首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Zelitch I  Day PR 《Plant physiology》1968,43(11):1838-1844
The hypothesis that net photosynthesis is diminished in many plant species because of a high rate of CO2 evolution in the light has been tested further. High rates of CO2 output in CO2-free air in comparison with dark respiration were found in Chlamydomonas reinhardi, wheat leaves, tomato leaves, and to a lesser extent in Chlorella pyrenoidosa by means of the 14C-photorespiration assay. In tobacco leaves high photorespiration was characteristic of a standard variety, Havana Seed, and a possibly still higher rate was found in a yellow heterozygous mutant, JWB Mutant. However, the dark homozygous sibling of the latter, JWB Wild, had a low photorespiration for the tobacco species. The relative rates of photorespiration were in the same sequence when measured by the 14CO2 released in normal air from leaf disks supplied with glycolate-1-14C in the light.

As would be predicted by the hypothesis, the maximal net rate of photosynthesis at 300 ppm of CO2 in the air in JWB Wild leaves was greater (24%) than in Havana Seed, while JWB Mutant had less CO2 uptake than the standard variety (21%). At 550 ppm of CO2 the differences in net photosynthesis were not as great between the 2 siblings as at 200 ppm. The relative leaf expansion rates of seedlings of the 3 tobacco varieties in a greenhouse had the same relationship as their rates of CO2 assimilation.

Thus within the tobacco species, as in a comparison between tobacco and maize, low photorespiratory CO2 evolution was correlated with higher photosynthetic efficiency. Therefore it seems that increased CO2 uptake should be achieved by genetic interference with the process of photorespiration.

  相似文献   

2.
Plant growth, photosynthetic parameters, chloroplast ultrastructure, and the ascorbate-glutathione cycle system in chloroplasts of self-grafted and rootstock-grafted cucumber leaves were investigated. Grafted plants were grown hydroponically and were exposed to 0, 50, and 100 mM NaCl concentrations for 10 days. Under NaCl stress, the hydrogen peroxide (H2O2) content in cucumber chloroplasts increased, the chloroplast ultrastructure was damaged, and the gas stomatal conductance, intercellular CO2 concentration, as well as shoot dry weight, plant height, stem diameter, leaf area, and leaf relative water content were inhibited, whereas these changes were less severe in rootstock-grafted plants. The activities of ascorbate peroxidase (APX; EC 1.11.1.11), glutathione reductase (GR; EC 1.6.4.2), and dehydroascorbate reductase (DHAR EC 1.8.5.1) were higher in the chloroplasts of rootstock-grafted plants compared with those of self-grafted plants under 50 and 100 mM NaCl. Similar trends were shown in leaf net CO2 assimilation rate and transpiration rate, as well as reduced glutathione content under 100 mM NaCl. Results suggest that rootstock grafting enhances the H2O2-scavenging capacity of the ascorbate–glutathione cycle in cucumber chloroplasts under NaCl stress, thereby protecting the chloroplast structure and improving the photosynthetic performance of cucumber leaves. As a result, cucumber growth is promoted.  相似文献   

3.
The microstructure of leaves and ultrastructure of chloroplasts were examined in tomato (Lycopersicon esculentum L.) plants treated with elevated temperature. Plants were exposed to 35°C for 30 d after florescence. The plants grown continuously under 25°C served as controls. Compared with the controls, the net photosynthetic rate (P N) in stressed plants decreased significantly. Stomatal conductance, intercellular CO2 concentrations, the rate of transpiration, and the limitation of stomatal conductance showed that the decrease in P N was caused mainly by nonstomatal restrictions. Meanwhile, stomata density increased significantly in the stressed plants. The stomata status of opening and closing became disorganized with a prolonged 35°C exposure. The damage of chloroplast membrane occurred earlier and was more serious in the plants under elevated temperature. At the same time, the thylakoids were loosely distributed with lesser grana, but the number of lipid droplets increased in chloroplasts. The number of starch grains in chloroplasts increased first and then decreased. In addition, the length of the main nerve in leaves increased and the main vein showed distortion in the plants stressed by 35°C. An increase was observed in the number of cells on the abaxial side of the main vein and these cells were overly congregated. The thickness of a vertical section became thinner in the stressed leaves. The cells of the upper epidermis thinned, and the ratio of palisade tissue to spongy tissue decreased. Generally, the photosynthetic apparatus of tomato changed significantly and the changed chloroplast ultrastructure might be one of the important reasons that caused the decrease of P N under 35°C.  相似文献   

