首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cluster of differentiation antigen 4 (CD4), the T lymphocyte antigen receptor component and human immunodeficiency virus coreceptor, is down-modulated when cells are activated by antigen or phorbol esters. During down-modulation CD4 dissociates from p56(lck), undergoes endocytosis through clathrin-coated pits, and is then sorted in early endosomes to late endocytic organelles where it is degraded. Previous studies have suggested that phosphorylation and a dileucine sequence are required for down-modulation. Using transfected HeLa cells, in which CD4 endocytosis can be studied in the absence of p56(lck), we show that the dileucine sequence in the cytoplasmic domain is essential for clathrin-mediated CD4 endocytosis. However, this sequence is only functional as an endocytosis signal when neighboring serine residues are phosphorylated. Phosphoserine is required for rapid endocytosis because CD4 molecules in which the cytoplasmic domain serine residues are substituted with glutamic acid residues are not internalized efficiently. Using surface plasmon resonance, we show that CD4 peptides containing the dileucine sequence bind weakly to clathrin adaptor protein complexes 2 and 1. The affinity of this interaction is increased 350- to 700-fold when the peptides also contain phosphoserine residues.  相似文献   

2.
The lymphocyte glycoprotein CD4 is constitutively internalized and recycled in nonlymphoid cells, but is excluded from the endocytic pathway in lymphocytic cells (Pelchen-Matthews, A., J. E. Armes, G. Griffiths, and M. Marsh. 1991. J. Exp. Med. 173: 575-587). Inhibition of CD4 endocytosis is dependent on CD4 expressing an intact cytoplasmic domain and is only observed in cells where CD4 can interact with the protein tyrosine kinase p56lck, a member of the src gene family. We have expressed p56lck, p60c-src, or chimeras of the two proteins in CD4-transfected NIH-3T3 or HeLa cells. Immunoprecipitation of CD4 and in vitro kinase assays showed that p56lck and the lck/src chimera, which contains the NH2 terminus of p56lck, can associate with CD4. In contrast, p60c-src and the src/lck chimera, which has the NH2 terminus of p60c-src, do not associate with CD4. Endocytosis assays using radioiodinated anti-CD4 monoclonal antibodies demonstrated that coexpression of CD4 with p56lck, but not with p60c-src, inhibited CD4 endocytosis, and that the extent of the inhibition depended directly on the relative levels of CD4 and p56lck expressed. The uptake of mutant CD4 molecules which cannot interact with p56lck was not affected. Measurement of the fluid-phase endocytosis of HRP or the internalization of transferrin indicated that the effect of p56lck was specific for CD4, and did not extend to other receptor-mediated or fluid-phase endocytic processes. Immunogold labeling of CD4 at the cell surface and observation by electron microscopy demonstrated directly that p56lck inhibits CD4 endocytosis by preventing its entry into coated pits.  相似文献   

3.
In CD4+ T cells, the src-like tyrosine kinase pp56lck is associated with the CD4 receptor and cross-linking of CD4 results in the activation of this enzyme. The mechanism responsible for this activation is not known, although there is evidence that the activities of the src family of enzymes are regulated by tyrosine phosphorylation. Here we report that pp56lck-catalyzed angiotensin II phosphorylations are activated 20-fold in vitro by synthetic peptides reproducing portions of the murine CD4 cytoplasmic domain. This activation is described by a dissociation constant of about 2 microM. The pp56lck-catalyzed phosphorylation of other peptide substrates are effected less and in one case not at all by the peptide modulators, indicating that these CD4 sequences alter the substrate specificity of pp56lck. In contrast, peptides reproducing sequences from the CD8 receptor have a charge and size similar to the CD4 peptides, yet are vastly less effective at modulating pp56lck activities. High ionic strengths inhibit the CD4 peptide-induced modulation of pp56lck phosphotransferase activities, suggesting that charge-charge interactions are important for this process. In addition, the modulation of pp56lck activities by peptides reproducing the CD4 cytoplasmic domain are reproduced by polycations significantly larger than the CD4 cytoplasmic domain but not by those of similar size. The modulations both by CD4 peptides and the polycations do not depend on enzyme tyrosine phosphorylations.  相似文献   

