首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In cloned pregnancies, placental deficiencies, including increased placentome size, reduced placentome number, and increased accumulation of allantoic fluid, have been associated with low cloning efficiency. To assess differences in paracrine and endocrine growth regulation in cloned versus normal bovine placentomes and pregnancies, we have examined the expression of insulin-like growth factor (IGF)-I and -II and their binding proteins (IGFBP)-1 through -3 in placentomes of artificially inseminated (AI), in vitro-produced (IVP), and nuclear transfer (NT) pregnancies at Days 50, 100, and 150 of gestation. Fetal, maternal, and binucleate cell counts in representative placentomes were performed on Days 50-150 of gestation in all three groups. Increased numbers of fetal, maternal, and binucleate cells were present in NT placentomes at all stages of gestation examined. Immunolocalization studies showed that spatial and temporal patterns of expression of IGFBP-2 and -3 were markedly altered in the placentomes of NT pregnancies compared to AI/IVP controls. Concentrations of IGF-I in fetal plasma, as determined by RIA, were significantly higher (P = 0.001) in NT pregnancies (mean +/- SEM, 30.3 +/- 2.3 ng/ml) compared with AI (19.1 +/- 5.5 ng/ml) or IVP (24.2 +/- 2.5 ng/ml) pregnancies on Day 150 of gestation. Allantoic fluid levels of IGFBP-1 were also increased in NT pregnancies. These findings suggest that endocrine and paracrine perturbations of the IGF axis may modulate placental dysfunction in NT pregnancies. Furthermore, increased cell numbers in NT placentomes likely have significant implications for fetomaternal communication and may contribute to the placental overgrowth observed in the NT placentomes.  相似文献   

2.
Somatic nuclear transfer (NT) in cattle is often complicated by fetal oversize (i.e., large offspring syndrome), hydrallantois, and placentomegaly in late gestation. The aims of this work were to obtain data on the placentome structure in NT-recipient cows with hydrallantois (NTH) and to relate these with fetal and placental weights to better understand the abnormalities observed in NTH pregnancies during the third trimester. Pregnant cows were slaughtered between Gestation Days 180 and 280. The fetuses were weighed, and the placentomes were numbered and weighed. Placentomes were examined by histologic and stereological techniques. Macroscopic data showed that placental overgrowth preceded fetal overgrowth, and the ratio of the fetal to the total placentome weight in the NTH group was lower than that in controls after Gestation Day 220. This suggests that placental overgrowth is due to placental default rather than due to fetal overgrowth, as shown also by stereological analysis showing primary deregulation of the growth of cotyledonary tissues. Observed alterations, such as thinning of the maternal epithelium within placentomes and increased trophoblastic surface, could be secondary adaptations. Thus, placental growth deregulations would be due to modifications of the expression of placental factors. Various examples of placental deficiency were observed, suggesting that some fetal abnormalities observed in NTH calves, such as enlarged heart, enlarged umbilical cord, and abdominal ascites, are consequences of placental dysfunction. Therefore, the condition described by the term "large offspring syndrome" might better be described by "large placenta syndrome," because this syndrome affects an average of 50% of late-gestation NT pregnancies. No conclusion can be drawn from this work on apparently normal pregnancies.  相似文献   

3.
The cloning of cattle by somatic cell nuclear transfer (NT) is associated with a high incidence of abnormal placentation, excessive fluid accumulation in the fetal sacs (hydrops syndrome), and fetal overgrowth. Fetal and placental development was investigated at Day 50, during placentome formation; at Day 100, when placentation was completed; and at Day 150, when the hydrops syndrome frequently develops. The NT fetuses were compared with contemporary half-siblings generated from in vitro-produced embryos or by artificial insemination (AI). Fetal cotyledon formation and vascularization of the chorioallantoic membranes was initiated normally in NT conceptuses, but fewer cotyledons successfully formed placentomes. By Day 100, the mean number of placentomes was significantly lower in surviving NT fetuses. Only those with normal placentome numbers were represented in surviving NT pregnancies at Day 150. The mean total caruncle tissue weight of the placentomes was significantly higher in the surviving NT groups at Days 100 and 150, irrespective of the placentome numbers, indicating that increased NT placental weight was caused by excessive uterine tissue growth. By Day 100, NT fetuses exhibited growth deregulation, and those that survived to Day 150 were 17% heavier than contemporary AI controls. Placentome, liver, and kidney overgrowth accompanied the hydrops syndrome at Day 150. The NT fetal overgrowth was not a consequence of in vitro embryo culture and showed no correlation with placental overgrowth. However, in vitro culture and incomplete reprogramming of the donor genome are epigenetic effects that may override genetic traits and contribute to the greater variability in placental and fetal development in the NT group compared with AI half-siblings.  相似文献   