4.
Gas exchange and fluorescence measurements of attached leaves of water stressed bean, sunflower and maize plants were carried out at two light intensities (250 mol quanta m-2s-1 and 850 mol quanta m-2s-1). Besides the restriction of transpiration and CO2 uptake, the dissipation of excess light energy was clearly reflected in the light and dark reactions of photosynthesis under stress conditions. Bean and maize plants preferentially use non-photochemical quenching for light energy dissipation. In sunflower plants, excess light energy gave rise to photochemical quenching. Autoradiography of leaves after photosynthesis in 14CO2 demonstrated the occurrence of leaf patchiness in sunflower and maize but not in bean. The contribution of CO2 recycling within the leaves to energy dissipation was investigated by studies in 2.5% oxygen to suppress photorespiration. The participation of different energy dissipating mechanisms to quanta comsumption on agriculturally relevant species is discussed.Abbreviations Fo minimal fluorescence - Fm maximal fluorescence - Fp peak fluorescence - g leaf conductance - PN net CO2 uptake - qN coefficient of non-photochemical quenching - qP coefficient of photochemical quenching  相似文献   

5.
Chollet R 《Plant physiology》1978,61(6):929-932
Preincubation of illuminated tobacco (Nicotiana tabacum L.) leaf disks in glycidate (2,3-epoxypropionate) or glyoxylate inhibited photorespiration by about 40% as determined by the ratio of 14CO2 evolved into CO2-free air in light and in darkness. However, under identical preincubation conditions used for the light/dark 14C assays, the compounds failed to reduce photorespiration or stimulate net photosynthesis in tobacco leaf disks based on other CO2 exchange parameters, including the CO2 compensation concentration in 21% O2, the inhibitory effect of 21% O2 on net photosynthesis in 360 microliters per liter of CO2 and the rate of net photosynthetic 14CO2 uptake in air.

The effects of both glycidate and glyoxylate on the 14C assay are inconsistent with other measures of photorespiratory CO2 exchange in tobacco leaf disks, and thus these data question the validity of the light to dark ratio of 14CO2 efflux as an assay for relative rates of photorespiration (Zelitch 1968, Plant Physiol 43: 1829-1837). The results of this study specifically indicate that neither glycidate nor glyoxylate reduces photorespiration or stimulates net photosynthesis by tobacco leaf disks under physiological conditions of pO2 and pCO2, contrary to previous reports.

  相似文献   

6.
Previous studies have indicated that the rate of photorespiration in C4 plants is low or negligible. In this study, wild-type and mutant leaves of the C4 plant Amaranthus edulis were treated with the glutamine synthetase inhibitor, phosphinothricin and the glycine decarboxylase inhibitor, aminoacetonitrile, at different concentrations of CO2. The time course of ammonia accumulation in leaves of the wild type was compared with a mutant lacking phosphoenolpyruvate carboxylase activity (EC 4.1.1.31), and with three different mutants that accumulated glycine. The increase in the concentration of ammonia in the leaves, stimulated by the treatments was used as a measurement of the rate of photorespiration in C4 plants. The application of glutamine and glycine maintained the rate of photorespiratory ammonia production for a longer period in the wild type, and increased the rate in a mutant lacking phosphoenolpyruvate carboxylase suggesting that there was a lack of amino donors in these plants. The calculated rate of photorespiration in Amaranthus edulis wild-type leaves when the supply of amino donors was enough to maintain the photorespiratory nitrogen flow, accounted for approximately 6% of the total net photosynthetic CO2 assimilation rate. In a mutant lacking phosphoenolpyruvate carboxylase, however, this rate increased to 48%, when glutamine was fed to the leaf, a value higher than that found in some C3 plants. In mutants of Amaranthus edulis that accumulated glycine, the rate of photorespiration was reduced to 3% of the total net CO2 assimilation rate. The rate of ammonia produced during photorespiration was 60% of the total produced by all metabolic reactions in the leaves. The data suggests that photorespiration is an active process in C4 plants, which can play an important role in photosynthetic metabolism in these plants.  相似文献   

