首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 599 毫秒
1.
Regional endothermy, the conservation of metabolic heat by vascular countercurrent heat exchangers to elevate the temperature of the slow-twitch locomotor muscle, eyes and brain, or viscera, has evolved independently among several fish lineages, including lamnid sharks, billfishes, and tunas. All are large, active, pelagic species with high energy demands that undertake long-distance migrations and move vertically within the water column, thereby encountering a range of water temperatures. After summarizing the occurrence of endothermy among fishes, the evidence for two hypothesized advantages of endothermy in fishes, thermal niche expansion and enhancement of aerobic swimming performance, is analyzed using phylogenetic comparisons between endothermic fishes and their ectothermic relatives. Thermal niche expansion is supported by mapping endothermic characters onto phylogenies and by combining information about the thermal niche of extant species, the fossil record, and paleoceanographic conditions during the time that endothermic fishes radiated. However, it is difficult to show that endothermy was required for niche expansion, and adaptations other than endothermy are necessary for repeated diving below the thermocline. Although the convergent evolution of the ability to elevate slow-twitch, oxidative locomotor muscle temperatures suggests a selective advantage for that trait, comparisons of tunas and their ectothermic sister species (mackerels and bonitos) provide no direct support of the hypothesis that endothermy results in increased aerobic swimming speeds, slow-oxidative muscle power, or energetic efficiency. Endothermy is associated with higher standard metabolic rates, which may result from high aerobic capacities required by these high-performance fishes to conduct many aerobic activities simultaneously. A high standard metabolic rate indicates that the benefits of endothermy may be offset by significant energetic costs.  相似文献   

2.
In contrast to all other sharks, lamnid sharks perform a specialized fast and continuous "thunniform" type of locomotion, more similar to that of tunas than to any other known shark or bony fish. Within sharks, it has evolved from a subcarangiform mode. Experimental data show that the two swimming modes in sharks differ remarkably in kinematic patterns as well as in muscle activation patterns, but the morphology of the underlying musculotendinous system (red muscles and myosepta) that drives continuous locomotion remains largely unknown. The goal of this study was to identify differences in the musculotendinous system of the two swimming types and to evaluate these differences in an evolutionary context. Three subcarangiform sharks (the velvet belly lantern shark, Etmopterus spinax, the smallspotted catshark, Scyliorhinus canicula, and the blackmouth catshark, Galeus melanostomus) from the two major clades (two galeans, one squalean) and one lamnid shark, the shortfin mako, Isurus oxyrhinchus, were compared with respect to 1) the 3D shape of myomeres and myosepta of different body positions; 2) the tendinous architecture (collagenous fiber pathways) of myosepta from different body positions; and 3) the association of red muscles with myoseptal tendons. Results show that the three subcarangiform sharks are morphologically similar but differ remarkably from the lamnid condition. Moreover, the "subcarangiform" morphology is similar to the condition known from teleostomes. Thus, major features of the "subcarangiform" condition in sharks have evolved early in gnathostome history: Myosepta have one main anterior-pointing cone and two posterior-pointing cones that project into the musculature. Within a single myoseptum cones are connected by longitudinally oriented tendons (the hypaxial and epaxial lateral and myorhabdoid tendons). Mediolaterally oriented tendons (epineural and epipleural tendons; mediolateral fibers) connect vertebral axis and skin. An individual lateral tendon spans only a short distance along the body (a fraction between 0.05 and 0.075 of total length, L, of the shark). This span is similar in all tendons along the body. Red muscles insert into the midregion of the lateral tendons. The shortfin mako differs substantially from this condition in several respects: Red muscles are internalized and separated from white muscles by a sheath of lubricative connective tissue. They insert into the anterior part of the hypaxial lateral tendon. Rostrocaudally, this tendon becomes very distinct and its span increases threefold (0.06L anteriorly to 0.19L posteriorly). Mediolateral fibers do not form distinct epineural/epipleural tendons in the mako. Since our morphological findings are in good accordance with experimental data it seems likely that the thunniform swimming mode has evolved along with the described morphological specializations.  相似文献   