4.
p56lck, a lymphocyte-specific tyrosine protein kinase, binds to the cytoplasmic tails of the T-cell surface molecules CD4 and CD8. Cross-linking of CD4 expressed on the surface of murine thymocytes, splenocytes, and CD4+ T-cell lines induced tyrosine phosphorylation of p56lck dramatically. Cross-linking of CD8 stimulated tyrosine phosphorylation of p56lck strongly in murine L3 and GA4 cells, slightly in splenocytes, but not detectably in thymocytes. Differing effects of cross-linking on in vitro tyrosine kinase activity of p56lck were observed. An increase in the in vitro kinase activity of p56lck, when assayed with [Val5]-angiotensin II as an exogenous substrate, was found to accompany cross-linking of CD4 in three cell lines. No stimulation of the in vitro kinase activity, however, was observed after cross-linking of CD8 in L3 cells. The phosphorylation of p56lck at Tyr-394, the autophosphorylation site, was stimulated by cross-linking in all cell lines examined. Tyr-394 was the predominant site of increased tyrosine phosphorylation in two leukemic cell lines. In the other two cell lines, the phosphorylation of both Tyr-394 and an inhibitory site, Tyr-505, was found to increase. In contrast to cross-linking with antibodies, no striking increase in the tyrosine phosphorylation of p56lck was stimulated by antigenic stimulation. Therefore, the effect of antibody-induced aggregation of CD4 and CD8 on the tyrosine phosphorylation of p56lck differs, at least quantitatively, from what occurs during antigen-induced T-cell activation.  相似文献   

5.
CD2 and CD4 are single chain transmembrane T cell surface molecules that are involved in signal transduction. Chimaeric constructs from rat CD2 and CD4 antigens were expressed in the Jurkat human T cell line to examine the role of extracellular, transmembrane and cytoplasmic domains in mediating functions controlled by CD2 and CD4. The results show that the large rise in concentration of cytoplasmic free Ca2+ mediated via CD2 crosslinking is controlled by the cytoplasmic domain and does not require the CD2 transmembrane and extracellular domains. Similarly the CD4 cytoplasmic domain alone was shown to encode the specificity for binding to the p56lck tyrosine kinase and to control down-modulation of CD4 after treatment with phorbol ester. Evidence was obtained that down-modulation of CD4 occurs when p56lck dissociates from the cytoplasmic domain due to phosphorylation of Ser 405.  相似文献   

6.
Human immunodeficiency virus type 1 Nef down-regulates surface expression of murine and human CD4 but not human CD8. We recently reported that the cytoplasmic domain of CD4 is required for its down-regulation by Nef. Using a chimeric molecule composed of the extracellular and transmembrane domains of human CD8 fused to the cytoplasmic domain of human CD4, we show here that the cytoplasmic domain of CD4 is sufficient for down-regulation by Nef. Since the cytoplasmic domain of CD4 is also the site of its association with p56lck, we used a series of CD4 mutants to determine whether the regions of the cytoplasmic domain of CD4 required for down-regulation by Nef are the same as those required for p56lck binding. Our results indicate that the portion of the cytoplasmic domain required for the down-regulation of CD4 by Nef overlaps with the binding site of p56lck, but the cysteine residues which are essential for the association of CD4 with p56lck are not required. This observation raised the possibility that Nef competes with p56lck for binding to CD4. However, under conditions which are considerably milder than those permissive for coimmunoprecipitation of CD4 and p56lck, we found no evidence for an association between Nef and CD4. While a decrease in total CD4 was observed in lysates of cells expressing Nef, the levels of p56lck were not significantly affected. Pulse-chase experiments further revealed a decrease in the half-life of CD4 in Nef-expressing cells. These results show that the decrease in surface CD4 expression induced by Nef is mediated at least in part by a decrease in the half-life of CD4 protein. These results also indicate that a large portion of p56lck is free of CD4 in T cells expressing Nef, which could have a significant effect on T-cell function.  相似文献   