7.
A normal appearing plant with a low rate of photorespiration (ratio of 14CO2 released light/dark = 1.6) was found in an unselected tobacco (Nicotiana tabacum) cultivar. The plant was self-pollinated, and further selections were made on several successive generations. Excised leaves from the progeny of the selections were examined for photorespiration and net CO2 assimilation in normal air during photosynthesis. Similar measurements were made of plants derived from selfed parents with high rates of photorespiration (ratio of 14CO2 released light/dark = 3.0 or greater). Efficient photosynthetic plants (greater than 22.0 mg of CO2 dm−2 hr−1) with low rates of photorespiration produced a larger proportion of efficient progeny (about 25%) than did selfing inefficient plants (about 6%), but this proportion did not increase in successive generations.  相似文献   

8.
Photosynthesis in Drought-Adapted Cassava   总被引:5,自引:0,他引:5  
Calatayud  P.-A.  Llovera  E.  Bois  J.F.  Lamaze  T. 《Photosynthetica》2000,38(1):97-104
After 45 d of limited water supply, cassava (Manihot esculenta Crantz) exhibited pronounced reduction in shoot growth, high leaf fall, and decreased stomatal conductance. However, the water status of the remaining leaves was unaffected. This was combined with an amplified heliotropic response and drooping which minimises radiant energy interception at mid-day, suggesting that leaves are sensitive to high irradiance (I). In well-irrigated plants, CO2-saturated oxygen evolution and net photosynthetic rate (P N) in air were markedly higher (5-fold) in young (expanding) leaves than in mature leaves. Water limitation did not strongly modify CO2-saturated oxygen evolution but it altered P N in air for both types of leaves, although differently. The mature leaves of drought-adapted plants displayed residual rate of P N and deteriorated photosystem 2 (PS2) photochemistry estimated from chlorophyll (Chl) a fluorescence measurements. In young leaves at moderate I, P N was depressed by only 66 % in stressed plants. Moreover, the photochemical quenching of Chl a fluorescence and the quantum efficiency of PS2 photochemistry in young leaves were comparable in both control and stressed plants. In contrast at high I, P N was almost null and marked decreases in the two fluorescence parameters were apparent. Hence the strong heliotropic response and drooping displayed by young leaves under water limitation is an important strategy for avoiding inactivation of P N by high I and therefore for cassava tolerance to drought.  相似文献   

9.
Rubisco, the enzyme that constitutes as much as half of the protein in a leaf, initiates either the photorespiratory pathway that supplies reductant for the assimilation of nitrate into amino acids or the C3 carbon fixation pathway that generates carbohydrates. The relative rates of these two pathways depend both on the relative extent to which O2 and CO2 occupies the active site of Rubisco and on whether manganese or magnesium is bound to the enzyme. This study quantified the activities of manganese and magnesium in isolated tobacco chloroplasts and the thermodynamics of binding of these metals to Rubisco purified from tobacco or a bacterium. In tobacco chloroplasts, manganese was less active than magnesium, but Rubisco purified from tobacco had a higher affinity for manganese. The activity of each metal in the chloroplast was similar in magnitude to the affinity of tobacco Rubisco for each. This indicates that, in tobacco chloroplasts, Rubisco associates almost equally with both metals and rapidly exchanges one metal for the other. Binding of magnesium was similar in Rubisco from tobacco and a bacterium, whereas binding of manganese differed greatly between the Rubisco from these species. Moreover, the ratio of leaf manganese to magnesium in C3 plants increased as atmospheric CO2 increased. These results suggest that Rubisco has evolved to improve the energy transfers between photorespiration and nitrate assimilation and that plants regulate manganese and magnesium activities in the chloroplast to mitigate detrimental changes in their nitrogen/carbon balance as atmospheric CO2 varies.  相似文献   

