首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Urban stressors represent strong selective gradients that can elicit evolutionary change, especially in non‐native species that may harbor substantial within‐population variability. To test whether urban stressors drive phenotypic differentiation and influence local adaptation, we compared stress responses of populations of a ubiquitous invader, reed canary grass (Phalaris arundinacea). Specifically, we quantified responses to salt, copper, and zinc additions by reed canary grass collected from four populations spanning an urbanization gradient (natural, rural, moderate urban, and intense urban). We measured ten phenotypic traits and trait plasticities, because reed canary grass is known to be highly plastic and because plasticity may enhance invasion success. We tested the following hypotheses: (a) Source populations vary systematically in their stress response, with the intense urban population least sensitive and the natural population most sensitive, and (b) plastic responses are adaptive under stressful conditions. We found clear trait variation among populations, with the greatest divergence in traits and trait plasticities between the natural and intense urban populations. The intense urban population showed stress tolerator characteristics for resource acquisition traits including leaf dry matter content and specific root length. Trait plasticity varied among populations for over half the traits measured, highlighting that plasticity differences were as common as trait differences. Plasticity in root mass ratio and specific root length were adaptive in some contexts, suggesting that natural selection by anthropogenic stressors may have contributed to root trait differences. Reed canary grass populations in highly urbanized wetlands may therefore be evolving enhanced tolerance to urban stressors, suggesting a mechanism by which invasive species may proliferate across urban wetland systems generally.  相似文献   

2.
Sitobion avenae (F.) can survive on various plants in the Poaceae, which may select for highly plastic genotypes. But phenotypic plasticity was often thought to be non-genetic, and of little evolutionary significance historically, and many problems related to adaptive plasticity, its genetic basis and natural selection for plasticity have not been well documented. To address these questions, clones of S. avenae were collected from three plants, and their phenotypic plasticity under alternative environments was evaluated. Our results demonstrated that nearly all tested life-history traits showed significant plastic changes for certain S. avenae clones with the total developmental time of nymphs and fecundity tending to have relatively higher plasticity for most clones. Overall, the level of plasticity for S. avenae clones’ life-history traits was unexpectedly low. The factor ‘clone’ alone explained 27.7–62.3% of the total variance for trait plasticities. The heritability of plasticity was shown to be significant in nearly all the cases. Many significant genetic correlations were found between trait plasticities with a majority of them being positive. Therefore, it is evident that life-history trait plasticity involved was genetically based. There was a high degree of variation in selection coefficients for life-history trait plasticity of different S. avenae clones. Phenotypic plasticity for barley clones, but not for oat or wheat clones, was frequently found to be under significant selection. The directional selection of alternative environments appeared to act to decrease the plasticity of S. avenae clones in most cases. G-matrix comparisons showed significant differences between S. avenae clones, as well as quite a few negative covariances (i.e., trade-offs) between trait plasticities. Genetic basis and evolutionary significance of life-history trait plasticity were discussed.  相似文献   

3.
Many sexually selected traits exhibit phenotypic plasticity. Despite a growing appreciation for the ecological context in which sexual selection occurs, and for the role of plasticity in shaping traits associated with local adaptation and divergence, there is an important gap in knowledge about the onset and duration of plasticity in sexual trait expression. Integrating this temporal dimension of plasticity into models of sexual selection informs our understanding of the information conveyed by sexual traits and our predictions related to trait evolution, and is critical in this time of unprecedented and rapid environmental change. We conducted a systematic review of 869 studies to ask how trait modalities (e.g., visual and chemical) relate to the onset and duration of plasticity in vertebrate sexual signals. We show that this literature is dominated by studies of coloration in birds and fish, and most studies take place during the breeding season. Where possible, we integrate results across studies to link physiology of specific trait modalities with the life stage (e.g., juvenile, breeding, or nonbreeding) during which plasticity occurs in well‐studied traits. Limitations of our review included a lack of replication in our dataset, which precluded formal analysis. We argue that the timing of trait plasticity, in addition to environmental context, is critical for determining whether and how various communication signals are associated with ecological context, because plasticity may be ongoing or occur at only one point in an individual''s lifetime, and determining a fixed trajectory of trait expression. We advocate for careful consideration of the onset and duration of plasticity when analyzing how environmental variation affects sexual trait expression and associated evolutionary outcomes.  相似文献   