7.
The human immunodeficiency virus binds to CD4+ T lymphocytes through the interaction of its envelope glycoprotein (gp120) with the CD4 molecule. The src-related protein tyrosine kinase p56lck is physically associated with CD4 and is co-immunoprecipitated by CD4 monoclonal antibody (mAb). Activators of protein kinase C (PKC) cause the dissociation of p56lck from CD4. Here we report that gp120 mAb immunoprecipitated the p56lck.CD4.gp120 complex after short term treatment (20 min) of human T lymphocytes with gp120. The p56lck that was associated with the CD4.gp120 complex was dissociated by activators of PKC. This effect was abolished by pretreatment of cells with PKC inhibitors. Thus the p56lck.CD4.gp120 immune complex immunoprecipitated by gp120 mAb behaves in a similar manner, with respect to PKC activation or inhibition, to the p56lck.CD4 complex immunoprecipitated by CD4 mAb. Short term treatment of cells with gp120, followed by gp120 mAb, resulted in an increase in the tyrosine kinase activity of p56lck associated with CD4. However, the amount of enzyme associated with CD4 remained unchanged. Long term treatment (20 h) of human T lymphocytes with gp120 resulted in the down-regulation of cell surface CD4 molecules. A parallel decrease in CD4-associated gp120 was also observed. In addition, gp120 caused the dissociation of p56lck and CD4. However, the dissociation of the p56lck from CD4 occurred at much faster rate than the down-regulation of surface CD4 molecules. Such mechanisms may account for the down-regulation of cell surface CD4 molecules and the depletion of functional CD4+ T lymphocytes which are characteristic of human immunodeficiency virus infections and acquired immune deficiency syndrome pathogenesis.  相似文献   

8.
Essential role of CD8 palmitoylation in CD8 coreceptor function   总被引:2,自引:0,他引:2  
To investigate the molecular basis that makes heterodimeric CD8alphabeta a more efficient coreceptor than homodimeric CD8alphaalpha, we used various CD8 transfectants of T1.4 T cell hybridomas, which are specific for H-2Kd, and a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). We demonstrate that CD8 is palmitoylated at the cytoplasmic tail of CD8beta and that this allows partitioning of CD8alphabeta, but not of CD8alphaalpha, in lipid rafts. Localization of CD8 in rafts is crucial for its coreceptor function. First, association of CD8 with the src kinase p56lck takes place nearly exclusively in rafts, mainly due to increased concentration of both components in this compartment. Deletion of the cytoplasmic domain of CD8beta abrogated localization of CD8 in rafts and association with p56lck. Second, CD8-mediated cross-linking of p56lck by multimeric Kd-peptide complexes or by anti-CD8 Ab results in p56lck activation in rafts, from which the abundant phosphatase CD45 is excluded. Third, CD8-associated activated p56lck phosphorylates CD3zeta in rafts and hence induces TCR signaling and T cell activation. This study shows that palmitoylation of CD8beta is required for efficient CD8 coreceptor function, mainly because it dramatically increases CD8 association with p56lck and CD8-mediated activation of p56lck in lipid rafts.  相似文献   

9.
We report that the cytoplasmic domains of the T-lymphocyte glycoproteins CD4 and CD8 alpha contain short related amino acid sequences that are involved in binding the amino-terminal domain of the intracellular tyrosine protein kinase, p56lck. Transfer of as few as six amino acid residues from the cytoplasmic domain of the CD8 alpha protein to the cytoplasmic domain of an unrelated protein conferred p56lck binding to the hybrid protein in HeLa cells. The common sequence motif shared by CD4 and CD8 alpha contains two cysteines, and mutation of either cysteine in the CD4 sequence eliminated binding of p56lck.p56lck also contains two cysteine residues within its CD4-CD8 alpha-binding domain, and both are critical to the interaction with CD4 or CD8 alpha. Because the interaction does not involve disulfide bond formation, a metal ion could stabilize the complex.  相似文献   