3.
Fishes with internalized and endothermic red muscles (i.e. tunas and lamnid sharks) are known for a stiff-bodied form of undulatory swimming, based on unique muscle-tendon architecture that limits lateral undulation to the tail region even though the red muscle is shifted anteriorly. A strong convergence between lamnid sharks and tunas in these features suggests that thunniform swimming might be evolutionarily tied to this specialization of red muscle, but recent observations on the common thresher shark (Alopias vulpinus) do not support this view. Here, we review the fundamental features of the locomotor systems in lamnids and tunas, and present data on in vivo muscle function and swimming mechanics in thresher sharks. These results suggest that the presence of endothermic and internalized red muscles alone in a fish does not predict or constrain the swimming mode to be thunniform and, indeed, that the benefits of this type of muscle may vary greatly as a consequence of body size.  相似文献   

4.
Warm-Bodied Fish     
SYNOPSIS. Two groups of fishes, the tuna and the lamnid sharks,have evolved ounter-currentheat-exchange mechanisms for conservingmetabolic heat and raising their body temperatures. Warm musclecan produce more power, and considering the other adaptationsfor fast swimming in these fish, it seems likely that the selectiveadvantages of greater speed made possible by the warm musclewere important in the evolution of this system. Some tunas suchas the yellowfin and skip jack are at a fixed temperature differenceabove the water, but bluefin tuna can thermoregulate. Telemetryexperiments show that the bluefin tuna can maintain a constantdeep body temperature during marked changes in the temperatureof its environment.  相似文献   

5.
Tunas are pelagic, continuous swimmers, with numerous specializations for achieving a high aerobic scope. Tunas must maintain a high rate of energy turnover, and therefore require elevated levels of aerobic performance in multiple physiological functions simultaneously. Based on a model of oxygen demand and delivery to the swimming musculature, the yellowfin's total oxygen consumption at the predicted maximum sustainable (aerobic) swimming velocity is well below estimates of its maximum oxygen consumption. This suggests that the high aerobic scope of tunas may be a specialization that permits continuous swimming in addition to supplying oxygen to other metabolic functions. Estimates of the metabolic costs of oxygen-debt repayment, growth, and specific dynamic action have been combined with this model of aerobic swimming performance to evaluate the total energy budget in relation to the aerobic scope of the yellowfin tuna. Repayment of the oxygen debt incurred during burst swimming is potentially a large component of tuna respiratory metabolism and the relatively high aerobic capacity of tuna white muscle may be a specialization for rapid lactate clearance.  相似文献   

6.
Through convergent evolution tunas and lamnid sharks share thunniform swimming and a medial position of the red, aerobic swimming musculature. During continuous cruise swimming these muscles move uniformly out of phase with local body curvature and the surrounding white muscle tissue. This design results in thrust production primarily from the caudal fin rather than causing whole-body undulations. The common thresher shark (Family Alopiidae) is the only other fish known to share the same medial red muscle anatomy as the thunniform swimmers. However, the overall body shape and extremely heterocercal caudal fin of the common thresher is not shared with the thunniform swimmers, which have both fusiform bodies and high aspect-ratio, lunate caudal fins. Our study used sonomicrometry to measure the dynamics of red and white muscle movement in common thresher sharks swimming in the ocean to test whether the medial position of red muscle is associated with uncoupling of muscle shortening and local body bending as characteristic of thunniform swimmers. Common threshers (~ 60–100 kg) instrumented with sonomicrometric and electromyographic (EMG) leads swam alongside of the vessel with a tail-beat frequency of ~ 0.5 Hz. EMG signals confirmed that only the red muscle was active during sustained swimming. Despite the more medial position of the red muscle relative to the white muscle, its strain was approximately 1.5-times greater than that of the overlying white muscle, and there was a notable phase shift between strain trajectories in the red muscle and adjacent white muscle. These results suggest an uncoupling (shearing) of the red muscle from the adjacent white muscle. Although the magnitude of the phase shift between red and white muscle strain was relatively constant within individuals, it varied among sharks, ranging from near zero (red and white in phase) to almost 180° out of phase. This extent in variability has not been documented previously for thunniform swimmers with a medial red muscle position and may be a characteristic of the thresher's unique body and caudal fin morphology. Nonetheless, the uncoupling of red and white muscle strain remains a consistent character associated with fishes having a medially positioned red muscle.  相似文献   