10.
Limitations on photosynthesis, characterized by leaf CO2 exchange, chlorophyll fluorescence, and thylakoid structure, were studied under environmental conditions simulating culturein vitro. These were simulated by growingPhaseolus vulgaris plants in nutrient solution under high relative humidity of air (>90%), and CO2 concentrations (ca) that decreased with the development of photosynthetic activities during plant ontogeny (1200 to 300 mg m?3). The ontogeny of such model plants was more rapid, primary leaves reached photosynthetic maturity 2 to 3 d earlier and their life span was 7 to 14 d shorter than in control plants. Their photosynthetic activityin situ was limited, after reaching “photosynthetic maturity”, similarly to plants grownin vitro. When measured under optimal conditions, however, 50 to 70% higher net photosynthetic rates (PN) were found in leaves of different ages as compared with plants grown under ca of 700 mg m?3 and a lower air humidity (30–35%). This increase in PN was associated with a high conductance for CO2 transfer by adaxial and abaxial epidermes. In model plants, the dark respiration rate (RD) was almost twice that in the control, while the photorespiration rates were similar to controls; CO2 compensation concentration was about 50% of that in controls. The ratios PN/RD were similar in control and in model plants. Chlorophylla+b content in leaves of the model plants was lower than that in the control plants. Grana extent increased with plant age in the model plants while it decreased in the control ones. In both the stromal and granal membranes of the chloroplasts in model plants, a marked accumulation of carotenoids occurred independent of age. The ratio of variable to maximal fluorescence, Fv/Fm, did not differ in the model and the control plants. In the control plants, photochemical quenching (qP) slightly increased with plant age and was not affected by CO2 concentration present during measurement. In the model plants, qP increased with elevated CO2 concentration in young plants and decreased in saturating CO2 concentrations in older plants. Nonphotochemical quenching (qNP) was lower in the model plants and increased under CO2 saturating conditions. Vitality index, Rfd, was markedly lower in the model plants than in the control ones and a decline was found in saturating CO2 concentration.  相似文献   

11.
12.
Zelitch I 《Plant physiology》1968,43(11):1829-1837
A leaf disk assay for photorespiration has been developed based on the rate of release of recently fixed 14CO2 in light in a rapid stream of CO2-free air at 30° to 35°. In tobacco leaves (Havana Seed) photorespiration with this assay is 3 to 5 times greater than the 14CO2 output in the dark. In maize, photorespiration is only 2% of that in tobacco.

The importance of open leaf stomata, rapid flow rates of CO2-free air, elevated temperatures, and oxygen in the atmosphere in order to obtain release into the air of a larger portion of the 14CO2 evolved within the tissue in the light was established in tobacco. Photorespiration, but not dark respiration, was inhibited by α-hydroxy-2-pyridinemethanesulfonic acid, an inhibitor of glycolate oxidase, and by 3-(4-chlorophenyl)-1,1-dimethylurea (CMU), an inhibitor of photosynthetic electron transport, under conditions which did not affect the stomata. These experiments show that the substrates of photorespiration and dark respiration differ and also provide additional support for the role of glycolate as a major substrate of photorespiration. It was also shown that at 35° the quantity of 14CO2 released in the assay may represent only 33% of the gross 14CO2 evolved in the light, the remainder being recycled within the tissue.

