首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Effect of recombinant chicken small heat shock protein with molecular mass 24 kDa (Hsp24) and recombinant human small heat shock protein with molecular mass 27 kDa (Hsp27) on the heat-induced denaturation and aggregation of skeletal F-actin was analyzed by means of differential scanning calorimetry and light scattering. All small heat shock proteins did not affect thermal unfolding of F-actin measured by differential scanning calorimetry, but effectively prevented aggregation of thermally denatured actin. Small heat shock protein formed stable complexes with denatured (but not with intact) F-actin. The size of these highly soluble complexes was smaller than the size of intact F-actin filaments. It is supposed that protective effect of small heat shock proteins on the cytoskeleton is at least partly due to prevention of aggregation of denatured actin.  相似文献   

2.
Small heat shock proteins (sHsps) exist in dynamic oligomeric complexes and display diverse biological functions ranging from chaperone properties to modulator of apoptosis. So far, the role of stress-dependent phosphorylation of mammalian sHsps for its structure and function has been analyzed by using various phosphorylation site mutants overexpressed in different cell types as well as by non-exclusive inhibitors of the p38 MAPK cascade. Here we investigate the role of phosphorylation of endogenous sHsp in a genetic model lacking the major Hsp25 kinase, the MAP kinase-activated protein kinase MK2. We demonstrate that in MK2-deficient fibroblasts, where no stress-dependent phosphorylation of Hsp25 at Ser86 and no in vitro binding to 14-3-3 was detectable, stress-dependent disaggregation of endogenous Hsp25 complexes is impared and kinetics of arsenite-dependent, H2O2-dependent, and sublethal heat shock-induced insolubilization of Hsp25 is delayed. Similarly, green fluorescent protein-tagged Hsp25 shows retarded subcellular accumulation into stress granules in MK2-deficient cells after arsenite treatment. Decreased insolubilization of Hsp25 in MK2-deficient cells correlates with increased resistance against arsenite, H2O2, and sublethal heat shock treatment and with decreased apoptosis. In contrast, after severe, lethal heat shock MK2-deficient embryonic fibroblasts cells show fast and complete insolubilization of Hsp25 independent of MK2 and no increased stress resistance. Hence, MK2-dependent formation of insoluble stress granules and irreversible cell damage by oxidative stresses and sublethal heat shock correlate and only upon severe, lethal heat shock MK2-independent processes could determine insolubilization of Hsp25 and are more relevant for cellular stress damage.  相似文献   

3.
Previously, we have shown that the small heat shock protein with apparent molecular mass 27 kDa (Hsp27) does not affect the thermal unfolding of F-actin, but effectively prevents aggregation of thermally denatured F-actin [Pivovarova AV, Mikhailova VV, Chernik IS, Chebotareva NA, Levitsky DI & Gusev NB (2005) Biochem Biophys Res Commun331, 1548-1553], and supposed that Hsp27 prevents heat-induced aggregation of F-actin by forming soluble complexes with denatured actin. In the present work, we applied dynamic light scattering, analytical ultracentrifugation and size exclusion chromatography to examine the properties of complexes formed by denatured actin with a recombinant human Hsp27 mutant (Hsp27-3D) mimicking the naturally occurring phosphorylation of this protein at Ser15, Ser78, and Ser82. Our results show that formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. All the methods show that the size of actin-Hsp27-3D complexes decreases with increasing Hsp27-3D concentration in the incubation mixture and that saturation occurs at approximately equimolar concentrations of Hsp27-3D and actin. Under these conditions, the complexes exhibit a hydrodynamic radius of approximately 16 nm, a sedimentation coefficient of 17-20 S, and a molecular mass of about 2 MDa. It is supposed that Hsp27-3D binds to denatured actin monomers or short oligomers dissociated from actin filaments upon heating and protects them from aggregation by forming relatively small and highly soluble complexes. This mechanism might explain how small heat shock proteins prevent aggregation of denatured actin and by this means protect the cytoskeleton and the whole cell from damage caused by accumulation of large insoluble aggregates under heat shock conditions.  相似文献   