4.
Covariation between light quality- and photoperiod-mediated phenotypic plasticity was investigated using Arabidopsis thaliana. Three episodes of artificial selection were imposed on an index that quantified the plastic response to reduced red to far-red ratios (R:FR), with higher index values indicating greater plasticity. Relative to control lines, two high plasticity (HP) lines showed 1.6- and 2.4-fold increases in the index; low plasticity (LP) lines showed 1.4- and 1.1-fold decreases. A factorial experiment combining high and low R:FR conditions with long and short photoperiods assessed indirect consequences of selection on plasticity. Despite divergent R:FR-mediated plasticities in HP vs. LP lines, all four lines showed increases in photoperiod-mediated responses and decreases in mean leaf number. Complex relationships among trait means, plasticities and underlying mechanisms caution against generalizing about the genetic architecture of plastic traits. Partially independent developmental and evolutionary responses to R:FR and photoperiod are somewhat unsurprising, given this species' cosmopolitan nature.  相似文献   

5.
Environmental variation favors the evolution of phenotypic plasticity. For many species, we understand the costs and benefits of different phenotypes, but we lack a broad understanding of how plastic traits evolve across large clades. Using identical experiments conducted across North America, we examined prey responses to predator cues. We quantified five life‐history traits and the magnitude of their plasticity for 23 amphibian species/populations (spanning three families and five genera) when exposed to no cues, crushed‐egg cues, and predatory crayfish cues. Embryonic responses varied considerably among species and phylogenetic signal was common among the traits, whereas phylogenetic signal was rare for trait plasticities. Among trait‐evolution models, the Ornstein–Uhlenbeck (OU) model provided the best fit or was essentially tied with Brownian motion. Using the best fitting model, evolutionary rates for plasticities were higher than traits for three life‐history traits and lower for two. These data suggest that the evolution of life‐history traits in amphibian embryos is more constrained by a species’ position in the phylogeny than is the evolution of life history plasticities. The fact that an OU model of trait evolution was often a good fit to patterns of trait variation may indicate adaptive optima for traits and their plasticities.  相似文献   

6.
Yeasts are known to have versatile metabolic traits, while how these metabolic traits have evolved has not been elucidated systematically. We performed integrative evolution analysis to investigate how genomic evolution determines trait generation by reconstructing genome‐scale metabolic models (GEMs) for 332 yeasts. These GEMs could comprehensively characterize trait diversity and predict enzyme functionality, thereby signifying that sequence‐level evolution has shaped reaction networks towards new metabolic functions. Strikingly, using GEMs, we can mechanistically map different evolutionary events, e.g. horizontal gene transfer and gene duplication, onto relevant subpathways to explain metabolic plasticity. This demonstrates that gene family expansion and enzyme promiscuity are prominent mechanisms for metabolic trait gains, while GEM simulations reveal that additional factors, such as gene loss from distant pathways, contribute to trait losses. Furthermore, our analysis could pinpoint to specific genes and pathways that have been under positive selection and relevant for the formulation of complex metabolic traits, i.e. thermotolerance and the Crabtree effect. Our findings illustrate how multidimensional evolution in both metabolic network structure and individual enzymes drives phenotypic variations.  相似文献   

7.
Phenotypic plasticity, the ability of a genotype to express different phenotypes across environments, is an adaptive strategy expected to evolve in heterogeneous environments. One widely held hypothesis is that the evolutionary benefits of plasticity are reduced by its costs, but when compared with the number of traits tested, the evidence for costs is limited. Selection gradients were calculated for traits and trait plasticities to test for costs of plasticity to density in a field study using recombinant inbred lines (RILs) of Brassica rapa. Significant costs of putatively adaptive plasticity were found in three out of six measured traits. For one trait, petiole length, a cost of plasticity was detected in both environments tested; such global costs are expected to more strongly constrain the evolution of plasticity than local costs expressed in a single environment. These results, in combination with evidence from studies in segregating progenies of Arabidopsis thaliana, suggest that the potential for genetic costs of plasticity exists in natural populations. Detection of costs in previous studies may have been limited because historical selection has purged genotypes with costly plasticity, and experimental conditions often lack environmental stresses.  相似文献   