10.
p56lck, a member of the src family of non-receptor protein tyrosine kinases (PTKs), is expressed predominantly in T-lymphocytes. Association of p56lck with CD4 and CD8 T-cell receptor (TcR) accessory molecules suggests that p56lck may play a specialized role in antigen-induced T-cell activation. CD4 and CD8 molecules are known to stabilize the interaction between TcR and the major histocompatibility complex during T-cell activation. To examine the role of p56lck in the dynamics of the CD4 molecule, p56lck-expressing transfectant cell clones were prepared by the transfection of an lck-gene plasmid containing an inducible promoter into a CD4+lck- human monocytoid cell line. When these transfectant cells were stimulated with phorbol ester, CD4 internalization on these p56lck-expressing cell lines was selectively and markedly retarded, as compared to p56lck-negative control cell lines. When cell-surface CD4 and intracellular CD4 were selectively precipitated after stimulation, the intracellular CD4 molecules were dissociated from p56lck whereas the surface-retained CD4 molecules were still associated with p56lck. Moreover, the dissociation of p56lck from CD4 appeared to occur prior to the PMA-induced internalization of CD4. These data indicate that p56lck regulates the PMA-induced internalization of CD4 possibly via its association with CD4. Treatment with genistein, a PTK inhibitor, revealed that the PTK activity of p56lck might not be involved in this regulatory effect of p56lck on CD4 internalization.  相似文献   

11.
p56lck, a lymphocyte-specific member of the src family of cytoplasmic protein-tyrosine kinases, is associated noncovalently with the cell surface glycoproteins CD4 and CD8, which are expressed on functionally distinct subpopulations of T cells. Using transient coexpression of p56lck with CD4 or CD8 alpha in COS-7 cells, we show that the unique N-terminal region of p56lck binds to the membrane-proximal 10 and 28 cytoplasmic residues of CD8 alpha and CD4, respectively. Two cysteine residues in each of the critical sequences in CD4, CD8 alpha, and p56lck are required for association. Our results suggest a novel role for cysteine-mediated interactions between unrelated proteins and provide a model for the association of other src-like cytoplasmic kinases with transmembrane proteins.  相似文献   

12.
The T cell-specific transmembrane glycoprotein CD4 interacts with class II MHC molecules via its external domain and is associated with tyrosine kinase p56lck via a cysteine motif in its cytoplasmic domain. We have assessed the ability of CD4 to synergize with the antigen-specific T cell receptor (TCR) for induction of transmembrane signals that result in lymphokine production. Mutant CD4 molecules were introduced into T cells that lacked endogenous CD4 but expressed TCRs specific for lysozyme peptides or the superantigen SEA bound to Ab or Abm12 class II MHC molecules. With either ligand, T cell activation occurred only when CD4 was associated with p56lck. These results demonstrate that residues within the cytoplasmic domain of CD4 are required for its coreceptor function in TCR-mediated signal transduction and strongly support the notion that the association of CD4 with p56lck is critical in this process.  相似文献   

13.
p56lck, a member of the src family of cytoplasmic tyrosine kinases, is expressed predominantly in T cells where it associates with the T-cell surface molecules CD4 and CD8. Mutants of CD4 and CD8 that have lost the ability to associate with p56lck no longer enhance antigen-induced T-cell activation. This suggests that p56lck plays an important role during T-cell activation. In an effort to understand the function of p56lck in T cells, a constitutively activated lck gene (F505lck) was introduced into T-helper hybridoma cell lines by retroviral infection. In four T-cell lines we examined, the activated lck protein stimulated interleukin-2 (IL-2) production, a hallmark of T-cell activation, in the absence of antigenic stimulation. In addition, a marked increase in antigen-independent IL-2 production was apparent when T cells infected with a temperature-sensitive F505lck were shifted to the permissive temperature. Only one cell line expressing F505lck exhibited increased sensitivity to antigenic stimulation. The SH3 domain of p56lck was dispensable for the induction of antigen-independent IL-2 production. In contrast, deletion of the majority of the SH2 domain of p56F505lck reduced its ability to induce spontaneous IL-2 production markedly. Activated p60c-src also induced antigen-independent IL-2 production, whereas two other tyrosine kinases, v-abl and the platelet-derived growth factor receptor, did not. Tyrosine phosphorylation of a 70-kDa cellular protein was observed after cross-linking of CD4 in T cells expressing F505lck but not in cells expressing F527src.  相似文献   