4.
The placenta represents a critically important fetal-maternal interaction. Trophoblast migration and invasion into the uterine wall is a precisely controlled process and aberrations in these processes are implicated in diseases such as preeclampsia. Integrin-linked kinase (ILK) is a multifunctional, cytoplasmic, serine/threonine kinase that has been implicated in regulating processes such as cell proliferation, survival, migration, and invasion; yet the temporal and spatial pattern of expression of ILK in human chorionic villi and its role in early human placental development are completely unknown. We hypothesized that ILK would be expressed in trophoblast subtypes of human chorionic villi during early placental development and that it would regulate trophoblast migration. Immunoblot analysis revealed that ILK protein was highly detectable in placental tissue samples throughout gestation. In floating branches of chorionic villi, from 6 to 15 wk of gestation immunofluorescence analysis of ILK expression in placental tissue sections demonstrated that ILK was highly detectable in the cytoplasm and membranes of villous cytotrophoblast cells and in stromal mesenchyme, whereas it was barely detectable in the syncytiotrophoblast layer. In anchoring branches of villi, ILK was highly localized to plasma membranes of extravillous trophoblast cells. Transient expression of dominant negative E359K-ILK in the villous explant-derived trophoblast cell line HTR8-SVneo dramatically reduced migration into wounds compared to cells expressing wild-type ILK or empty vector. Therefore, our work has demonstrated that ILK is highly expressed in trophoblast subtypes of human chorionic villi during the first trimester of pregnancy and is a likely mediator of trophoblast migration during this period of development.  相似文献   

5.
6.
Pseudemoia pagenstecheri is a viviparous Australian scincid lizard in which the maternal–embryonic placental interface is differentiated into structurally distinct regions. The chorioallantoic placenta contains an elliptical‐shaped region, the placentome, characterized by hypertrophied uterine and embryonic epithelial cells supported by dense vascular networks. The remainder of the chorioallantoic placenta, the paraplacentome, is also highly vascularized but uterine and chorionic epithelia are thin. An omphaloplacenta with hypertrophied epithelia is located in the abembryonic hemisphere of the egg. There is extensive placental transport of organic and inorganic nutrients, e.g., 85–90% of neonatal calcium is received via placental transfer. Calcium uptake by extraembryonic membranes of squamates correlates with expression of the intracellular calcium binding protein, calbindin‐D28K, and plasma membrane calcium ATPase (PMCA) is a marker for active calcium transport. We estimated expression of calbindin‐D28K and PMCA in the chorioallantoic membrane in a developmental series of embryos using immunoblotting and used immunohistochemistry to define the cellular localization of calbindin‐D28K to test the hypotheses that 1) expression of calcium transporting proteins is coincident with placental transport of calcium and 2) the placenta is functionally specialized for calcium transport in regions of structural differentiation. Calbindin‐D28K and PMCA were detected at low levels in early stages of development and increased significantly prior to birth, when embryonic calcium uptake peaks. These data support the hypothesis that placental calcium secretion occurs over an extended interval of gestation, with increasing activity as embryonic demand escalates in late development. In addition, calbindin‐D28K expression is localized in chorionic epithelial cells of the placentome and in the epithelium of the omphalopleure of the omphaloplacenta, which supports the hypothesis that regional structural differentiation in the placenta reflects functional specializations for calcium transport. J. Morphol. 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
Samples of maternal and fetal placental tissues were obtained from cows on Days 100 (N = 4), 150 (N = 5), 200 (N = 6) and 250 (N = 6) of gestation and incubated for 24 h. Conditioned media from caruncular explants were mitogenic for bovine aortic endothelial cells (BAEC) on all days of gestation. Media from intercaruncular endometrium were stimulatory for proliferation of BAEC on Day 100 but inhibitory on Days 150, 200 and 250. Media from cotyledonary and intercotyledonary tissues inhibited proliferation of BAEC on all days. Caruncular-conditioned media stimulated migration of BAEC on Days 150, 200 and 250. Cotyledonary-conditioned media inhibited migration of BAEC on all days. Effects of media from intercaruncular and intercotyledonary tissues on migration of BAEC varied with stage of gestation. Angiogenic activity of media from caruncular (all stages) and intercaruncular (Day 100) tissues appeared to have an Mr greater than 100,000. In cows, therefore, the maternal placentome (caruncle) appears to be the primary source of placental angiogenic activity throughout gestation. The fetal placentome (cotyledon) secretes activity which inhibits two major components of angiogenesis (proliferation and migration of endothelial cells) throughout gestation. Intercaruncular and intercotyledonary tissues may modulate placental angiogenesis throughout gestation. Placental vascular development in the cow is therefore probably controlled by an interaction between stimulatory and inhibitory factors produced by the placenta itself.  相似文献   