8.
The phenotypic space encompasses the assemblage of trait combinations yielding well‐suited integrated phenotypes. At the population level, understanding the phenotypic space structure requires the quantification of among‐ and within‐population variations in traits and the correlation pattern among them. Here, we studied the phenotypic space of the annual plant Diplotaxis acris occurring in hyperarid deserts. Given the advance of warming and aridity in vast regions occupied by drylands, D. acris can indicate the successful evolutionary trajectory that many other annual plant species may follow in expanding drylands. To this end, we conducted a greenhouse experiment with 176 D. acris individuals from five Saudi populations to quantify the genetic component of variation in architectural and life history traits. We found low among‐population divergence but high among‐individual variation in all traits. In addition, all traits showed a high degree of genetic determination in our study experimental conditions. We did not find significant effects of recruitment and fecundity on fitness. Finally, all architectural traits exhibited a strong correlation pattern among them, whereas for life history traits, only higher seed germination implied earlier flowering. Seed weight appeared to be an important trait in D. acris as individuals with heavier seeds tended to advance flowering and have a more vigorous branching pattern, which led to higher fecundity. Population divergence in D. acris might be constrained by the severity of the hyperarid environment, but populations maintain high among‐individual genetic variation in all traits. Furthermore, D. acris showed phenotypic integration for architectural traits and, to a lesser extent, for life history traits. Overall, we hypothesize that D. acris may be fine‐tuned to its demanding extreme environments. Evolutionary speaking, annual plants facing increasing warming, aridity, and environmental seasonality might modify their phenotypic spaces toward new phenotypic configurations strongly dominated by correlated architectural traits enhancing fecundity and seed‐related traits advancing flowering time.  相似文献   

9.
Populations adapt to novel environmental conditions by genetic changes or phenotypic plasticity. Plastic responses are generally faster and can buffer fitness losses under variable conditions. Plasticity is typically modeled as random noise and linear reaction norms that assume simple one‐to‐one genotype–phenotype maps and no limits to the phenotypic response. Most studies on plasticity have focused on its effect on population viability. However, it is not clear, whether the advantage of plasticity depends solely on environmental fluctuations or also on the genetic and demographic properties (life histories) of populations. Here we present an individual‐based model and study the relative importance of adaptive and nonadaptive plasticity for populations of sexual species with different life histories experiencing directional stochastic climate change. Environmental fluctuations were simulated using differentially autocorrelated climatic stochasticity or noise color, and scenarios of directional climate change. Nonadaptive plasticity was simulated as a random environmental effect on trait development, while adaptive plasticity as a linear, saturating, or sinusoidal reaction norm. The last two imposed limits to the plastic response and emphasized flexible interactions of the genotype with the environment. Interestingly, this assumption led to (a) smaller phenotypic than genotypic variance in the population (many‐to‐one genotype–phenotype map) and the coexistence of polymorphisms, and (b) the maintenance of higher genetic variation—compared to linear reaction norms and genetic determinism—even when the population was exposed to a constant environment for several generations. Limits to plasticity led to genetic accommodation, when costs were negligible, and to the appearance of cryptic variation when limits were exceeded. We found that adaptive plasticity promoted population persistence under red environmental noise and was particularly important for life histories with low fecundity. Populations producing more offspring could cope with environmental fluctuations solely by genetic changes or random plasticity, unless environmental change was too fast.  相似文献   

10.
  1. Understanding the drivers of trait selection is critical for resolving community assembly processes. Here, we test the importance of environmental filtering and trait covariance for structuring the functional traits of understory herbaceous communities distributed along a natural environmental resource gradient that varied in soil moisture, temperature, and nitrogen availability, produced by different topographic positions in the southern Appalachian Mountains.
  2. To uncover potential differences in community‐level trait responses to the resource gradient, we quantified the averages and variances of both abundance‐weighted and unweighted values for six functional traits (vegetative height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, and leaf δ13C) using 15 individuals of each of the 108 species of understory herbs found at two sites in the southern Appalachians of western North Carolina, USA.
  3. Environmental variables were better predictors of weighted than unweighted community‐level average trait values for all but height and leaf N, indicating strong environmental filtering of plant abundance. Community‐level variance patterns also showed increased convergence of abundance‐weighted traits as resource limitation became more severe.
  4. Functional trait covariance patterns based on weighted averages were uniform across the gradient, whereas coordination based on unweighted averages was inconsistent and varied with environmental context. In line with these results, structural equation modeling revealed that unweighted community‐average traits responded directly to local environmental variation, whereas weighted community‐average traits responded indirectly to local environmental variation through trait coordination.
  5. Our finding that trait coordination is more important for explaining the distribution of weighted than unweighted average trait values along the gradient indicates that environmental filtering acts on multiple traits simultaneously, with abundant species possessing more favorable combinations of traits for maximizing fitness in a given environment.
  相似文献   

