首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of maturation on extrathoracic airway (ETA) stability during quiet sleep was determined in 13 normal preterm infants of 1.41 +/- 0.14 (SD) kg birth weight and 32 +/- 2 wk estimated gestational age. Studies began in the first week of life and were performed three times at weekly intervals. A drop in intraluminal pressure within the ETA was produced by external inspiratory flow-resistive loading (60 cmH2O.l-1 x s at 1 l/min); an increase in intrinsic resistance, indicating airway narrowing, was sought as a measure of ETA instability. Baseline total pulmonary resistance was not significantly different between weeks 1, 2, and 3 (88 +/- 35, 65 +/- 24, and 61 +/- 17 cmH2O.l-1 x s, respectively) but increased markedly above baseline with loading to 144 +/- 45 cmH2O.l-1.s during week 1 (P < 0.001), 89 +/- 28 cmH2O.l-1 x s at week 2 (P < 0.01), and 74 +/- 25 cmH2O.l-1 x s at week 3 (n = 10). The increment with loading was significantly greater during week 1 than during weeks 2 or 3 (P < 0.02). Similar studies were also done in seven full-term infants in the first week of life to evaluate the influence of gestational maturity on ETA stability. Despite a relatively greater drop in intraluminal pressure within the ETA of term vs. preterm infants with loading (P < 0.001), total pulmonary resistance failed to increase (68 +/- 21 to 71 +/- 32 cmH2O.l-1.s). These data reveal that ETA instability is present in preterm infants at birth and decreases with increasing postnatal age. Full-term neonates, by comparison, display markedly greater ETA stability in the immediate neonatal period.  相似文献   

2.
Extrathoracic airway (ETA) stability was tested in 10 preterm infants during sleep with a drop in intraluminal pressure produced by the application of an external inspiratory flow-resistive load (IRL, 125 cmH2O.1-1.s at 1 l/min). An increase in total pulmonary resistance was sought as the measure of airway narrowing. The role of the ETA in the increased pulmonary resistance with loading was examined by testing the same infants while endotracheally intubated and after extubation. Total pulmonary resistance decreased with loading during the intubated studies (102.5 +/- 41.2 to 82.4 +/- 33.3 cmH2O.1-1.s, P less than 0.05), whereas a significant increase in pulmonary resistance was seen with loading in the extubated studies (101 +/- 58.1 to 128 +/- 68.6 cmH2O.1-1.s, P less than 0.01). Intraluminal pressure in the ETA, measured by the lowest proximal airway pressure, fell significantly with loading in both conditions, with values changing from -0.7 +/- 0.3 to -4.7 +/- 2.7 cmH2O in the intubated infants and from -0.9 +/- 0.3 to -4.6 +/- 0.9 cmH2O) in the extubated infants (P less than 0.01). The results suggest ETA narrowing with loading in extubated infants despite the absence of overt obstructive apnea. Measurements of total pulmonary resistance with IRL can be used as a simple test of ETA stability.  相似文献   

3.
To determine the influence of changes in nasal pressure (Pn) on airflow mechanics in the upper airway, we examined the effect of elevations in Pn on upper airway resistance and critical pressure (Pcrit) during stage I/II sleep in six patients with obstructive sleep apnea. When Pn was elevated above a Pcrit, periodic occlusions of the upper airway were eliminated and inspiratory airflow limitation was demonstrated by the finding that inspiratory airflow (VI) became maximal (VImax) and independent of fluctuations in hypopharyngeal pressure (Php) when Php fell below a specific Php (Php'). As Pn was elevated, VI vs. Php demonstrated 1) marked decreases in early and late inspiratory resistances from 75.9 +/- 34.7 and 54.6 +/- 19.0 to 8.0 +/- 1.7 and 7.6 +/- 1.6 cmH2O.l-1.s (P less than 0.05), respectively, and 2) increases in early and late inspiratory Php' to levels that exceeded Pcrit by 3.0 +/- 0.6 and 3.1 +/- 0.7 cmH2O, respectively, at the highest level of Pn applied (P less than 0.01). This latter finding suggests that elevations in Pn result in increases in Pcrit. We suggest that elevations in Pn produce distinct alterations in upper airway resistance and collapsibility, which may influence oppositely the level of airflow through the upper airway during sleep.  相似文献   