8.
The expression of three different members of the gap junction multigene family, alpha 1 (Cx43), beta 1 (Cx32), and beta 2 (Cx26), was analysed in the rat implantation chamber (a structural unit containing fetal, extraembryonic and maternal components within the pregnant uterus) during mid- and late stages of gestation as well as in the delivering, post-partum and non-pregnant uterus. A differential, spatiotemporal and cell-type-specific regulation of gap junctional coexpression was observed for beta 1 and beta 2 in all epithelia examined (visceral, luminal and glandular), as well as for alpha 1 and beta 2 in decidual cells and keratinocytes of the fetal epidermis. alpha 1 antigen was detected in the mesometrial stroma, mesometrial myometrium, connective tissue, mesothelia of the amnion and visceral yolk sac and in the allantoic mesodermal layer throughout gestation. In addition, expression of alpha 1 in the placental basal zone and trophoblast giant cells coincided with the differentiation of these cells. beta 2 expression was observed prominently in the chorionic villi of the placental labyrinth. The presence of beta 1 and beta 2 in the visceral epithelium (visceral yolk sac = the primary route for embryonic nourishment prior to the formation of the chorioallantoic placenta) and beta 2 in the chorionic villi (placental barrier = the major fetomaternal exchange route) suggests that gap junctions have an important role in fetomaternal communication.  相似文献   

9.
10.
The mRNA expression of the ESX1L gene was analyzed by RT-PCR and in situ hybridization in human normal cytogenetically placentas, of different gestational ages. Our RT-PCR analysis showed that ESX1L mRNA is expressed from 5 weeks of gestation until term, suggesting a role not only in trophoblast differentiation but also in the maintenance of the villi and microvasculature. We also observed, by in situ hybridization, that ESX1L mRNA is expressed by cytotrophoblast from chorionic plate, syncytiotrophoblast and stromal cells of all terminal, intermediate and stem villi of term placentas. ESX1L mRNA expression was more pronounced in trophoblast cells of terminal villi than in intermediate and stem villi. In conclusion, ESX1L is expressed during all stages of placental development and is localized to sparse areas of trophoblast in terminal villi in association with cytotrophoblastic cells.  相似文献   

11.
12.
Histological examination of placentomes from cows, sheep, deer, and several antelope species revealed a common pattern of development of the utero-placental junction. Chorionic membrane in contact with the uterine caruncles developed "milky patches" composed of a thick trophoblastic epithelium and multiple allantoic blood vessels, while caruncles formed simultaneously a network of crypts. The milky patches formed chorioallantoic villi that penetrated into the caruncular crypts usually simultaneously with both the villi and crypt formation but partial delay between the villi/crypt formation and penetration had no apparent detrimental effect on the fetus. The villi penetrated into caruncles in a row until they reached the dense basal layer separating caruncular mass from adjacent glandular endometrium. Further placentome growth continued by increasing the length, diameter, branching, and surface corrugation of the villi. Placentomes in different stages of development coexisted at different locations within the uterus throughout the pregnancy. During placental release after parturition, entire villi or only the villi mainstems can pull out of the maternal crypts, or the entire placentome mass can separate from the uterine wall. The remaining maternal portions of the placentomes are destroyed and sloughed down to the basal layer, leaving only a narrow band of the caruncular tissue for the regeneration of caruncles. The bare, wrinkled caruncular surface is then covered with a new epithelium and ultimately becomes smooth.  相似文献   

