首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The effect of nuclear dominance in monokaryotic oidium formation from dikaryotic mycelia inPholiota nameko was examined. Over 90% of oidium isolates from dikaryotic mycelia were monokaryotic. Although only one parental nuclear type was recovered from an average of about 80% in these isolates, the nuclear selection process in oidium formation seems essentially to produce split nuclear type composition in oidium products. The hierarchy of relative dominance among the nuclear types of the parental dikaryons in monokaryotic oidium formation was determined. The two hierarchies in nuclear selection between monokaryotic oidium formation and monokaryotic mycelium formation coincided at a level of at least 75%.  相似文献   

2.
To examine monokaryotization of dikaryotic mycelia ofPholiota nameko, 18 monokaryotic stocks were used to produce a total of 130 dikaryotic stocks by reciprocal crossing. Monokaryotized mycelium was raised from dikaryotic mycelium in the peripheral zone of the growing colony. The stocks mated with a particular group of monokaryons produced wide-range monokaryotization at higher rates than the other combinations of hybridization. The growth rates of the monokaryotized mycelia exceeded from those of the corresponding parental dikaryons. The monokaryotized mycelium was isolated and back-crossed to parental monokaryotic stocks. Most of the isolates had nuclear types similar to only one of the parental stocks, while the replicates of isolates from two dikaryotic hybrids showed split nuclear type compositions. It is suggested that a relative dominance is active in the selection of one of the two nuclei of the dikaryotic cells in monokaryotization. The hierarchy of relative dominance among nuclei of 18 parental monokaryotic stocks in the monokaryotization of their reciprocal crossing products was estimated. We propose the involvement of a cascade process in dikaryotic cell division, in which the first dividing nucleus (to be found in the monokaryotized cell) may act as the leading nucleus and the other one as the following nucleus.  相似文献   

3.
Pholiota nameko produced abundant oidia on aerial hyphae from monokaryotic and dikaryotic test stocks, but oidia were rare on submerged hyphae. The oidia from the former stocks had a layer of hydrophobic protein between the cell wall and the inner cell membrane which was absent in the oidia from the latter. The only remarkable differences in the morphological features of the oidia from monokaryotic and dikaryotic mycelia was the slightly larger size of the latter. Observation of various test stocks on slide cultures revealed that about 80% of oidia were produced from the secondary branched hypha, and about 20% from the terminal hyphal, cell of the main hypha. In the former, the secondary hyphae were segmented to form several oidium cells; in the latter, a single or several oidia were formed at the terminal end of the main hypha. Most oidia from monokaryons and dikaryons had only one haploid nucleus, while the remainders were multinucleate. Among the stocks tested, most oidia had a DNA content with a haploid amount at the G1 phase of the cell cycle, but a few contained twice that amount corresponding to the G2 phase  相似文献   

4.
Variation in the number of nuclei and cellular ploidy were observed in eight strains ofHelicobasidium mompa. The basidiospores, single-spore isolates and field-isolated strains were all dikaryons. The cellular ploidy, which was assessed by analyzing the fluorescence emitted by DAPI-stained nuclei, was unstable: monokaryotic strains derived from the original dikaryotic strains by successive subcultures were mainly tetraploid, although the original dikaryon was in most cases diploid. On the other hand, a dikaryotic strain derived by treatment with benomyl was haploid. These results suggest that diploid dikaryon is a normal nuclear phase ofH. mompa in nature, and the alternation of ploidy may be due to a feature of the mating system of this fungus.  相似文献   