It was concluded that maize does not evolve appreciable quantities of CO2 in the light and that this largely accounts for the greater efficiency of net photosynthesis exhibited by maize. Hence low rates of photorespiration may be expected to be correlated with a high rate of CO2 uptake at the normal concentrations of CO2 found in air and at higher light intensities.

  相似文献   

13.
An open system associated with an infrared gas analyzer was employed to study transients in CO2 exchange generated upon darkening preilluminated leaf discs of tobacco (Nicotiana tabacum vars John Williams Broadleaf and Havana Seed). An empirical formula presented previously enabled prediction of the analyzer response under nonsteady state conditions as a function of time and of the leaf CO2 exchange rate. A computer was used to evaluate parameters of the leaf CO2 release rate to provide an estimate of the initial rate of postillumination CO2 evolution and to produce maximal agreement between predicted and observed analyzer responses. In 21% O2, the decline in rate of CO2 evolution upon darkening followed first order kinetics. Initial rates of CO2 evolution following darkening were relatively independent of the prior ambient CO2 concentrations. However, rates of photorespiration expressed as a fraction of net photosynthesis declined rapidly with increasing external CO2 concentration at 21% O2. Under normal atmospheric conditions, photorespiration was 45 to 50% of the net CO2 fixation rate at 32°C and high irradiance. The rapid initial CO2 evolution observed upon darkening at 21% O2 was absent in 3% O2. Rates of photorespiration under normal atmospheric concentrations of CO2 and O2 as measured by the postillumination burst were highly dependent upon temperature (observed activation energy = 30.1 kilocalories per mole). The results are discussed with respect to previously published estimates of photorespiration in C3 leaf tissue.  相似文献   

14.
15.
Effect of phosphorus deficiency on photosynthetic and respiratory CO2 exchanges were analysed in primary leaves of 2-week-old bean (Phaseolus vulgaris L. cv. Golden Saxa) plants under non-photorespiratory (2 % O2) and photorespiratory (21 % O2) conditions. Low P decreased maximum net photosynthetic rate (PNmax) and increased the time necessary to reach it. In the leaves of P-deficient plants the relative decrease of PNmax at 2 % O2 was larger than at 21 % O2. The results suggested the influence of photorespiration in the cellular turnover of phosphates.  相似文献   

16.
Egbert  K.J.  Martin  C.E. 《Photosynthetica》1999,36(1-2):139-147
Net CO2 exchange rate (PN) of shoots and diel fluctuations in titratable acidity of leaves of Senecio rowleyanus were measured to determine whether penetration of radiant energy through leaf “windows” (narrow, translucent strips on the leaf epidermis) resulted in increased CAM. Nocturnal PN and nighttime increases in acidity were compared among plants with windows covered with reflective adhesive tape, transparent adhesive tape (to control for potential effects of the adhesive), and no tape. The windows did not significantly enhance the degree of CAM in S. rowleyanus. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

17.
In order to clarify the relationship between chill-induced disturbance in photosynthetic, respiratory electron transport and the metabolism of reactive oxygen species (ROS), leaf gas exchange, chlorophyll fluorescence quenching, respiration, and activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) were investigated in chloroplasts and mitochondria of cucumber (Cucumis sativus) leaves subjected to a chill (8 °C) for 4 d. Chilling decreased net photosynthetic rate (P N) and quantum efficiency of photosystem 2 (ΦPS2), but increased the ratio of ΦPS2 to the quantum efficiency of CO2 fixation (ΦCO2) and non-photochemical quenching (NPQ) in cucumber leaves. While chilling inhibited the activity of cytochrome respiration pathway, it induced an increase of alternative respiration pathway activity and the reduction level of Q-pool. Chilling also significantly increased O2 production rate, H2O2 content, and SOD and APX activities in chloroplasts and mitochondria. There was a more significant increase in SOD and APX activities in chloroplasts than in mitochondria with the increase of membrane-bound Fe-SOD and tAPX in chloroplasts being more significant than other isoenzymes. Taken together, chilling inhibited P N and cytochrome respiratory pathway but enhanced the photosynthetic electron flux to O2 and over-reduction of respiratory electron transport chain, resulting in ROS accumulation in cucumber leaves. Meanwhile, chilling resulted in an enhancement of the protective mechanisms such as thermal dissipation, alternative respiratory pathway, and ROS-scavenging mechanisms (SODs and APXs) in chloroplasts and mitochondria.  相似文献   