4.
Small heat shock proteins (sHsps), including alpha-crystallin, represent a conserved and ubiquitous family of proteins. They form large oligomers, ranging in size from 140 to more than 800 kDa, which seem to be important for the interaction with non-native proteins as molecular chaperones. Here we analyzed the stability and oligomeric structure of murine Hsp25 and its correlation with function. Upon unfolding, the tertiary and quaternary structure of Hsp25 is rapidly lost, whereas the secondary structure remains remarkably stable. Unfolding is completely reversible, leading to native hexadecameric structures. These oligomers are in a concentration-dependent equilibrium with tetramers and dimers, indicating that tetramers assembled from dimers represent the basic building blocks of Hsp25 oligomers. At high temperatures, the Hsp25 complexes increase in molecular mass, consistent with the appearance of "heat shock granules" in vivo after heat treatment. This high molecular mass "heat shock form" of Hsp25 is in a slow equilibrium with hexadecameric Hsp25. Thus, it does not represent an off-pathway reaction. Interestingly, the heat shock form exhibits unchanged chaperone activity even after incubation at 80 degrees C. We conclude that Hsp25 is a dynamic tetramer of tetramers with a unique ability to refold and reassemble into its active quaternary structure after denaturation. So-called heat shock granules, which have been reported to appear in response to stress, seem to represent a novel functional species of Hsp25.  相似文献   

5.
Gene regulation in response to environmental stress is critical for the survival of all organisms. From Saccharomyces cerevisiae to humans, it has been observed that splicing of mRNA precursors is repressed upon heat shock. However, a mild heat pretreatment often prevents splicing inhibition in response to a subsequent and more severe heat shock, a phenomenon called splicing thermotolerance. We have shown previously that the splicing regulator SRSF10 (formerly SRp38) is specifically dephosphorylated by the phosphatase PP1 in response to heat shock and that dephosphorylated SRSF10 is responsible for splicing repression caused by heat shock. Here we report that a mild heat shock protects SRSF10 from dephosphorylation during a second and more severe heat shock. Furthermore, this "thermotolerance" of SRSF10 phosphorylation, like that of splicing, requires de novo protein synthesis, specifically the synthesis of heat shock proteins. Indeed, overexpression of one of these proteins, Hsp27, inhibits SRSF10 dephosphorylation in response to heat shock and does so by interaction with SRSF10. Our data thus provide evidence that splicing thermotolerance is acquired through maintenance of SRSF10 phosphorylation and that this is mediated at least in part by Hsp27.  相似文献   

6.
The cell-to-cell movement of plant viruses involves translocation of virus particles or nucleoproteins to and through the plasmodesmata (PDs). As we have shown previously, the movement of the Beet yellows virus requires the concerted action of five viral proteins including a homolog of cellular approximately 70-kDa heat shock proteins (Hsp70h). Hsp70h is an integral component of the virus particles and is also found in PDs of the infected cells. Here we investigate subcellular distribution of Hsp70h using transient expression of Hsp70h fused to three spectrally distinct fluorescent proteins. We found that fluorophore-tagged Hsp70h forms motile granules that are associated with actin microfilaments, but not with microtubules. In addition, immobile granules were observed at the cell periphery. A pairwise appearance of these granules at the opposite sides of cell walls and their colocalization with the movement protein of Tobacco mosaic virus indicated an association of Hsp70h with PDs. Treatment with various cytoskeleton-specific drugs revealed that the intact actomyosin motility system is required for trafficking of Hsp70h in cytosol and its targeting to PDs. In contrast, none of the drugs interfered with the PD localization of Tobacco mosaic virus movement protein. Collectively, these findings suggest that Hsp70h is translocated and anchored to PDs in association with the actin cytoskeleton.  相似文献   