4.
The effects of hypercapnia produced by CO2 rebreathing on total pulmonary, supraglottic, and lower airway (larynx and lungs) resistance were determined in eight premature infants [gestational age at birth 32 +/- 3 (SE) wk, weight at study 1,950 +/- 150 g]. Nasal airflow was measured with a mask pneumotachograph, and pressures in the esophagus and oropharynx were measured with a fluid-filled or 5-Fr Millar pressure catheter. Trials of hyperoxic (40% inspired O2 fraction) CO2 rebreathing were performed during quiet sleep. Total pulmonary resistance decreased progressively as end-tidal PCO2 (PETCO2) increased from 63 +/- 23 to 23 +/- 15 cmH2O.l-1.s in inspiration and from 115 +/- 82 to 42 +/- 27 cmH2O.l-1.s in expiration between room air (PETCO2 37 Torr) and PETCO2 of 55 Torr (P less than 0.05). Lower airway resistance (larynx and lungs) also decreased from 52 +/- 22 to 18 +/- 14 cmH2O.l-1.s in inspiration and from 88 +/- 45 to 30 +/- 22 cmH2O.l-1.s in expiration between PETCO2 of 37 and 55 Torr, respectively (P less than 0.05). Resistance of the supraglottic airway also decreased during inspiration from 7.2 +/- 2.5 to 3.6 +/- 2.5 cmH2O.l-1.s and in expiration from 7.6 +/- 3.3 to 5.3 +/- 4.7 cmH2O.l-1.s at PETCO2 of 37 and 55 Torr (P less than 0.05). The decrease in resistance that occurs within the airway in response to inhaled CO2 may permit greater airflow at any level of respiratory drive, thereby improving the infant's response to CO2.  相似文献   

5.
Effect of inspiratory nasal loading on pharyngeal resistance   总被引:1,自引:0,他引:1  
Nasal obstruction has been shown to increase the number of apneas during sleep in normal subjects and in some may actually cause the sleep apnea syndrome. We postulated that the pharynx may act as a Starling resistor, where increases in negative inspiratory pressure result in elevated resistance across a collapsible pharyngeal segment. To test this theory in normal subjects we studied 10 men and 10 women during wakefulness. Pharyngeal resistance (the resistance across the airway segment between the choanae and the epiglottis) was determined in the normal state and with three inspiratory loads added externally. Flow was measured using a pneumotachometer and a sealed face mask; epiglottic pressure by a latex balloon placed just above the epiglottis and choanal pressure by anterior rhinometry. Pharyngeal resistance (measured at 300 ml/s) could thus be determined. Base-line inspiratory pharnygeal resistance was 1.6 +/- 0.2 cmH2O . l-1 . s. This increased to 2.3 +/- 0.3, 2.8 +/- 0.4, and 2.9 +/- 0.4 cmH2O . l-1 . s, respectively, with the addition of 1.3, 2.7, and 6.7 cmH2O . l-1 . s inspiratory load. The resistance at each level of load was significantly different from the base-line resistance determination (P less than 0.05) but not different from each other. We conclude that added nasal resistive loads during inspiration cause an increase in pharyngeal resistance during wakefulness but that this resistance does not increase further with additional increments of load.  相似文献   

6.
Flow (V), volume (V), and tracheal pressure (Ptr) were measured throughout a series of brief (100 ms) interruptions of expiratory V in six patients during anesthesia (halothane-N2O) and anesthesia-paralysis (succinylcholine). For the latter part of spontaneous expiration and throughout passive deflation during muscle paralysis, a plateau in postinterruption Ptr was observed, indicating respiratory muscle relaxation. Under these conditions, passive elastance of the total respiratory system (Ers) was determined as the plateau in postinterruption Ptr divided by the corresponding V. The pressure-flow relationship of the total system was determined by plotting the plateau in Ptr during interruption against the immediately preceding V. Ers averaged 23.5 +/- 1.9 (SD) cmH2O X l-1 during anesthesia and 25.5 +/- 5.4 cmH2O X l-1 during anesthesia-paralysis. Corresponding values of total respiratory system resistance were 2.0 +/- 0.8 and 1.9 +/- 0.6 cmH2O X l-1 X s, respectively. Respiratory mechanics determined during anesthesia paralysis using the single-breath method (W.A. Zin, L. D. Pengelly, and J. Milic-Emili, J. Appl. Physiol. 52: 1266-1271, 1982) were also similar. Early in spontaneous expiration, however, Ptr increased progressively during the period of interruption, reflecting the presence of gradually decreasing antagonistic (postinspiratory) pressure of the inspiratory muscles. In conclusion, the interrupter technique allows for simultaneous determination of the passive elastic as well as flow-resistive properties of the total respiratory system. The presence of a plateau in postinterruption Ptr may be employed as a useful and simple criterion to confirm the presence of respiratory muscle relaxation.  相似文献   