18.
The differences between leaves of different age according to their descending insertion level (starting from the youngest, 18th leaf) were compared with the changes occurring during the corresponding period of ontogenesis of the 18th unshaded leaf using the gas exchange [net photosynthetic CO2 uptake (P N ), water vapour efflux (E)] of the adaxial and abaxial surfaces of tobacco leaves as an example. Experimental elimination of the influence of shading during the involved period of ontogenesis of the 18th leaf manifested itself by a relatively slower decrease inP N and by fluctuation of theE values at approximately the same level. Thus the differences between leaves of different insertion levels cannot be exclusively ascribed to the effect of their ontogenetic age.  相似文献   

19.
Zelitch I 《Plant physiology》1990,93(4):1521-1524
Experiments are described further indicating that O2-resistant photosynthesis observed in a tobacco (Nicotiana tabacum) mutant with enhanced catalase activity is associated with decreased photorespiration under conditions of high photorespiration relative to net photosynthesis. The effects on net photosynthesis of (a) increasing O2 concentrations from 1% to 42% at low CO2 (250 microliters CO2 per liter), and (b) of increasing O2 concentrations from 21% to 42% at high CO2 (500 microliters CO2 per liter) were investigated in M6 progeny of mutant and wild-type leaf discs. The mutant displayed a progressive increase in net photosynthesis relative to wild type with increasing O2 and the faster rate at 42% O2 was completely reversed on returning to 21% O2. The photosynthetic rate by the mutant was similar to wild type in 21% and 42% O2 at 500 microliters CO2 per liter, and a faster rate by the mutant was restored on returning to 250 microliters CO2 per liter. The results are consistent with a lowered release of photorespiratory CO2 by the mutant because greater catalase activity inhibits the chemical decarboxylation of α-keto acids by peroxisomal H2O2. Higher catalase activity was observed in the tip and middle regions of expanding leaves than in the basal area. On successive selfing of mutant plants with enhanced catalase activity, the percent of plants with this phenotype increased from 60% in M4 progeny to 85% in M6 progeny. An increase was also observed in the percent of plants with especially high catalase activity (averaging 1.54 times wild type) on successive selfings suggesting that homozygosity for enhanced catalase activity was being approached.  相似文献   

20.
Zhao  Duli  Oosterhuis  D.M.  Bednarz  C.W. 《Photosynthetica》2001,39(1):103-109
In cotton (Gossypium hirsutum L.) grown in controlled-environment growth chamber the effects of K deficiency during floral bud development on leaf photosynthesis, contents of chlorophyll (Chl) and nonstructural saccharides, leaf anatomy, chloroplast ultrastructure, and plant dry matter accumulation were studied. After cotton plants received 35-d K-free nutrient solution at the early square stage, net photosynthetic rate (P N) of the uppermost fully expanded main-stem leaves was only 23 % of the control plants receiving a full K supply. Decreased leaf P N of K-deficient cotton was mainly associated with dramatically low Chl content, poor chloroplast ultrastructure, and restricted saccharide translocation, rather than limited stomata conductance in K-deficient leaves. Accumulation of sucrose in leaves of K-deficient plants might be associated with reduced entry of sucrose into the transport pool or decreased phloem loading. K deficiency during squaring also dramatically reduced leaf area and dry matter accumulation, and affected assimilate partitioning among plant tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号