13.
Human angiogenin, a 14-kDa non-glycosylated polypeptide with both angiogenic and ribonucleolytic activities, is implicated in angiogenesis, a complex process of proliferation and formation of new capillary blood vessels from existing blood vessels. Placental growth requires extensive angiogenesis, which develops its vascular structure in both fetal chorionic villi and maternal deciduas. In this study, we investigated the expression profiles of angiogenin in placental villi from early and late gestation at both mRNA and protein levels using explant cultures in vitro followed by RT-PCR, immunoblot, and immunohistochemical analyses. From functionally active placental explants, angiogenin was detected in conditioned media of all the samples from first trimester and term group. The mean levels of angiogenin produced by term villi were found to be 2.6-, 2.1-, and 2.2-fold higher (P < 0.01) than first trimester villi at 24, 48, and 72 hr of culture, respectively. Expression profiles of angiogenin from term and first trimester villi seem to agree with its mRNA levels and immunoblot analysis; the expression in term villi was twice that in first trimester villi. The presence of angiogenin in placental villi and upregulation of its production towards term indicate that angiogenin production by the placenta is specific to the developmental stage. In conclusion, the observed changes in the localization and mRNA expression of angiogenin during placental development raise the possibility that it is involved in morphological and angiogenic changes in this endocrine organ vital to the successful fetal outcome during pregnancy.  相似文献   

14.
Pituitary adenylate cyclase activating polypeptide (PACAP) was first isolated from ovine hypothalamus and is known to act as a tropic factor in various cells. Recent report revealed the expression of PACAP and the PACAP type I (PAC(1)) receptor in human and rat placentas at term. Placenta is a critical organ that synthesizes several growth and angiogenic factors for its own growth as well as fetal development. However, there is little information regarding the expression pattern and cellular localization of PACAP and PAC(1) during pregnancy. The aim of this study was to define the expression and distribution of PACAP and PAC(1) receptor mRNAs in the rat placenta during pregnancy. PACAP and PAC(1) receptor mRNAs were expressed in decidual cells, chorionic vessels, and stromal cells of the chorionic villi. Interestingly, the expression of these genes varied with the day of gestation. For example, PACAP and PAC(1) receptor mRNAs expressed in decidual cells on day 13.5 and 15.5, their expression was strong in chorionic vessels and stromal cells of the chorionic villi within the labyrinth zone on day 17.5, 19.5, and 21.5. In fact, as gestation advanced, the expression of PACAP and PAC(1) receptor mRNAs in the decidua cells disappeared, as their high expression became evident in the chorionic vessels and stromal cells of the chorionic villi. Our finding that PACAP and the PAC(1) receptor are co-localized and their genes seemingly co-regulated within specific placental areas, strongly suggest that this peptide may play an important role, as an autoregulator or pararegulator via its PAC(1) receptor, in physiological functioning of the placenta for gestational maintenance.  相似文献   

15.
16.
The corpus luteum is the main source of progesterone (P(4)) responsible for maintenance of gestation in cattle. So far it has not been possible to assign any biological role to placental P(4), which contributes only marginally and temporarily to peripheral maternal blood levels. In order to identify possible P(4) target cells within the placenta, placentomes from 150-, 220-, 240-, and 270-day-pregnant cows and from parturient cows (3 animals per group) were screened immunohistochemically for expression of the progesterone receptor (PR). During gestation, PR-positive staining was found exclusively in the nuclei of caruncular stromal cells (CSC; maternal part of the placentome) and of caruncular vascular pericytes. In placentomes from parturient cows, occasional positive nuclear staining was also observed in the walls of small caruncular arteries. The percentage of PR-positive CSC increased slightly from 51.8 +/- 2.6% on Day 150 to 56.2 +/- 5.6% at Day 270 (p < 0.05) and was 58.9 +/- 1.8% at parturition. These results suggest that in pregnant cattle, CSC are under the control of P(4) of placental rather than luteal origin. Thus, whereas luteal P(4) may regulate "coarse" systemic progestational functions in the maternal compartment in the classical hormonal manner, placental P(4) may act as a paracrine factor involved in the local regulation of caruncular growth, differentiation, and functions.  相似文献   