7.
In five spontaneously breathing anesthetized subjects [halothane approximately 1 minimal alveolar concentration (MAC), 70% N2O, 30% O2], flow, changes in lung volume, and esophageal and airway opening pressure were measured in order to partition the elastance (Ers) and flow resistance (Rrs) of the total respiratory system into the lung and chest wall components. Ers averaged (+/- SD) 23.0 +/- 4.9 cmH2O X l-1, while the corresponding values of pulmonary (EL) and chest wall (EW) elastance were 14.3 +/- 3.2 and 8.7 +/- 3.0 cmH2O X l-1, respectively. Intrinsic Rrs (upper airways excluded) averaged 2.3 +/- 0.2 cmH2O X l-1 X s, the corresponding values for pulmonary (RL) and chest wall (RW) flow resistance amounting to 0.8 +/- 0.4 and 1.5 +/- 0.5 cmH2O X l-1 X s, respectively. Ers increased relative to normal values in awake state, mainly reflecting increased EL. Rw was higher than previous estimates on awake seated subjects (approximately 1.0 cmH2O X l-1 X s). RL was relatively low, reflecting the fact that the subjects had received atropine (0.3-0.6 mg) and were breathing N2O. This is the first study in which both respiratory elastic and flow-resistive properties have been partitioned into lung and chest wall components in anesthetized humans.  相似文献   

8.
We characterized the passive structural and active neuromuscular control of pharyngeal collapsibility in mice and hypothesized that pharyngeal collapsibility, which is elevated by anatomic loads, is reduced by active neuromuscular responses to airflow obstruction. To address this hypothesis, we examined the dynamic control of upper airway function in the isolated upper airway of anesthetized C57BL/6J mice. Pressures were lowered downstream and upstream to the upper airway to induce inspiratory airflow limitation and critical closure of the upper airway, respectively. After hyperventilating the mice to central apnea, we demonstrated a critical closing pressure (Pcrit) of -6.2 +/- 1.1 cmH(2)O under passive conditions that was unaltered by the state of lung inflation. After a period of central apnea, lower airway occlusion led to progressive increases in phasic genioglossal electromyographic activity (EMG(GG)), and in maximal inspiratory airflow (Vi(max)) through the isolated upper airway, particularly as the nasal pressure was lowered toward the passive Pcrit level. Moreover, the active Pcrit fell during inspiration by 8.2 +/- 1.4 cmH(2)O relative to the passive condition (P < 0.0005). We conclude that upper airway collapsibility (passive Pcrit) in the C57BL/6J mouse is similar to that in the anesthetized canine, feline, and sleeping human upper airway, and that collapsibility falls markedly under active conditions. Active EMG(GG) and Vi(max) responses dissociated at higher upstream pressure levels, suggesting a decrease in the mechanical efficiency of upper airway dilators. Our findings in mice imply that anatomic and neuromuscular factors interact dynamically to modulate upper airway function, and provide a novel approach to modeling the impact of genetic and environmental factors in inbred murine strains.  相似文献   