7.
Synopsis Virtually all characteristics of tunas and billfishes reflect their highly charged lifestyles as apex predators in the oceanic pelagic environment. The adaptations they possess for efficient and rapid swimming, efficient and rapid food processing, turnover of nutrients and storage and mobilization of internal fuel supplies, and for rapid recovery rates, are discussed. Overall, tunas and billfishes are designed for high performance, at both sustainable and burst swimming speeds, but there are several differences between tunas and billfishes. Tunas' aerobic metabolic capacities exceed those of ectothermic fishes, including billfishes and other scombrids, by virtue of their elevated red muscle temperatures, and because heart and white muscle aerobic capacities are significantly greater in tunas. The adaptations for high performance involve some costs, including the need for a constant high energy input to sustain high metabolic rates, high activity levels, and endothermy, Yet, tunas and billfishes have adopted successful lifestyles, as evidenced by their large numbers and biomass within the marine environment. Although our knowledge of these fishes has increased dramatically during the past 15 years, there are major gaps in our understanding of the metabolic biochemistry and physiology of these fishes, and these are highlighted so that additional research can be directed towards filling these gaps.Paper from the International Union of Biological Societies symposium The biology of tunas and billfishes: an examination of life on the knife edge, organized by Richard W. Brill and Kim N. Holland.  相似文献   

8.
This study examines the functional gill morphology of the shortfin mako, Isurus oxyrinchus, to determine the extent to which its gill structure is convergent with that of tunas for specializations required to increase gas exchange and withstand the forceful branchial flow induced by ram ventilation. Mako gill structure is also compared to that of the blue shark, Prionace glauca, an epipelagic species with lower metabolic requirements and a reduced dependence on fast, continuous swimming to ventilate the gills. The gill surface area of the mako is about one‐half that of a comparably sized tuna, but more than twice that of the blue shark and other nonlamnid shark species. Mako gills are also distinguished from those of other sharks by shorter diffusion distances and a more fully developed diagonal blood‐flow pattern through the gill lamellae, which is similar to that found in tunas. Although the mako lacks the filament and lamellar fusions of tunas and other ram‐ventilating teleosts, its gill filaments are stiffened by the elasmobranch interbranchial septum, and the lamellae appear to be stabilized by one to two vascular sacs that protrude from the lamellar surface and abut sacs of adjacent lamellae. Vasoactive agents and changes in vascular pressure potentially influence sac size, consequently effecting lamellar rigidity and both the volume and speed of water through the interlamellar channels. However, vascular sacs also occur in the blue shark, and no other structural elements of the mako gill appear specialized for ram ventilation. Rather, the basic elasmobranch gill design and pattern of branchial circulation are both conserved. Despite specializations that increase mako gill area and efficacy relative to other sharks, the basic features of the elasmobranch gill design appear to have limited selection for a larger gill surface area, and this may ultimately constrain mako aerobic performance in comparison to tunas. J. Morphol. 271:937–948, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Comparative physiologists and ecologists have searched for aspecific morphological, physiological or biochemical parameterthat could be easily measured in a captive, frozen, or preservedanimal, and that would accurately predict the routine behavioror performance of that species in the wild. Many investigatorshave measured the activity of specific enzymes in the locomotormusculature of marine fishes, generally assuming that high specificactivities of enzymes involved in aerobic metabolism are indicatorsof high levels of sustained swimming performance and that highactivities of anaerobic metabolic enzymes indicate high levelsof burst swimming performance. We review the data that supportthis hypothesis and describe two recent studies we have conductedthat specifically test the hypothesis that biochemical indicesof anaerobic or aerobic capacity in fish myotomal muscle correlatewith direct measures of swimming performance. First, we determinedthat the maximum speed during escapes (C-starts) for individuallarval and juvenile California halibut did not correlate withthe activity of the enzyme lactate dehydrogenase, an index ofanaerobic capacity, in the myotomal muscle, when the effectsof fish size are factored out using residuals analysis. Second,we found that none of three aerobic capacity indices (citratesynthase activity, 3-hydroxy-o-acylCoA dehydrogenase activity,and myoglobin concentration) measured in the slow, oxidativemuscle of juvenile scombrid fishes correlated significantlywith maximum sustained speed. Thus, there was little correspondencebetween specific biochemical characteristics of the locomotormuscle of individual fish and whole animal swimming performance.However, it may be possible to identify biochemical indicesthat are accurate predictors of animal performance in phylogeneticallybased studies designed to separate out the effects of body size,temperature, and ontogenetic stage.  相似文献   