17.
Nuclear transfer from somatic cells still has limited efficiency in terms of live calves born due to high fetal loss after transfer. In this study, we addressed the type of donor cells used for cloning in in vivo development. We used a combination of repeated ultrasonography and maternal pregnancy serum protein (PSP60) assays to monitor the evolution of pregnancy after somatic cloning in order to detect the occurrence of late-gestation losses and their frequency, compared with embryo cloning or in vitro fertilization (IVF). Incidence of loss between Day 90 of gestation and calving was 43.7% for adult somatic clones and 33.3% for fetal somatic clones, compared with 4.3% after embryo cloning and 0% in the control IVF group. Using PSP60 levels in maternal blood as a criterion for placental function, we observed that after somatic cloning, recipients that lost their pregnancy before Day 100 showed significantly higher PSP60 levels by Day 50 than those that maintained pregnancy (7.77 +/- 3.3 ng/ml vs. 2.45 +/- 0.27 ng/ml for normal pregnancies, P < 0.05). At later stages of gestation, between 4 mo and calving, mean PSP60 concentrations were significantly increased in pathologic pregnancy after somatic cloning compared with other groups (P < 0.05 by Day 150, P < 0.001 by Day 180, and P < 0.01 by Day 210). In those situations, and confirmed by ultrasonographic measurements, recipients developed severe hydroallantois together with larger placentome size. Our findings suggest that assessing placental development with PSP60 and ultrasonography will lead to better care of recipient animals in bovine somatic cloning.  相似文献   

18.
《Reproductive biology》2021,21(4):100572
This study was designed to determine the level of vascular endothelial growth factor-A (VEGF-A), basic fibroblast growth factor (bFGF) and endothelial nitric oxide synthase (eNOS) in chorionic villi during in first and second trimester, and their association with nuchal translucency (NT) measured by ultrasound. Seventy-five singleton healthy pregnancies with no detected congenital malformation were collected for NT measurements and chorionic villus sampling (CVS). Concentrations of angiogenic factors were assayed in chorionic villi sampled between 10 + 6 and 18 + 3 weeks of gestation. ENOS level was steady during this gestational period, while the concentrations of VEGF-A and bFGF significantly decreased. Placental concentrations of VEGF-A and bFGF correlated positively with each other (semi-partial correlation in multivariable linear regression (r): 0.90) and both correlated negatively with the eNOS level (r: -0.64 and r: -0.83, respectively). NT was positively correlated with eNOS concentration and negatively correlated with bFGF levels (r: 0.85 and r: -0.78, respectively). Inverse correlation was found between gestational age and VEGF-A and bFGF concentrations (r: -0.57 and r: 0.73, respectively). Alterations of angiogenic factors in chorionic villi might be an adjunct modality to NT and foetal growth as sonographic markers.  相似文献   

19.
In cattle, several hormones and proteins are necessary for maintenance of a normal pregnancy that will result in a viable calf. Deviation from the normal cascade or expected profile of reproductive hormones and proteins may be associated with impairment of somatic nuclear transfer-derived pregnancies and the high rate of fetal loss. The objectives of this study were to characterize maternal plasma concentrations of pregnancy-specific protein B (PSPB), progesterone (P4), estrone sulphate (E1S), and estradiol (E2) during the last two-thirds of pregnancy (cloned calves), and to determine associations with gestational abnormalities. Cows with cloned fetuses, produced by either commercial (N = 16) or zona-free (N = 4) cloning techniques, were compared with pregnant animals derived from traditional embryo transfer (N = 6) or AI (N = 6), at various stages of gestation (Days 80, 120, 150, 180, 210, and 240; Day 0 = estrus). Fetal well-being was monitored with ultrasonography throughout gestation. At Day 80, progesterone concentration was lower (P < 0.0001) in nuclear transfer (NT) recipients than in control groups. Mean estrone sulphate concentrations did not vary significantly between NT and control groups. At Day 150, pregnancy-specific protein B concentrations were elevated (P < 0.002) in NT cows. Estradiol concentration was higher in NT recipients than control cows throughout the study period.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号