9.
Inspiratory muscle forces and endurance in maximum resistive loading   总被引:1,自引:0,他引:1  
The ability of the respiratory muscles to sustain ventilation against increasing inspiratory resistive loads was measured in 10 normal subjects. All subjects reached a maximum rating of perceived respiratory effort and at maximum resistance showed signs of respiratory failure (CO2 retention, O2 desaturation, and rib cage and abdominal paradox). The maximum resistance achieved varied widely (range 73-660 cmH2O X l-1 X s). The increase in O2 uptake (delta Vo2) associated with loading was linearly related to the integrated mouth pressure (IMP): delta Vo2 = 0.028 X IMP + 19 ml/min (r = 0.88, P less than 0.001). Maximum delta Vo2 was 142 ml/min +/- SD 68 ml/min. There were significant (P less than 0.05) relationships between the maximum voluntary inspiratory pressure against an occluded airway (MIP) and both maximum IMP (r = 0.80) and maximum delta Vo2 (r = 0.76). In five subjects, three imposed breathing patterns were used to examine the effect of different patterns of respiratory muscle force deployment. Increasing inspiratory duration (TI) from 1.5 to 3.0 and 6.0 s, at the same frequency of breathing (5.5 breaths/min) reduced peak inspiratory pressure and increased the maximum resistance tolerated (190, 269, and 366 cmH2O X l-1 X s, respectively) and maximum IMP (2043, 2473, and 2913 cmH2O X s X min-1, but the effect on maximum delta Vo2 was less consistent (166, 237, and 180 ml/min). The ventilatory endurance capacity and the maximum O2 uptake of the respiratory muscles are related to the strength of the inspiratory muscles, but are also modified through the pattern of force deployment.  相似文献   

10.
Airway obstruction during periodic breathing in premature infants   总被引:1,自引:0,他引:1  
To characterize changes in pulmonary resistance, timing, and respiratory drive during periodic breathing, we studied 10 healthy preterm infants (body wt 1,340 +/- 240 g, postconceptional age 35 +/- 2 wk). Periodic breathing in these infants was defined by characteristic cycles of ventilation with intervening respiratory pauses greater than or equal to 2 s. Nasal airflow was recorded with a pneumotachometer, and esophageal or pharyngeal pressure was recorded with a fluid-filled catheter. Pulmonary resistance at half-maximal tidal volume, inspiratory time (TI), expiratory time (TE), and mean inspiratory flow (VT/TI) were derived from computer analysis of five cycles of periodic breathing per infant. In 80% of infants periodic breathing was accompanied by completely obstructed breaths at the onset of ventilatory cycles; the site of airway obstruction occurred within the pharynx. The first one-third of the ventilatory phase of each cycle was accompanied by the highest airway resistance of the entire cycle (168 +/- 98 cmH2O.l-1.s). In all infants TI was greatest at the onset of the ventilatory cycle, VT/TI was maximal at the midpoint of the cycle, and TE was longest in the latter two-thirds of each cycle. A characteristic increase and subsequent decrease of 4.5 +/- 1.9 ml in end-expiratory volume also occurred within each cycle. These results demonstrate that partial or complete airway obstruction occurs during periodic breathing. Both apnea and periodic breathing share the element of upper airway instability common to premature infants.  相似文献   

11.
We hypothesized that upper airway collapsibility is modulated dynamically throughout the respiratory cycle in sleeping humans by alterations in respiratory phase and/or airflow regimen. To test this hypothesis, critical pressures were derived from upper airway pressure-flow relationships in six tracheostomized patients with obstructive sleep apnea. Pressure-flow relationships were generated by varying the pressure at the trachea and nose during tracheostomy (inspiration and expiration) (comparison A) and nasal (inspiration only) breathing (comparison B), respectively. When a constant airflow regimen was maintained throughout the respiratory cycle (tracheostomy breathing), a small yet significant decrease in critical pressure was found at the inspiratory vs. end- and peak-expiratory time point [7.1 +/- 1.6 (SE) to 6.6 +/- 1.9 to 6.1 +/- 1.9 cmH(2)O, respectively; P < 0.05], indicating that phasic factors exerted only a modest influence on upper airway collapsibility. In contrast, we found that the inspiratory critical pressure fell markedly during nasal vs. tracheostomy breathing [1.1 +/- 1.5 (SE) vs. 6.1 +/- 1.9 cmH(2)O; P < 0.01], indicating that upper airway collapsibility is markedly influenced by differences in airflow regimen. Tracheostomy breathing was also associated with a reduction in both phasic and tonic genioglossal muscle activity during sleep. Our findings indicate that both phasic factors and airflow regimen modulate upper airway collapsibility dynamically and suggest that neuromuscular responses to alterations in airflow regimen can markedly lower upper airway collapsibility during inspiration.  相似文献   