5.
Clark TA  Anderson JB 《Genetics》2004,167(4):1663-1675
The impact of ploidy on adaptation is a central issue in evolutionary biology. While many eukaryotic organisms exist as diploids, with two sets of gametic genomes residing in the same nucleus, most basidiomycete fungi exist as dikaryons in which the two genomes exist in separate nuclei that are physically paired and that divide in a coordinated manner during hyphal extension. To determine if haploid monokaryotic and dikaryotic mycelia adapt to novel environments under natural selection, we serially transferred replicate populations of each ploidy state on minimal medium for 18 months (approximately 13,000 generations). Dikaryotic mycelia responded to selection with increases in growth rate, while haploid monokaryotic mycelia did not. To determine if the haploid components of the dikaryon adapt reciprocally to one another's presence over time, we recovered the intact haploid components of dikaryotic mycelia at different time points (without meiosis) and mated them with nuclei of different evolutionary histories. We found evidence for coadaptation between nuclei in one dikaryotic line, in which a dominant deleterious mutation in one nucleus was followed by a compensatory mutation in the other nucleus; the mutant nuclei that evolved together had the best overall fitness. In other lines, nuclei had equal or higher fitness when paired with nuclei of other histories, indicating a heterozygote advantage. To determine if genetic exchange occurs between the two nuclei of a dikaryon, we developed a 24-locus genotyping system based on single nucleotide polymorphisms to monitor somatic exchange. We observed genetic exchange and recombination between the nuclei of several different dikaryons, resulting in genotypic variation in these mitotic cell lineages.  相似文献   

6.
Protoplast preparation and regeneration conditions of the edible fungus, Stropharia rugoso-annulata Farlow apud Murrill were studied, and the regenerated progenies were characterized in this study. The optimal condition for protoplast preparation was incubation of young mycelia with gentle shaking in 1.5%(w/v) Lywallzyme at 30 °C for 3 h. PGPM (potato/glucose/peptone/mannitol) was the most suitable regeneration medium. Served as osmotic stabilizer, sugars (mannitol and sucrose) were better than inorganic salts (MgSO4) for clone development and growth. Pre-incubation of protoplasts in liquid regeneration medium resulted in a significantly decreased regeneration rate. Both dikaryotic isolates and monokaryotic isolates could be identified from protoplast-regenerated progenies, with a much higher frequency of monokaryotic isolates identified from the early-developed and fast-growing regenerated clones. Two parental mating types were also identified from protoplasted monokaryotic isolates, but not segregated by 1:1. The mycelial growth rate of protoplasted monokaryotic isolates showed a mating type-dependent model when cultured at different incubation temperatures and pH values, with A2B2 mating type monokaryotic isolates growing faster than those of A1B1 mating type monokaryotic isolates.  相似文献   

7.
Using monokaryotic offspring from several dikaryotic parental strains, the phenomenon of monokaryotic fruiting has been previously analysed in the commercially cultivated high-quality edible mushroom Agrocybe aegerita, revealing a variety of monokaryotic fruiting types. Here, we report a single dikaryotic A. aegerita strain, A. aegerita AAE-3, and 40 monokaryons derived from it, which exhibit a wide spectrum of monokaryotic fruiting types, including a rare, previously unknown type. Advantageously, the selected parental strain A. aegerita AAE-3 completes its life cycle within three weeks by the formation of dikaryotic fruiting bodies of typical agaric morphology on malt extract agar plates. In order to morphologically compare normal dikaryotic fruiting to monokaryotic fruiting, histology was performed from all dikaryotic fruiting body development stages and all fruiting types of monokaryotic origin. No clamp connections or dikaryotic hyphae were observed within the plectenchyma of monokaryotic fruiting stages. Among the monokaryotic fruiting types of the A. aegerita AAE-3-derived monokaryons, we also characterised the rare ‘stipe type’ here described as ‘elongated initials type’ as no differentiation into a future cap and stipe was seen. The two mating-compatible monokaryotic strains representing the extremes of the fruiting type spectrum observed, A. aegerita AAE-3-13 (‘mycelium type’) and A. aegerita AAE-3-32 (‘abortive?+?true homokaryotic fruiting fruiter type, AHF?+?THF fruiter type’), were also found to readily produce oidia (arthrospores). In order to obtain a set of mating-compatible monokaryons covering the whole observed spectrum of monokaryotic fruiting, the two monokaryons A. aegerita AAE-3-40 (‘initials type’) and A. aegerita AAE-3-37 (‘elongated initials type’) have been selected for their mating compatibility with A. aegerita AAE-3-32 and A. aegerita AAE-3-13, respectively. Together with the parental dikaryotic strain A. aegerita AAE-3, this set of standard monokaryons could prove useful for studies exploring the factors regulating monokaryotic fruiting in comparison to dikaryotic mushroom formation.  相似文献   