14.
Incubation of the human T cells, Jurkat, with two sets of activating anti-CD2 mAb (T11(2) + T11(3), D66 + T11(1)) induced delocalization of p56lck and CD2 receptors from the plasma membrane and increased the tyrosine kinase activity of p56lck. The anti-CD2 mAb combination (T11(2) + T11(3)) that produced the most rapid increase in p56lck kinase activity also induced the most rapid delocalization of the kinase. In stimulated cells, both p56lck and CD2 receptors are detected in cytoplasmic vesicles. The internalization of p56lck in endocytic vesicles was established by confocal microscopy. By double staining it was shown that only part of the p56lck colocalized with the internalized CD2 receptor suggesting distinct sorting processes. Internalization of p56lck appeared to be specific of CD2 stimulation as: 1) in Jurkat cells triggered with an anti-CD3 mAb, p56lck was not internalized whereas CD3 receptors were completely endocytosed; 2) when cells were stimulated via CD4, the kinase and CD4 receptors remained associated with the plasma membrane. In addition, internalization of p56lck upon stimulation of CD2 receptors was not modified in CD2+/CD3-Jurkat cells indicating that CD3 is not involved in this process. The identification of different subcellular localizations of p56lck in resting and stimulated T cells should represent an important step in the definition of its functional activity.  相似文献   

15.
B Crise  J K Rose 《Journal of virology》1992,66(4):2296-2301
The cell surface glycoprotein, CD4, is the receptor for human immunodeficiency virus (HIV) in T lymphocytes. Following HIV infection, there is reduced expression of CD4 on the cell surface, and this downregulation probably results, at least in part, from the formation of complexes containing the HIV type 1 (HIV-1) glycoprotein precursor (gp160) and CD4 that are not transported from the endoplasmic reticulum (ER). At the plasma membrane of T cells, CD4 is tightly associated with a cytoplasmic tyrosine kinase (p56lck) that is involved in T-cell activation. Using a transient expression system with HeLa cells, we show by pulse-labeling and immunoprecipitation that newly synthesized CD4 can associate with p56lck before CD4 is transported from the ER. In the presence of HIV-1 gp160, a ternary complex of gp160-CD4 and p56lck forms in the ER. Using confocal immunofluorescence microscopy, we observed complete retention of p56lck in the ER. Such mislocation of a tyrosine kinase to the cytoplasmic face of the ER could play a role in lymphocyte killing caused by HIV infection or expression of gp160 alone.  相似文献   

16.
Accumulating data suggest that the CD4 T-cell surface antigen transduces an independent intracellular signal during antigen-mediated T-cell activation. CD4 is physically associated with the internal membrane tyrosine protein kinase p56lck and can mediate, after antibody-mediated cross-linking, the rapid enzymatic activation of Lck, implying that CD4 signalling may involve changes in tyrosine protein phosphorylation. In this report, we describe that cross-linking of CD4 results in a series of rapid changes in intracellular tyrosine protein phosphorylation. The most prominent CD4-induced tyrosine phosphorylation change involved p56lck, which became extensively phosphorylated on the carboxy-terminal tyrosine residue 505 and, to a lesser extent, lymphocytes can transduce an intracellular signal resulting in tyrosine protein phosphorylation and strongly suggest that this property of CD4 is mediated through p56lck.  相似文献   

17.
M Barry  S F Lee  L Boshkov    G McFadden 《Journal of virology》1995,69(9):5243-5251
Myxoma virus is a pathogenic poxvirus that induces extensive dysregulation of cellular immunity in infected European rabbits. Infection of a rabbit CD4+ T-cell line (RL-5) with myxoma virus results in dramatic reductions of cell surface levels of CD4 as monitored by flow cytometry. The virus-induced downregulation of CD4 requires early but not late viral gene expression and could not be inhibited by staurosporine, an inhibitor of protein kinase C, which effectively blocks phorbol 12-myristate-13-acetate-induced downregulation of CD4. The decrease in total cellular levels of CD4 during myxoma virus infection could be inhibited by the lysosomotrophic agent NH4Cl, suggesting a lysosomal fate for CD4 during myxoma virus infection. Steady-state levels of the CD4-associated protein tyrosine kinase p56lck remained unchanged during myxoma virus infection, suggesting that p56lck dissociates from CD4 prior to CD4 degradation in virus infected cells. Total p56lck kinase activity was unaffected during myxoma virus infection, although the amount of p56lck physically associated with CD4 declined in parallel with the loss of CD4. Thus, myxoma virus infection of CD4+ T lymphocytes triggers CD4 downregulation via a protein kinase C-independent pathway, causing the dissociation of p56lck and the degradation of CD4 in lysosomal vesicles.  相似文献   