12.
The ventilatory effects of inspiratory flow-resistive loading and increased chemical drive were measured in ten neonates during progressive hypercapnia in control and loaded states. Hypercapnia (mean increase PCO2 = 15-20) resulted from inspiring 8% CO2 in room air and inspiratory loading by a flow-resistive load = 100 cmH2O X l-1) X s. Hypercapnia produced an increase in group minute ventilation secondary to increasing tidal volumes and breathing frequencies. Loading shifted the minute ventilation-CO2 response to the right, and slopes decreased significantly (P less than 0.05) consequent to a significant decrease in the frequency-CO2 slopes (P less than 0.05), which became negative in four of the ten subjects. Mouth pressure measured at 100 ms after onset of inspiratory effort (P100) occlusion pressure-CO2 slopes measured in five subjects showed no significant increase with load application. Resistive loading produced significant increases in inspiratory time (P less than 0.02) and the inspiratory time/total breath time ratio (P less than 0.01). Airway occlusion elicited the Hering-Breuer reflex, with a significant increase in inspiratory time-to-total breath time ratio (P less than 0.01). The results show that the inspiratory resistive load produced ventilatory compromise in newborns and insufficient compensatory augmentation of central drive.  相似文献   

13.
We examined the effects of external mechanical loading on glottic dimensions in 13 normal subjects. When flow-resistive loads of 7, 27, and 48 cmH2O X l-1 X s, measured at 0.2 l/s, were applied during expiration, glottic width at the mid-tidal volume point in expiration (dge) was 2.3 +/- 12, 37.9 +/- 7.5, and 38.3 +/- 8.9% (means +/- SE) less than the control dge, respectively. Simultaneously, mouth pressure (Pm) increased by 2.5 +/- 4, 3.0 +/- 0.4, and 4.6 +/- 0.6 cmH2O, respectively. When subjects were switched from a resistance to a positive end-expiratory pressure at comparable values of Pm, both dge and expiratory flow returned to control values, whereas the level of hyperinflation remained constant. Glottic width during inspiration (unloaded) did not change on any of the resistive loads. There was a slight inverse relationship between the ratio of expiratory to inspiratory glottic width and the ratio of expiratory to inspiratory duration. Our results show noncompensatory glottic narrowing when subjects breathe against an expiratory resistance and suggest that the glottic dimensions are influenced by the time course of lung emptying during expiration. We speculate that the glottic constriction is related to the increased activity of expiratory medullary neurons during loaded expiration and, by increasing the internal impedance of the respiratory system, may have a stabilizing function.  相似文献   

14.
Collapsibility of the human upper airway during normal sleep   总被引:6,自引:0,他引:6  
Upper airway resistance (UAR) increases in normal subjects during the transition from wakefulness to sleep. To examine the influence of sleep on upper airway collapsibility, inspiratory UAR (epiglottis to nares) and genioglossus electromyogram (EMG) were measured in six healthy men before and during inspiratory resistive loading. UAR increased significantly (P less than 0.05) from wakefulness to non-rapid-eye-movement (NREM) sleep [3.1 +/- 0.4 to 11.7 +/- 3.5 (SE) cmH2O.1-1.s]. Resistive load application during wakefulness produced small increments in UAR. However, during NREM sleep, UAR increased dramatically with loading in four subjects although two subjects demonstrated little change. This increment in UAR from wakefulness to sleep correlated closely with the rise in UAR during loading while asleep (e.g., load 12: r = 0.90, P less than 0.05), indicating consistent upper airway behavior during sleep. On the other hand, no measurement of upper airway behavior during wakefulness was predictive of events during sleep. Although the influence of sleep on the EMG was difficult to assess, peak inspiratory genioglossus EMG clearly increased (P less than 0.05) after load application during NREM sleep. Finally, minute ventilation fell significantly from wakefulness values during NREM sleep, with the largest decrement in sleeping minute ventilation occurring in those subjects having the greatest awake-to-sleep increment in UAR (r = -0.88, P less than 0.05). We conclude that there is marked variability among normal men in upper airway collapsibility during sleep.  相似文献   