11.
The evolution of life-history traits is characterized by trade-offs between different selection pressures, as well as plasticity across environmental conditions. Yet, studies on local adaptation are often performed under artificial conditions, leaving two issues unexplored: (i) how consistent are laboratory inferred local adaptations under natural conditions and (ii) how much phenotypic variation is attributed to phenotypic plasticity and to adaptive evolution, respectively, across environmental conditions? We reared fish from six locally adapted (domesticated and wild) populations of anadromous brown trout (Salmo trutta) in one semi-natural and three natural streams and recorded a key life-history trait (body size at the end of first growth season). We found that population-specific reaction norms were close to parallel across different streams and QST was similar – and larger than FST – within all streams, indicating a consistency of local adaptation in body size across natural environments. The amount of variation explained by population origin exceeded the variation across stream environments, indicating that genetic effects derived from adaptive processes have a stronger effect on phenotypic variation than plasticity induced by environmental conditions. These results suggest that plasticity does not “swamp” the phenotypic variation, and that selection may thus be efficient in generating genetic change.  相似文献   

12.
? Functional traits, their plasticity and their integration in a phenotype have profound impacts on plant performance. We developed structural equation models (SEMs) to evaluate their relative contribution to promote invasiveness in plants along resource gradients. ? We compared 20 invasive-native phylogenetically and ecologically related pairs. SEMs included one morphological (root-to-shoot ratio (R/S)) and one physiological (photosynthesis nitrogen-use efficiency (PNUE)) trait, their plasticities in response to nutrient and light variation, and phenotypic integration among 31 traits. Additionally, these components were related to two fitness estimators, biomass and survival. ? The relative contributions of traits, plasticity and integration were similar in invasive and native species. Trait means were more important than plasticity and integration for fitness. Invasive species showed higher fitness than natives because: they had lower R/S and higher PNUE values across gradients; their higher PNUE plasticity positively influenced biomass and thus survival; and they offset more the cases where plasticity and integration had a negative direct effect on fitness. ? Our results suggest that invasiveness is promoted by higher values in the fitness hierarchy -- trait means are more important than trait plasticity, and plasticity is similar to integration -- rather than by a specific combination of the three components of the functional strategy.  相似文献   

13.
Spatial environmental gradients can promote adaptive differences among conspecific populations as a result of local adaptation or phenotypic plasticity. Such divergence can be opposed by various constraints, including gene flow, limited genetic variation, temporal fluctuations, or developmental constraints. We focus on the constraint that can be imposed when some populations are found in locations characterized by low levels of an essential nutrient. We use scales of wild fish to investigate phenotypic effects of spatial variation in a potentially limiting nutrient—calcium. If scale calcium (we use “scalar” calcium for consistency with the physiology literature) simply reflects environmental calcium availability, we expect higher levels of scalar calcium in fish from calcium‐rich water, compared to fish from calcium‐poor water. To consider this “passive response” scenario, we analyzed scalar calcium concentrations from three native fish species (Lepomis gibbosus, Percina caprodes, and Perca flavescens) collected at multiple sites across a dissolved calcium gradient in the Upper St. Lawrence River. Contradicting the “passive response" scenario, we did not detect strong or consistent relationships between scalar calcium and water calcium. Instead, for a given proportional increase in water calcium across the wide environmental gradient, the corresponding proportional change in scalar calcium was much smaller. We thus favor the alternative “active homeostasis” scenario, wherein fish from calcium‐poor water are better able to uptake, mobilize, and deposit calcium than are fish from calcium‐rich water. We further highlight the importance of studying functional traits, such as scales, in their natural setting as opposed to only laboratory studies.  相似文献   

14.
Here, patterns of phenotypic plasticity and trait integration of leaf characteristics in six geographically discrete populations of the perennial herb Pelargonium australe were compared. It was hypothesized that populations would show local adaptation in trait means, but similar patterns of plasticity and trait integration. Further, it was questioned whether phenotypic plasticity was positively correlated with environmental heterogeneity and whether plasticity for water-use traits in particular was adaptive. Seedlings were grown in a glasshouse at six combinations of water and nutrient availability. Leaf anatomical, morphological and gas exchange traits were measured. High amounts of plasticity in leaf traits were found in response to changes in growth conditions and there was evidence of local adaptation among the populations. While there were significant correlations between plasticity and environmental heterogeneity, not all were positive. Notably, patterns of plasticity and trait integration varied significantly among populations. Despite that variation, some of the observed plasticity was adaptive: fitness was correlated with conservative water use when water was limiting. Pelargonium arrived in Australia approximately 5 million yr ago. It is concluded here that high amounts of plasticity, in some cases adaptive, and weak integration among traits may be key to the spread and success of this species.  相似文献   