10.
Tunas are extensively distributed throughout world's oceans and grow and reproduce fast enough to support one of the world's largest commercial fisheries. Yet they are apex predators living in the energy depauperate pelagic environment. It is often presumed that tunas evolved their specialized anatomy, physiology, and biochemistry to be capable of (a) high maximum swimming speeds, (b) high sustained swimming speeds, and/or (c) very efficient swimming, all of which help account for their wide distribution and reproductive success. However, a growing body of data on the energetics and physiological abilities of tunas do not support these assumptions. The three things demonstratively “high performance” about tunas, and probably other pelagic species such as marlin (Makaira spp. and Tetrapturus spp.) and dolphin fish (Coryphaena spp.), are (a) rates of somatic and gonadal growth, (b) rates of digestion, (c) rates of recovery from exhaustive exercise (i.e., clearance of muscle lactate and the concomitant acid load). All of these are energy consuming processes requiring rates of oxygen and substrate delivery above those needed by the swimming muscles for sustained propulsion and for other routine metabolic activities. I hypothesize that the ability of high performance pelagic species (tunas, billfishes, and dolphin fish) to deliver oxygen and metabolic substrates to the tissues at high rates evolved to permit rapid somatic and gonadal growth, rapid digestion, and rapid recovery from exhaustive exercise (abilities central to success in the pelagic environment), not exceptionally high sustained swimming speeds.  相似文献   

11.
While endothermy is ubiquitous in birds and mammals, it is not exclusive to these most recently arisen vertebrate classes. The ability to warm specific organs and/or tissues above ambient temperature (regional endothermy) has evolved at least three times in phylogentically discrete fish lineages: lamnid sharks (Lamnidae), tunas (Scombridae) and billfishes (Istiophoridae and Xiphidae). Given the links between endothermy and metabolic rate, we looked for evidence of convergent molecular evolution in mtDNA-encoded cytochrome c oxidase (COX) subunits in each of these discrete lineages. We found no evidence that the endothermic phenotype in fishes is driven or accompanied by molecular convergence. Though we found little evidence for positively-selected sites in any of the lineages in any subunit, the conclusions were sensitive to the choice of maximum-likelihood model. Several sites identified by Na?ve Empirical Bayes (NEB) were not found when Bayes Empirical Bayes (BEB) was employed. As well, conclusions were profoundly influenced by taxon-sampling. Several of the putative sites of positive selection in COX II were no longer apparent as we augmented taxon sampling. The lack of convergent molecular evolution in these remarkable taxa, combined with the profound influence of model choice and taxon sampling provide a cautionary note on the use of rates of non-synonymous to synonymous mutations (dN/dS) to explore questions of the evolution of physiological function.  相似文献   

12.
Summary Lamnid sharks are known to have warm red muscle and warm brains. We describe a large vein in lamnid sharks that provides a route for transfer of warm blood from the red muscle to the central nervous system. This red muscle vein runs longitudinally in the red muscle and is valved to direct blood flow anteriorly. It joins the myelonal vein in the neural canal, thus providing a route for blood flow from the red muscle to the brain. Temperature profiles along the neural canal of freshly caught mako sharks show that warm blood enters the myelonal vein from the red muscle vein. Experiments with heat generation by model brains indicate that the metabolic heat produced by the brain is probably not sufficient to cause the temperature elevations observed. Metabolic heat imported from the red swimming muscle may be a valuable addition to the heat budget of the head.  相似文献   