8.
Seedling roots of Pseudotsuga menziesii were colonized with three monokaryotic isolates and one dikaryotic isolate of Laccaria bicolor to assess the effect of fungal genotype on ectomycorrhiza formation. Ectomycorrhizas resulting from colonization by the dikaryotic isolate had a multilayered mantle and a cortical Hartig net. One monokaryotic isolate (ss7) formed ectomycorrhizas comparable in anatomy to those induced by the dikaryotic isolate. Two other monokaryotic isolates (ss5, ss1) failed to form mantles or Hartig nets. Roots colonized by these isolates developed characteristics indicating an incompatible reaction.  相似文献   

9.
The behaviour of nuclei during the growth and differentiation of basidiocarp primordia of Armillariella mellea (Vahl) Karst. is described. The primordial initials which arose from monokaryotic rhizomorphs were also monokaryotic. In older primordia, at the site of initiation of gill folds, multinucleate cells formed at the tips of monokaryotic hyphae and gave rise to the dikaryotic hyphae bearing clamp connections. These formed the gills of the older primordia. Cytological studies suggested that the nuclei in monokaryotic cells were diploid. In young basidial primordia haploidization occurred in the cells which were to become multinucleate prior to giving rise to dikaryotic hyphae of the gills. In mature basidia after nuclear fusion and meiosis had occurred, each of the four haploid daughter nucleic migrated into a basidiospore and then divided mitotically. One of the mitotic daughter nucleic migrated from each spore back into the basidium so that mature spores were uninucleate.Abbreviations M.T.O.C. microtubule organizing centre  相似文献   

10.
金针菇担孢子核相及遗传属性的研究   总被引:1,自引:0,他引:1  
以3个不同的金针菇菌株为材料,研究了其担孢子的核相及遗传属性。荧光染色观察显示,担孢子核相以双核为主,双核孢子、单核孢子和无核孢子分别占80.2%、7.5%和12.3%。源于单孢分离物的菌丝为有隔膜、无锁状联合的多核菌丝。在交配试验中,源于不同菌株单孢分离物的菌丝原生质体的配对形成具锁状联合的菌落,而源于同一单孢分离物的菌丝原生质体的配对则形成无锁状联合的菌落,暗示担孢子中的两个核具有相同的交配型。RAPD分析显示,源于同一单孢分离物的菌丝原生质体为10个随机引物所扩增的图谱彼此完全相同,印证了担孢子中的双核是同质的。此外,观察表明,一个担子上着生有4个担孢子。因此,金针菇是一种具4个含同质双核担孢子的四极性蕈菌。  相似文献   

11.
Genetic analysis of nuclear ribosomal DNA (rDNA) of Lentinula edodes was carried out using rDNA restriction fragment length polymorphisms (RFLPs) as genetic markers. Two compatible monokaryotic strains that differed in the endonuclease digestion patterns of their rDNA were used. The dikaryotic strain established by crossing them produced mixed RFLP patterns. Single-spore isolates derived from the dikaryotic strain showed three types of rDNA RFLP patterns: either one of the two parental types or a mixed type. From the frequency of the mixed type, the recombination value of rDNA tandem repeats was calculated to be 31.4%. Linkage analysis between rDNA and two incompatibility factors (A and B) revealed that rDNA was not linked to either factor. The rDNA genotypes did not affect mycelial growth among the single-spore isolates.  相似文献   

12.
Pholiota nameko is a wood-rotting edible mushroom that carries a bipolar A incompatibility factor gene. The linkage analysis of the multiple allelomorphic A factor gene demonstrated that sexual reproduction produced a monospore isolate carrying a new A factor gene in addition to two parental mating types of isolates. However, 10%–30% of the modified monospore isolates could not produce a dikaryon with both of the parental monokaryons by crossing. It is concluded that the bipolar A incompatibility factor gene of P. nameko is constituted of two functional subunits, Aα and Aβ, which might be successively located beside each other with an apparent genetic distance of 0.3 centi-Morgan between them on the same chromosome. Further, some monospore isolates that did not conjugate with both parental monokaryons could produce dikaryons with different monokaryotic stocks with either one of the parental mating types. This result suggests that the crossing capability of these isolates were essentially those for one of the mating types of the parental monokaryons, but that their function for mating activity was made partially by unequal crossing-over in the process of sexual recombination. Received: May 1, 2001 / Accepted: December 5, 2001  相似文献   