15.
Investigation into the etiology of obstructive sleep apnea is beginning to focus increasing attention on upper airway anatomy and physiology (patency and resistance). Before conclusions concerning upper airway resistance in these patients can be made, the normal range of supraglottic and, more specifically, pharyngeal resistance needs to be better defined. We measured supraglottic and pharyngeal resistances during nasal breathing in a normal population of 35 men and women. Our technique measured epiglottic pressure with a balloon-tipped catheter, choanal pressure using anterior rhinometry, and flow with a sealed face mask and pneumotachograph. Resistance was measured at a flow rate of 300 ml/s during inspiration. Men had a mean pharyngeal resistance (choanae to epiglottis) of 4.6 +/- 0.8 (SE) cmH2O X l-1 X s, whereas women demonstrated a significantly (P less than 0.01) lower value, 2.3 +/- 0.3 cmH2O X l-1 X s. Supraglottic resistance was also higher in men (P = 0.01). Age (r = 0.73, P less than 0.01) correlated closely with pharyngeal resistance in men, but no such correlations could be found in women. These results may have implications in the epidemiology of obstructive sleep apnea.  相似文献   

16.
In a previous study in unanesthetized goats, we demonstrated that continuous naloxone (NLX) administration during inspiratory flow-resistive loading (IRL) significantly increased tidal volume (VT) but not diaphragm electromyogram (EMGdi). End-expiratory gastric pressure did increase with NLX, implying that increased abdominal muscle activity may have accounted for the NLX effect. In the current study we directly tested the hypothesis that endogenous opioid elaboration depresses the abdominal muscle response to a continuous inspiratory flow-resistive load. In seven unanesthetized goats, VT, arterial blood gases, EMGdi, and EMG activity of external oblique (EMGeo), transversus abdominis (EMGta), and external intercostal (EMGei) muscles were monitored. IRL (50 cmH2O.l-1.s) was continued for 3 h, after which NLX (0.1 mg/kg) or saline was given. Our results showed that VT decreased from 323 +/- 32 (SE) ml at baseline to 260 +/- 16 ml 5 min after the load was imposed (P less than 0.05) and further decreased to 229 +/- 18 and 217 +/- 15 ml by 120 and 180 min, respectively (180 vs. 5 min, P less than 0.05). EMGdi increased from 62 +/- 5 to 83 +/- 4% max at 5 min (P less than 0.05) but was unchanged thereafter. In contrast, for this same time period EMGeo increased from 35 +/- 5 to 58 +/- 11% max but decreased from 67 +/- 11% max at 120 min to 37 +/- 5% max at 180 min (P less than 0.05). NLX administration resulted in significant increases in EMGeo (91% above 180-min value). In contrast, EMGdi increased minimally after NLX (15% above 180-min value).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The purposes of this study were 1) to characterize the immediate inspiratory muscle and ventilation responses to inspiratory resistive loading during sleep in humans and 2) to determine whether upper airway caliber was compromised in the presence of a resistive load. Ventilation variables, chest wall, and upper airway inspiratory muscle electromyograms (EMG), and upper airway resistance were measured for two breaths immediately preceding and immediately following six applications of an inspiratory resistive load of 15 cmH2O.l-1 X s during wakefulness and stage 2 sleep. During wakefulness, chest wall inspiratory peak EMG activity increased 40 +/- 15% (SE), and inspiratory time increased 20 +/- 5%. Therefore, the rate of rise of chest wall EMG increased 14 +/- 10.9% (NS). Upper airway inspiratory muscle activity changed in an inconsistent fashion with application of the load. Tidal volume decreased 16 +/- 6%, and upper airway resistance increased 141 +/- 23% above pre-load levels. During sleep, there was no significant chest wall or upper airway inspiratory muscle or timing responses to loading. Tidal volume decreased 40 +/- 7% and upper airway resistance increased 188 +/- 52%, changes greater than those observed during wakefulness. We conclude that 1) the immediate inspiratory muscle and timing responses observed during inspiratory resistive loading in wakefulness were absent during sleep, 2) there was inadequate activation of upper airway inspiratory muscle activity to compensate for the increased upper airway inspiratory subatmospheric pressure present during loading, and 3) the alteration in upper airway mechanics during resistive loading was greater during sleep than wakefulness.  相似文献   