7.
Induction of the heat shock proteins (HSPs) is involved in the increased resistance to cancer therapies such as chemotherapy and hyperthermia. We used two human ovarian cancer cell lines; a cisplatin (CDDP)-sensitive line A2780 and its CDDP-resistant derivative, A2780CP. The concentration of intracellular glutathione (GSH) is higher (2.7-fold increase) in A2780CP cells than in A2780 cells. A mild treatment with a heat stress (42 degrees C for 30 min) induced synthesis of both the heat shock protein 72 (Hsp72) mRNA and the HSP72 protein in A2780CP cells, but not in A2780 cells. In contrast, a severe heat stress (45 degrees C for 30 min) increased synthesis of the HSP72 protein in the two cell lines. The induced level of the HSP72 protein by the severe treatment was higher in A2780CP than in A2780 cells. The gel mobility shift assay showed that DNA binding activities of the heat shock factor (HSF) in the two cell lines were induced similarly and significantly by the mild heat stress. Immunocytochemistry using an anti HSF1 antibody also indicated that mild heat stress activated the HSF1 translocation from the cytosol to the nucleus similarly in the both cell lines. Pretreatment of CDDP-sensitive A2780 cells with N-acetyl-L-cysteine, a precursor of GSH, effectively enhanced induction of the Hsp72 mRNA by the mild heat stress. The present findings demonstrate that induction of the Hsp72 mRNA by the mild heat stress was more extensive in CDDP-resistant A2780CP cells. It is likely that the higher GSH concentration in A2780CP cells plays an important role in promoting Hsp72 gene expression induced by the mild heat stress probably through processes downstream of activation of HSF-DNA binding.  相似文献   

8.
Exposure to hexavalent chromium [Cr(VI)], a lung carcinogen, triggers several types of cellular stresses, namely oxidative, genotoxic and proteotoxic stresses. Given the evolutionary character of carcinogenesis, it is tempting to speculate that cells that survive the stresses produced by this carcinogen become more resistant to subsequent stresses, namely those encountered during neoplastic transformation. To test this hypothesis, we determined whether pre-incubation with Cr(VI) increased the resistance of human bronchial epithelial cells (BEAS-2B cells) to the antiproliferative action of acute thermal shock, used here as a model for stress. In line with the proposed hypothesis, it was observed that, at mildly cytotoxic concentrations, Cr(VI) attenuated the antiproliferative effects of both cold and heat shock. Mechanistically, Cr(VI) interfered with the expression of two components of the stress response pathway: heat shock proteins Hsp72 and Hsp90α. Specifically, Cr(VI) significantly depleted the mRNA levels of the former and the protein levels of the latter. Significantly, these two proteins are members of heat shock protein (Hsp) families (Hsp70 and Hsp90, respectively) that have been implicated in carcinogenesis. Thus, our results confirm and extend previous studies showing the capacity of Cr(VI) to interfere with the expression of stress response components.  相似文献   

9.
In neuroendocrine PC-12 cells, evanescent-field fluorescence microscopy was used to track motions of green fluorescent protein (GFP)-labeled actin or GFP-labeled secretory granules in a thin layer of cytoplasm where cells adhered to glass. The layer contained abundant filamentous actin (F-actin) locally condensed into stress fibers. More than 90% of the granules imaged lay within the F-actin layer. One-third of the granules did not move detectably, while two-thirds moved randomly; the average diffusion coefficient was 23 x 10(-4) microm(2)/s. A small minority (<3%) moved rapidly and in a directed fashion over distances more than a micron. Staining of F-actin suggests that such movement occurred along actin bundles. The seemingly random movement of most other granules was not due to diffusion since it was diminished by the myosin inhibitor butanedione monoxime, and blocked by chelating intracellular Mg(2+) and replacing ATP with AMP-PNP. Mobility was blocked also when F-actin was stabilized with phalloidin, and was diminished when the actin cortex was degraded with latrunculin B. We conclude that the movement of granules requires metabolic energy, and that it is mediated as well as limited by the actin cortex. Opposing actions of the actin cortex on mobility may explain why its degradation has variable effects on secretion.  相似文献   