15.
Pollinators are known to exert natural selection on floral traits, but the extent to which combinations of floral traits are subject to correlational selection (nonadditive effects of two traits on fitness) is not well understood. Over two years, we used phenotypic manipulations of plant traits to test for effects of flower colour, flower shape and their interaction on rates of pollinator visitation to Polemonium foliosissimum. We also tested for correlational selection based on weighting visitation by the amount of conspecific pollen delivered per visit by each category of insect visitor. Although bumblebees were the presumed pollinators, solitary bees and flies contributed substantially (42%) to pollination. In manipulations of one trait at a time, insects visited flowers presenting the natural colour and shape over flowers manipulated to present artificial mutants with either paler colour or a more open or more tubular flower. When both colour and shape were manipulated in combination, selection on both traits arose, with bumblebees responding mainly to colour and flies responding mainly to shape. Despite selection on both floral traits, in a year with many bumblebees, we saw no evidence for correlational selection of these traits. In a year when flies predominated, fly visitation showed a pattern of correlational selection, but not favouring the natural phenotype, and correlational selection was still not detected for expected pollen receipt. These results show that flower colour and shape are subject to pollinator‐mediated selection and that correlational selection can be generated based on pollinator visitation alone, but provide no evidence for correlational selection specifically for the current phenotype.  相似文献   

16.
The evolution of the flower is commonly thought to have spurred angiosperm diversification. Similarly, particular floral traits might have promoted diversification within specific angiosperm clades. We hypothesize that traits promoting the precise positional transfer of pollen between flowers might promote diversification. In particular, precise pollen transfer might produce partial reproductive isolation that facilitates adaptive divergence between parapatric populations differing in their reproductive-organ positions. We investigate this hypothesis with an individual-based model of pollen transfer dynamics associated with heterostyly, a floral syndrome that depends on precise pollen transfer. Our model shows that precise pollen transfer can cause sexual selection leading to divergence in reproductive-organ positions between populations served by different pollinators, pleiotropically causing an increase in reproductive isolation through a “magic trait” mechanism. Furthermore, this increased reproductive isolation facilitates adaptive divergence between the populations in an unlinked, ecologically selected trait. In a different pollination scenario, however, precise pollen transfer causes a decrease in adaptive divergence by promoting asymmetric gene flow. Our results highlight the idea that magic traits are not “magic” in isolation; in particular, the effect size of magic traits in speciation depends on the external environment, and also on other traits that modify the strength of the magic trait''s influence on non-random mating. Overall, we show that the evolutionary consequences of pollen transfer dynamics can depend strongly on the available pollinator fauna and on the morphological fit between flowers and pollinators. Furthermore, our results illustrate the potential importance of even weak reproductive isolating barriers in facilitating adaptive divergence.  相似文献   

17.
Stabilizing selection is thought to be common in wild populations and act as one of the main evolutionary mechanisms, which constrain phenotypic variation. When multiple traits interact to create a combined phenotype, correlational selection may be an important process driving adaptive evolution. Here, we report on phenotypic selection and evolutionary changes in two natal traits in a semidomestic population of reindeer (Rangifer tarandus) in northern Finland. The population has been closely monitored since 1969, and detailed data have been collected on individuals since they were born. Over the length of the study period (1969–2015), we found directional and stabilizing selection toward a combination of earlier birth date and heavier birth mass with an intermediate optimum along the major axis of the selection surface. In addition, we demonstrate significant changes in mean traits toward earlier birth date and heavier birth mass, with corresponding genetic changes in breeding values during the study period. Our results demonstrate evolutionary changes in a combination of two traits, which agree closely with estimated patterns of phenotypic selection. Knowledge of the selective surface for combinations of genetically correlated traits are vital to predict how population mean phenotypes and fitness are affected when environments change.  相似文献   

