverse potency. These findings will be useful in further MCD structure-activity studies.  相似文献   

19.
The beta subunit (beta c) of the receptors for human granulocyte macrophage colony stimulating factor (GM-CSF), interleukin-3 (IL-3) and interleukin-5 (IL-5) is essential for high affinity ligand-binding and signal transduction. An important feature of this subunit is its common nature, being able to interact with GM-CSF, IL-3 and IL-5. Analogous common subunits have also been identified in other receptor systems including gp130 and the IL-2 receptor gamma subunit. It is not clear how common receptor subunits bind multiple ligands. We have used site-directed mutagenesis and binding assays with radiolabelled GM-CSF, IL-3 and IL-5 to identify residues in the beta c subunit involved in affinity conversion for each ligand. Alanine substitutions in the region Tyr365-Ile368 in beta c showed that Tyr365, His367 and Ile368 were required for GM-CSF and IL-5 high affinity binding, whereas Glu366 was unimportant. In contrast, alanine substitutions of these residues only marginally reduced the conversion of IL-3 binding to high affinity by beta c. To identify likely contact points in GM-CSF involved in binding to the 365-368 beta c region we used the GM-CSF mutant eco E21R which is unable to interact with wild-type beta c whilst retaining full GM-CSF receptor alpha chain binding. Eco E21R exhibited greater binding affinity to receptor alpha beta complexes composed of mutant beta chains Y365A, H367A and I368A than to those composed of wild-type beta c or mutant E366A. These results (i) identify the residues Tyr365, His367 and Ile368 as critical for affinity conversion by beta c, (ii) show that high affinity binding of GM-CSF and IL-5 can be dissociated from IL-3 and (iii) suggest that Tyr365, His367 and Ile368 in beta c interact with Glu21 of GM-CSF.  相似文献   

20.
In an effort to explore the effects of local flexibility on the cold adaptation of enzymes, we designed point mutations aiming to modify side-chain flexibility at the active site of the psychrophilic alkaline phosphatase from the Antarctic strain TAB5. The mutagenesis targets were residues Trp260 and Ala219 of the catalytic site and His135 of the Mg2+ binding site. The replacement of Trp260 by Lys in mutant W260K, resulted in an enzyme less active than the wild-type in the temperature range 5-25 degrees C. The additional replacement of Ala219 by Asn in the double mutant W260K/A219N, resulted in a drastic increase in the energy of activation, which was reflected in a considerably decreased activity at temperatures of 5-15 degrees C and a significantly increased activity at 20-25 degrees C. Further substitution of His135 by Asp in the triple mutant W260K/A219N/H135D restored a low energy of activation. In addition, the His135-->Asp replacement in mutants H135D and W260K/A219N/H135D resulted in considerable stabilization. These results suggest that the psychrophilic character of mutants can be established or masked by very slight variations of the wild-type sequence, which may affect active site flexibility through changes in various conformational constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号