13.
李浩  张平 《菌物学报》2012,31(2):223-228
用双苯并咪唑(Hoechst 33258)染色法分别对长根小奥德蘑Oudemansiella radicata双孢菌株和四孢菌株的菌丝、子实体、担孢子进行染色观察,结果表明:双孢长根小奥德蘑菌丝细胞多为单核,无锁状联合;原担子中单核进行一次有丝分裂形成两个横向或纵向排列的子核,这2个子核分别进入2个担孢子中,留下无核的空担子;成熟担孢子具有一个核。四孢长根小奥德蘑菌丝细胞大多数为双核,具有锁状联合;进入原担子中的两个单倍性细胞核先发生核配,形成一个二倍性的核,再经过减数分裂形成四个染色体减半的单倍性子核,  相似文献   

14.
D. Zickler  S. Arnaise  E. Coppin  R. Debuchy    M. Picard 《Genetics》1995,140(2):493-503
In wild-type crosses of the filamentous ascomycete Podospora anserina, after fertilization, only nuclei of opposite mating type can form dikaryons that undergo karyogamy and meiosis, producing biparental progeny. To determine the role played by the mating type in these steps, the four mat genes were mutagenized in vitro and introduced into a strain deleted for its mat locus. Genetic and cytological analyses of these mutant strains, crossed to each other and to wild type, showed that mating-type information is required for recognition of nuclear identity during the early steps of sexual reproduction. In crosses with strains carrying a mating-type mutation, two unusual developmental patterns were observed: monokaryotic cells, resulting in haploid meiosis, and uniparental dikaryotic cells providing, after karyogamy and meiosis, a uniparental progeny. Altered mating-type identity leads to selfish behavior of the mutant nucleus: it migrates alone or paired, ignoring its wild-type partner in all mutant X wild-type crosses. This behavior is nucleus-autonomous because, in the same cytoplasm, the wild-type nuclei form only biparental dikaryons. In P. anserina, mat genes are thus required to ensure a biparental dikaryotic state but appear dispensable for later stages, such as meiosis and sporulation.  相似文献   

15.
Saprophytic development of Sorosporium consanguineum and its nuclear cycle were studied on laboratory media. During vegetative reproduction, the nuclei of the monokaryotic sporidia were shown to first migrate into developing bud cells where division occurs, one nucleus returning to the parent cell prior to completion of cell division. Following fusion of sporidia of opposite mating type and subsequent formation of infection hyphae, dikaryons eventually dissociated, giving rise to sporidia of both sex groups in the process. As a result of dissociation, shown to occur in several ways, "satellite" sporidial colonies characteristically formed in advance of the parent colony and fusions again occurred between sporidia of opposite mating type. Reports of variable nuclear condition of mycelia in other species of smut fungi in culture are discussed in light of these findings.  相似文献   

16.
The ability to produce monokaryotic fruiting bodies and clamp cells in culture was examined in monokaryotic strain isolated from several dikaryotic parental strains of the edible mushroom, Mycoleptodonoides aitchisonii (Bunaharitake). We describe a single dikaryotic M. aitchisonii strain, TUFC50005, and 20 monokaryons derived from it, which exhibited a wide spectrum of monokaryotic fruiting types. Most strains formed primordia, or young fruiting body-like structures, but only one of the monokaryons, strain TUFC50005-4, formed a fruiting body, even though it had only one nucleus and produced only two spores after meiosis. We demonstrated that dikariotization was not required for clamp cell formation, fruiting body formation, or meiosis, in this mushroom.  相似文献   

17.
Two strains of the mushroom Pleurotus, isolated from nature in Vietnam and Japan, contained a similar combination of two distinct rDNA internal transcribed spacer (ITS) sequences. They were perhaps hybrid dikaryons between P. cystidiosus subsp. abalonus and a novel P. cystidiosus subspecies. These mushrooms produce dikaryotic arthroconidia. This unique asexual reproduction might allow stable maintenance of a particular pair of nuclei.  相似文献   

18.

Background

Molecular characterisation of wild type Pleurotus species is important for germplasm conservation and its further use for genetic improvement. No molecular studies have been performed with monokaryons used for producing hybrid strains, either with the reconstituted strains obtained by pairing those monokaryons. The molecular characterisation of parental dikaryons, hybrid, and reconstituted strains as well as monokaryotic strains, is therefore of utmost importance.