10.
Yan S  Sun X  Xiang B  Cang H  Kang X  Chen Y  Li H  Shi G  Yeh ET  Wang B  Wang X  Yi J 《The EMBO journal》2010,29(22):3773-3786
The molecular chaperone heat shock protein 90 (Hsp90) and the co-chaperone/ubiquitin ligase carboxyl terminus of Hsc70-interacting protein (CHIP) control the turnover of client proteins. How this system decides to stabilize or degrade the client proteins under particular physiological or pathological conditions is unclear. We report here a novel client protein, the SUMO2/3 protease SENP3, that is sophisticatedly regulated by CHIP and Hsp90. SENP3 is maintained at a low basal level under non-stress condition due to Hsp90-independent CHIP-mediated ubiquitination. Upon mild oxidative stress, SENP3 undergoes thiol modification, which recruits Hsp90. Hsp90/SENP3 association protects SENP3 from CHIP-mediated ubiquitination and subsequent degradation, but this effect of Hsp90 requires the presence of CHIP. Our data demonstrate for the first time that CHIP and Hsp90 interplay with a client alternately under non-stress and stress conditions, and the choice between stabilization and degradation is made by the redox state of the client. In addition, enhanced SENP3/Hsp90 association is found in cancer. These findings provide new mechanistic insight into how cells regulate the SUMO protease in response to oxidative stress.  相似文献   

11.
12.
Heat shock protein 27 (Hsp27) is a ubiquitously expressed member of the heat shock protein family that has been implicated in various biological functions including the response to heat shock, oxidative stress, and cytokine treatment. Previous studies have demonstrated that heat shock proteins are involved in regulating signal transduction pathways including the NF-kappa B pathway. In this study, we demonstrated that Hsp27 associates with the I kappa B kinase (IKK) complex and that this interaction was stimulated by tumor necrosis factor alpha treatment. Phosphorylation of Hsp27 by the kinase mitogen-activated protein kinase-activated protein kinase 2, a downstream substrate of the mitogen-activated protein kinase p38, enhanced the association of Hsp27 with IKK beta to result in decreased IKK activity. Consistent with these observations, treatment of cells with a p38 inhibitor reduced the association of Hsp27 with IKK beta and thus resulted in increased IKK activity. These studies indicate that Hsp27 plays a negative role in down-regulating IKK signaling by reducing its activity following tumor necrosis factor alpha stimulation.  相似文献   

13.
The targets of the p38 MAPK pathway responsible for regulation of neutrophil chemotaxis and exocytosis are unknown. One target of this pathway is the actin-binding protein, heat shock protein 27 (Hsp27). Therefore, we tested the hypothesis that Hsp27 mediates p38 MAPK-dependent chemotaxis and exocytosis in human neutrophils through regulation of actin reorganization. Sequestration of Hsp27 by introduction of anti-Hsp27 Ab, but not an isotype Ab, inhibited fMLP-stimulated chemotaxis, increased cortical F-actin in the absence of fMLP stimulation, and inhibited fMLP-stimulated exocytosis. Pretreatment with latrunculin A prevented actin reorganization and the changes in fMLP-stimulated exocytosis induced by Hsp27 sequestration. To determine the role of Hsp27 phosphorylation, wild-type, phosphorylation-resistant, or phosphorylation-mimicking recombinant Hsp27 was introduced into neutrophils by electroporation. The phosphorylation-resistant mutant significantly reduced migration toward fMLP, whereas none of the Hsp27 proteins affected fMLP-stimulated or TNF-alpha-stimulated exocytosis or actin polymerization. Endogenous Hsp27 colocalized with F-actin in unstimulated and fMLP-stimulated neutrophils, whereas phosphorylated Hsp27 showed cytosolic localization in addition to colocalization with F-actin. Our results suggest that Hsp27 regulates neutrophil chemotaxis and exocytosis in an actin-dependent, phosphorylation-independent manner. Phosphorylation of Hsp27 regulates chemotaxis, but not exocytosis, independent of regulation of actin reorganization.  相似文献   