18.
  1. A recent analysis of variation in six major traits conducted on a large worldwide sample of vascular plant species showed that three‐quarters of trait variation was captured by a two‐dimensional global spectrum of plant form and function (“global spectrum” hereafter). We developed the PhenoSpace application, whose aim is to visualize and export the position of any individual/population/species in the phenotypic space of the global spectrum.
  2. PhenoSpace is a Shiny application that helps users to manipulate and visualize data pertaining to the global spectrum of plant form and function. It is freely accessible at the following URL: https://shiny.cefe.cnrs.fr/PhenoSpace/.
  3. PhenoSpace has three main functionalities. First, it allows users to visualize the phenotypic space of the global spectrum using different combinations of traits and growth forms. Second, trait data from any new user‐defined dataset can be projected onto the phenotypic space of the global spectrum, provided that at least two of the six traits are available. Finally, figures produced and loadings of the imported data on the PCA axes can be downloaded, allowing users to conduct further analyses.
  4. PhenoSpace fulfills the practical goal of positioning plants in the phenotypic space of the global spectrum, making it possible to compare trait variation at any level of organization against the worldwide background. This serves a major aim of comparative plant ecology, which is to put specific sets of individuals, populations or species into a broader context, facilitating comparison and synthesis of results across different continents and environments using relevant indicators of plant design and function.
  相似文献   

19.
Correlational selection and the evolution of genomic architecture   总被引:7,自引:0,他引:7  
Sinervo B  Svensson E 《Heredity》2002,89(5):329-338
We review and discuss the importance of correlational selection (selection for optimal character combinations) in natural populations. If two or more traits subject to multivariate selection are heritable, correlational selection builds favourable genetic correlations through the formation of linkage disequilibrium at underlying loci governing the traits. However, linkage disequilibria built up by correlational selection are expected to decay rapidly (ie, within a few generations), unless correlational selection is strong and chronic. We argue that frequency-dependent biotic interactions that have 'Red Queen dynamics' (eg, host-parasite interactions, predator-prey relationships or intraspecific arms races) often fuel chronic correlational selection, which is strong enough to maintain adaptive genetic correlations of the kind we describe. We illustrate these processes and phenomena using empirical examples from various plant and animal systems, including our own recent work on the evolutionary dynamics of a heritable throat colour polymorphism in the side-blotched lizard Uta stansburiana. In particular, male and female colour morphs of side-blotched lizards cycle on five- and two-generation (year) timescales under the force of strong frequency-dependent selection. Each morph refines the other morph in a Red Queen dynamic. Strong correlational selection gradients among life history, immunological and morphological traits shape the genetic correlations of the side-blotched lizard polymorphism. We discuss the broader evolutionary consequences of the buildup of co-adapted trait complexes within species, such as the implications for speciation processes.  相似文献   

20.
Recent work suggests variation in plant growth strategies is governed by a tradeoff in resource acquisition and use, ranging from a rapid resource acquisition strategy to a resource‐conservative strategy. While evidence for this tradeoff has been found in leaves, knowledge of root trait strategies, and whether they reflect adaptive differentiation across environments, is limited. In the greenhouse, we investigated variation in fine root morphology (specific root length and tissue density), chemistry (nitrogen concentration and carbon:nitrogen), and anatomy (root cross‐sectional traits) in populations of 26 Helianthus species and sister Phoebanthus tenuifolius. We also compared root trait variation in this study with leaf trait variation previously reported in a parallel study of these populations. Root traits varied widely and exhibited little phylogenetic signal, suggesting high evolutionary lability. Specific root length and root tissue density were weakly negatively correlated, but neither was associated with root nitrogen, providing little support for a single axis of root trait covariation. Correlations between traits measured in the greenhouse and native site characteristics were generally weak, suggesting a variety of equally viable root trait combinations exist within and across environments. However, high root nitrogen was associated with lower xylem vessel number and cross‐sectional area, suggesting a tradeoff between nutrient investment and water transport capacity. This led to correlations between root and leaf traits that were not always consistent with an acquisition–conservation tradeoff at the whole‐plant level. Given that roots must balance acquisition of water and nutrients with functions like anchorage, exudation, and microbial symbioses, the varied evidence for root trait covariation likely reflects the complexity of interacting selection pressures belowground. Similarly, the lack of evidence for a single acquisition–conservation tradeoff at the whole‐plant level likely reflects the vastly different selection pressures shaping roots and leaves, and the resources they are optimized to obtain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号