Aims

To carry out the molecular identification of Pleurotus djamor strains, i.e. dikaryotic wild type strains, hybrid strains, and the monokaryotic strains used for the hybrid formation.

Methods

Five wild type strains of P. djamor from different states in Mexico were collected and molecularly identified by sequencing the ITS1-5.8-ITS2 region using ITS1 and ITS4 universal oligonucleotides. Four hybrid strains were obtained by pairing neohaplonts of two wild type strains selected. Six ISSR markers were used for the molecular characterisation of monokaryotic and dikaryotic strains.

Results

Using the ITS markers, an amplified product of 700 bp was obtained in five wild type strains, with a 99-100% similarity with P. djamor. A total of 95 fragments were obtained using the ISSR markers, with 99% of polymorphism.

Conclusions

Wild type strains were identified as P. djamor, and were clearly grouped with Mexican strains from other states of Mexico. ISSR markers allowed the generation of polymorphic bands in monokaryotic and dikaryotic strains, splitting both types of strains. The high degree of polymorphism indicates the genetic diversity of P. djamor, an advantage in mushroom production and in the improving of the species.  相似文献   

19.
Summary Glutamate dehydrogenase (GDH) is the key enzyme of ammonium assimilation by ectomycorrhizal fungi. Its activity might be use as a criterion to select mycelia capable of enhancing the nitrogen nutrition of the host plants. Genetical variability of the GDH activity of the ectomycorrhizal fungus Hebeloma cylindrosporum Romagnési was studied in an attempt to determine if this enzyme activity could be improved by way of chromosomal genetics. The activity of 11 wild strains was compared with that of 70 mycelia obtained as the progeny of a laboratory fruiting strain HC1. These 70 mycelia were 20 monokaryons (5 for each mating type) and the 50 synthesized dikaryons obtained from all the compatible fusions between these monokaryons. The specific GDH activity of the 11 wild strains ranged from 1.5 to 11.6 nkat mg-1 fungal protein. The activity of the monokaryotic progeny of the HC1 strain was, on average, three times lower (2.85 n kat mg-1 fungal protein) than that of the parental dikaryon. In contrast, synthesized dikaryons originating from these monokaryons were very variable and had an average values similar to that of the parental dikaryon (9.1 nkat mg-1 fungal protein). Eighteen of these synthesized dikaryons contained an activity higher than that of the original HC1 strain. The variation of the GDH activity of these dikaryons involves additive and non additive (interactive) components, each of them accounting for ca. 50% of the genetical variation. The non additive variation could not be explained by a model involving only dominance. These results are discussed with reference to the genetical improvement of mycorrhizal fungi in order to enhance nitrogen nutrition of the host plants.Abbreviations GDH glutamate dehydrogenase - IAA indole-3-acetic acid - NADP nicotimamide adenine dinucleotide phosphate  相似文献   

20.
Throughout evolution, wood-decaying fungi have adapted to different woody plants, resulting in wide species diversity. Dacrymycetes, which are brown-rot fungi and include host-recurrent species, are useful for studying fungal adaptation to host trees. When estimating the decay abilities of basidiomycetes, the nuclear phases of the mycelium should be considered, since dikaryons are thought to be more efficient wood-decayers than monokaryons; however, the difference in their physiological performances remains largely untested. In this study, we verified the decay capabilities of dikaryotic and monokaryotic mycelia and tested the hypothesis that the host tree-recurrence of wood-decaying fungi results from their resource utilization in each host wood. The mass loss caused by eight dacrymycetous species from wood of four tree species was investigated in pure cultures. The decomposition ability of dikaryons was greater than that of monokaryons in these experiments. Dikaryotization is expected to raise certain physiological parameters, such as the quantity and variety of wood-decomposing enzymes, thus enhancing the decomposition rate of wood decomposers. The high decomposition ability of dikaryons suggests their superiority over monokaryons to survive under natural conditions. All dacrymycetous strains caused high mass loss from Pinus wood, the main host tree of Dacrymycetes. However, most of the individual tested strains did not cause the greatest mass loss from the wood of their original host group. This result suggested that host-recurrence can be partly explained by resource utilization, but it is likely that other micro-organisms and abiotic factors also affect host-recurrence in the field environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号