14.
In vitro, small Hsps (heat-shock proteins) have been shown to have chaperone function capable of keeping unfolded proteins in a form competent for Hsp70-dependent refolding. However, this has never been confirmed in living mammalian cells. In the present study, we show that Hsp27 (HspB1) translocates into the nucleus upon heat shock, where it forms granules that co-localize with IGCs (interchromatin granule clusters). Although heat-induced changes in the oligomerization status of Hsp27 correlate with its phosphorylation and nuclear translocation, Hsp27 phosphorylation alone is not sufficient for effective nuclear translocation of HspB1. Using firefly luciferase as a heat-sensitive reporter protein, we demonstrate that HspB1 expression in HspB1-deficient fibroblasts enhances protein refolding after heat shock. The positive effect of HspB1 on refolding is completely diminished by overexpression of Bag-1 (Bcl-2-associated athanogene), the negative regulator of Hsp70, consistent with the idea of HspB1 being the substrate holder for Hsp70. Although HspB1 and luciferase both accumulate in nuclear granules after heat shock, our results suggest that this is not related to the refolding activity of HspB1. Rather, granular accumulation may reflect a situation of failed refolding where the substrate is stored for subsequent degradation. Consistently, we found 20S proteasomes concentrated in nuclear granules of HspB1 after heat shock. We conclude that HspB1 contributes to an increased chaperone capacity of cells by binding unfolded proteins that are hereby kept competent for refolding by Hsp70 or that are sorted to nuclear granules if such refolding fails.  相似文献   

15.
Human heat shock 27-kDa protein 1 (HSPB1)/heat shock protein (Hsp) 27 is a small heat shock protein which is thought to have several roles within the cell. One of these roles includes regulating actin filament dynamics in cell movement, since Hsp27 has previously been found to inhibit actin polymerization in vitro. In this study, the role of Hsp27 in regulating actin filament dynamics is further investigated. Hsp27 protein levels were reduced using siRNA in SW480 cells, a human colon cancer cell line. An in vitro wound closure assay showed that cells with knocked down Hsp27 levels were unable to close wounds, indicating that this protein is involved in regulating cell motility. Immunoprecipitation pull down assays were done, to observe if and when Hsp27 and actin are in the same complex within the cell, before and after heat shock. At all time points tested, Hsp27 and actin were present in the same cell lysate fraction. Lastly, indirect immunostaining was done before and after heat shock to evaluate Hsp27 and actin interaction in cells. Hsp27 and actin showed colocalization before heat shock, little association 3 h after heat shock, and increased association 24 h after heat shock. Cytoprotection was observed as early as 3 h after heat shock, yet cells were still able to move. These results show that Hsp27 and actin are in the same complex in cells and that Hsp27 is important for cell motility. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Proteomics were performed using highly (99.99%) purified cytotrophoblasts from six normal and six pre-eclamptic placentas. Eleven proteins were found which decreased in pre-eclampsia (actin, glutathione S-transferase, peroxiredoxin 6, aldose reductase, heat shock protein 60 (Hsp60), two molecular forms of heat shock protein 70 (Hsp70) β-tubulin, subunit proteasome, ezrin, protein disulfide isomerase, and phosphoglycerate mutase 1). Only one protein, α-2-HS-glycoprotein (fetuin), was found to increase its expression. Western blots of actin, Hsp70, ezrin, and glutatione S-transferase confirmed decrease in protein expression. Many of the proteins that decreased are consistent with a state of oxidative stress in the pre-eclamptic placenta and a decreased cytotrophoblast defense against and response to oxidative stress.  相似文献   

17.
In cultured cells, salicylate has been shown to potentiate the induction of Hsp72 so that a mild heat stress (40 degrees C) in the presence of salicylate induces an Hsp72 response that is similar to a severe heat stress (42 degrees C). To determine whether salicylate can potentiate the myocardial Hsp70 response in vivo and confer protection from an ischemic stress, male Sprague-Dawley rats (250-300 g) were placed into 5 groups: (1) control, (2) salicylate only (400 mg/kg), (3) mild heat stress (40 degrees C for 15 minutes), (4) mild heat stress plus salicylate, and (5) severe heat stress (42 degrees C for 15 minutes). Twenty-four hours following salicylate treatment and/or heat stress, animals were anesthetized, their hearts rapidly isolated, and hemodynamic function evaluated using the Langendorff technique. Hsp72 content was subsequently assessed by Western blotting. Although salicylate in combination with a mild heat stress induced heat shock factor activation, only the hearts from severely heat-stressed animals (42 degrees C) demonstrated a significantly elevated myocardial Hsp72 content and a significantly enhanced postischemic recovery of left ventricular developed pressure and rates of contraction and relaxation. These results support the role for Hsp72 as a protective protein and suggest that neither salicylate treatment alone nor salicylate in combination with a mild heat stress potentiates the myocardial Hsp72 response.  相似文献   