18.
Previous investigators (van Lunteren et al. J. Appl. Physiol. 62: 582-590, 1987) have suggested that the geniohyoid and sternohyoid muscles may act as upper airway dilators in the cat. To investigate the effect of geniohyoid and sternohyoid contraction on inspiratory upper airway resistance (UAR), we studied five adult male cats anesthetized with ketamine and xylazine during spontaneous room-air breathing. Inspiratory nasal airflow was measured by sealing the lips and constructing a nose mask. Supraglottic pressure was measured using a transpharyngeal catheter placed above the larynx. Mask pressure was measured using a separate catheter. Geniohyoid and sternohyoid lengths were determined by sonomicrometry. Geniohyoid and sternohyoid contraction was stimulated by direct muscle electrical stimulation with implanted wire electrodes. Mean inspiratory UAR was determined for spontaneous breaths under three conditions: 1) baseline (no muscle stimulation), 2) geniohyoid contraction alone, and 3) sternohyoid contraction alone. Geniohyoid contraction alone produced no significant reduction in inspiratory UAR [unstimulated, 17.75 +/- 0.86 (SE) cmH2O.l-1.s; geniohyoid contraction, 19.24 +/- 1.10]. Sternohyoid contraction alone also produced no significant reduction in inspiratory UAR (unstimulated, 15.74 +/- 0.92 cmH2O.l-1.s; sternohyoid contraction, 14.78 +/- 0.78). Simultaneous contraction of the geniohyoid and sternohyoid muscles over a wide range of muscle lengths produced no consistent change in inspiratory UAR. The geniohyoid and sternohyoid muscles do not appear to function consistently as upper airway dilator muscles when UAR is used as an index of upper airway patency in the cat.  相似文献   

19.
Calcium chelators increase airway responsiveness   总被引:2,自引:0,他引:2  
To test the effect of calcium chelation on airway responsiveness to methacholine, purebred Basenji dogs were pretreated with a calcium-chelating aerosol (edetate disodium, Na2EDTA) or a placebo aerosol (saline or CaNa2-EDTA) and then challenged with methacholine bromide aerosols. The lowest dose of methacholine (0.15 mg/ml) produced no change in pulmonary resistance (RL) following pretreatment with the placebo aerosols, but RL increased (P less than 0.05) by 5.1 +/- 1.2 (SE) cmH2O X l-1 X s following pretreatment with Na2EDTA. The highest dose of methacholine (1.5 mg/ml) increased RL in all animals, but the increase was greater (P less than 0.01) following pretreatment with Na2EDTA (9.5 +/- 1.9 cm H2O X l-1 X s) than following pretreatment with a placebo aerosol (6.4 +/- 1.5 cmH2O X l-1 X s). These studies show that calcium-chelating aerosols significantly increase airway responsiveness and suggest that a localized calcium deficit may contribute to hyperresponsive airway disease.  相似文献   

20.
Although the role played by the caudal ventrolateral medulla in the regulation of the cardiovascular system has been extensively investigated, little is known about the role played by this area in the regulation of airway caliber. Therefore, in alpha-chloralose-anesthetized dogs, we used both electrical and chemical means to stimulate the caudal ventrolateral medulla while we monitored changes in total lung resistance breath by breath. We found that electrical stimulation (25 microA) of 26 sites in this area significantly decreased total lung resistance from 7.1 +/- 0.4 to 5.7 +/- 0.3 cmH2O.1-1.s (P less than 0.001). The bronchodilation evoked by electrical stimulation was unaffected by beta-adrenergic blockade but was abolished by cholinergic blockade. In addition, chemical stimulation of seven sites in the caudal ventrolateral medulla with microinjections of DL-homocysteic acid (0.2 M; 66 nl), which stimulates cell bodies but not fibers of passage, also decreased total lung resistance from 8.3 +/- 1.1 to 6.5 +/- 0.8 cmH2O.l-1.s (P less than 0.01). In contrast, microinjections of DL-homocysteic acid into the nucleus ambiguus (n = 6) increased total lung resistance from 7.5 +/- 0.5 to 9.2 +/- 0.4 cmH2O.l-1.s (P less than 0.05). We conclude that the caudal ventrolateral medulla contains a pool of cell bodies whose excitation causes bronchodilation by withdrawing cholinergic input to airway smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号