18.
The CD4 receptor subserves both adhesion and signal transduction functions on CD4+ T-lymphocytes. CD4 is physically associated with the src-related protein tyrosine kinase p56lck. Cell surface engagement of CD4 leads to enzymatic activation of the associated p56lck and the phosphorylation of T-cell proteins on tyrosine residues. We have identified a 72-74kD protein phosphorylated on tyrosine residues following activation of CD4-associated p56lck as the serine-threonine kinase Raf-1. The demonstration that Raf-1 is a substrate for the CD4/p56lck receptor system in normal cells suggests that receptor and nonreceptor classes of protein tyrosine kinases can independently engage functionally overlapping signal transduction pathways.  相似文献   

19.
Because the binding of HIV-1 envelope to CD4 initiates a configurational change in glycoprotein 120 (gp120), enabling it to interact with fusion coreceptors, we investigated how this process interferes with the expression and function of CXC chemokine receptor 4 (CXCR4) in CD4+ T lymphocytes. A recombinant gp120 (MN), after preincubation with CD4+ T lymphocytes, significantly inhibited the binding and chemotaxis of the cells in response to the CXCR4 ligand stromal cell-derived factor-1alpha (SDF-1alpha), accompanied by a markedly reduced surface expression of CXCR4. gp120, but not SDF-1alpha, induced rapid tyrosine phosphorylation of src-like kinase p56lck in CD4+ T cells, whereas both gp120 and SDF-1alpha caused phosphorylation of the CXCR4. The tyrosine kinase inhibitor herbimycin A abolished the phosphorylation of p56lck and CXCR4 induced by gp120 in association with maintenance of normal expression of cell surface CXCR4 and a migratory response to SDF-1alpha. Thus, a CD4-associated signaling molecule(s) including p56lck is activated by gp120 and is required for the down-regulation of CXCR4.  相似文献   

20.
The balance between positive and negative signals plays a key role in determining T cell function. CTL-associated Ag-4 is a surface receptor that can inhibit T cell responses induced upon stimulation of the TCR and its CD28 coreceptor. Little is known regarding the signaling mechanisms elicited by CTLA-4. In this study we analyzed CTLA-4-mediated inhibition of TCR signaling in primary resting human CD4(+) T cells displaying low, but detectable, CTLA-4 cell surface expression. CTLA-4 coligation with the TCR resulted in reduced downstream protein tyrosine phosphorylation of signaling effectors and a striking inhibition of extracellular signal-regulated kinase 1/2 activation. Analysis of proximal TCR signaling revealed that TCR zeta-chain phosphorylation and subsequent zeta-associated protein of 70 kDa (ZAP-70) tyrosine kinase recruitment were not significantly affected by CTLA-4 engagement. However, the association of p56(lck) with ZAP-70 was inhibited following CTLA-4 ligation, correlating with reduced actions of p56(lck) in the ZAP-70 immunocomplex. Moreover, CTLA-4 ligation caused the selective inhibition of CD3-mediated phosphorylation of the positive regulatory ZAP-70 Y319 site. In addition, we demonstrate protein tyrosine phosphatase activity associated with the phosphorylated CTLA-4 cytoplasmic tail. The major phosphatase activity was attributed to Src homology protein 2 domain-containing tyrosine phosphatase 1, a protein tyrosine phosphatase that has been shown to be a negative regulator of multiple signaling pathways in hemopoietic cells. Collectively, our findings suggest that CTLA-4 can act early during the immune response to regulate the threshold of T cell activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号