18.
Hsp104 is an important determinant of thermotolerance in yeast and is an unusual molecular chaperone that specializes in the remodeling of aggregated proteins. The structural requirements for Hsp104-substrate interactions remain unclear. Upon mild heat shock Hsp104 formed cytosolic foci in live cells that indicated co-localization of the chaperone with aggregates of thermally denatured proteins. We generated random amino acid substitutions in the C-terminal 199 amino acid residues of a GFP-Hsp104 fusion protein, and we used a visual screen to identify mutants that remained diffusely distributed immediately after heat shock. Multiple amino acid substitutions were required for loss of heat-inducible redistribution, and this correlated with complete loss of nucleotide-dependent oligomerization. Based on the multiply substituted proteins, several single amino acid substitutions were generated by site-directed mutagenesis. The singly substituted proteins retained the ability to oligomerize and detect substrates. Intriguingly, some derivatives of Hsp104 functioned well in prion propagation and multiple stress tolerance but failed to protect yeast from extreme thermal stress. We demonstrate that these proteins co-aggregate in the presence of other thermolabile proteins during heat treatment both in vitro and in vivo suggesting a novel mechanism for uncoupling the function of Hsp104 in acute severe heat shock from its functions at moderate temperatures.  相似文献   

19.
We applied different methods to analyze the effects of the recombinant wild-type small heat shock protein with an apparent molecular mass of 27 kD (Hsp27-wt) and its S15,78,82D mutant (Hsp27-3D), which mimics the naturally occurring phosphorylation of this protein, on the thermal denaturation and aggregation of F-actin. It has been shown that, at the weight ratio of Hsp27/actin equal to 1/4, both Hsp27-wt and Hsp27-3D do not affect the thermal unfolding of F-actin but effectively prevent the aggregation of F-actin by forming soluble complexes with denatured actin. The formation of these complexes occurs upon heating and accompanies the F-actin thermal denaturation. It is known that Hsp27-wt forms high-molecular-mass oligomers, whereas Hsp27-3D forms small dimers or tetramers. However, the complexes formed by Hsp27-wt and Hsp27-3D with denatured actin did not differ in their size, as measured by dynamic light scattering, and demonstrated the same hydrodynamic radius of 17-18 nm. On the other hand, the sedimentation coefficients of these complexes were distributed within the range 10-45 S in the case of Hsp27-3D and 18-60 S in the case of Hsp27-wt. Thus, the ability of Hsp27 to form soluble complexes with denatured actin does not significantly depend on the initial oligomeric state of Hsp27.  相似文献   

20.
Previous studies have suggested that the small heat shock protein, HspB1, has a direct influence on the dynamics of cytoskeletal elements, in particular, filamentous actin (F-actin) polymerization. In this study we have assessed the influence of HspB1 phosphorylation on its interaction(s) with F-actin. We first determined the distribution of endogenous non-phosphorylated HspB1, phosphorylated HspB1 and F-actin in neuroendocrine PC12 cells by immunocytochemistry and confocal microscopy. We then investigated a potential direct interaction between HspB1 with F-actin by precipitating F-actin directly with biotinylated phalloidin followed by Western analyses; the reverse immunoprecipitation of HspB1 was also carried out. The phosphorylation influence of HspB1 in this interaction was investigated by using pharmacologic inhibition of p38 MAPK. In control cells, HspB1 interacts with F-actin as a predominantly non-phosphorylated protein, but subsequent to stress there is a redistribution of HspB1 to the cytoskeletal fraction and a significantly increased association of pHspB1 with F-actin. Our data demonstrate HspB1 is found in a complex with F-actin both in phosphorylated and non-phosphorylated forms, with an increased association of pHspB1 with F-actin after heat stress. Overall, our study combines both cellular and biochemical approaches to show cellular localization and direct demonstration of an interaction between endogenous HspB1 and F-actin using methodolgy that specifically isolates F-actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号