13.
Gill morphometrics of the three thresher shark species (genus Alopias) were determined to examine how metabolism and habitat correlate with respiratory specialization for increased gas exchange. Thresher sharks have large gill surface areas, short water–blood barrier distances, and thin lamellae. Their large gill areas are derived from long total filament lengths and large lamellae, a morphometric configuration documented for other active elasmobranchs (i.e., lamnid sharks, Lamnidae) that augments respiratory surface area while limiting increases in branchial resistance to ventilatory flow. The bigeye thresher, Alopias superciliosus, which can experience prolonged exposure to hypoxia during diel vertical migrations, has the largest gill surface area documented for any elasmobranch species studied to date. The pelagic thresher shark, A. pelagicus, a warm‐water epi‐pelagic species, has a gill surface area comparable to that of the common thresher shark, A. vulpinus, despite the latter's expected higher aerobic requirements associated with regional endothermy. In addition, A. vulpinus has a significantly longer water–blood barrier distance than A. pelagicus and A. superciliosus, which likely reflects its cold, well‐oxygenated habitat relative to the two other Alopias species. In fast‐swimming fishes (such as A. vulpinus and A. pelagicus) cranial streamlining may impose morphological constraints on gill size. However, such constraints may be relaxed in hypoxia‐dwelling species (such as A. superciliosus) that are likely less dependent on streamlining and can therefore accommodate larger branchial chambers and gills. J. Morphol. 276:589–600, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Temperature acclimation may be a critical component of the locomotor physiology and ecology of ectothermic animals, particularly those living in eurythermal environments. Several studies of fish report striking acclimation of biochemical and kinetic properties in isolated muscle. However, the relatively few studies of whole-animal performance report variable acclimation responses. We test the hypothesis that different types of whole-animal locomotion will respond differently to temperature acclimation, probably due to divergent physiological bases of locomotion. We studied two cyprinid fishes, tinfoil barbs (Puntius schwanenfeldii) and river barbels (Barbus barbus). Study fish were acclimated to either cold or warm temperatures for at least 6 wk and then assayed at four test temperatures for three types of swimming performance. We measured voluntary swimming velocity to estimate routine locomotor behavior, maximum fast start velocity to estimate anaerobic capacity, and critical swimming velocity to estimate primarily aerobic capacity. All three performance measures showed some acute thermal dependence, generally a positive correlation between swimming speed and test temperature. However, each performance measure responded quite differently to acclimation. Critical speeds acclimated strongly, maximum speeds not at all, and voluntary speeds uniquely in each species. Thus we conclude that long-term temperature exposure can have very different consequences for different types of locomotion, consistent with our hypothesis. The data also address previous hypotheses that predict that polyploid and eurythermal fish will have greater acclimation abilities than other fish, due to increased genetic flexibility and ecological selection, respectively. Our results conflict with these predictions. River barbels are eurythermal polyploids and tinfoil barbs stenothermal diploids, yet voluntary swimming acclimated strongly in tinfoil barbs and minimally in river barbels, and acclimation was otherwise comparable.  相似文献   

15.
The locomotor system in sharks has been investigated for many decades, starting with the earliest kinematic studies by Sir James Gray in the 1930s. Early work on axial muscle anatomy also included sharks, and the first demonstration of the functional significance of red and white muscle fibre types was made on spinal preparations in sharks. Nevertheless, studies on teleosts dominate the literature on fish swimming. The purpose of this article is to review the current knowledge of muscle function and swimming in sharks, by considering their morphological features related to swimming, the anatomy and physiology of the axial musculature, kinematics and muscle dynamics, and special features of warm-bodied lamnids. In addition, new data are presented on muscle activation in fast-starts. Finally, recent developments in tracking technology that provide insights into shark swimming performance in their natural environment are highlighted.  相似文献   

16.
Two significant functional differences–a more anterior and internally positioned red myo‐tomal muscle mass and modification of the red‐muscle vascular supply to form counter‐current heat exchangers–distinguish the tunas (tribe Thunnini) from other species in the teleost family Scombridae. Neither of these characteristics is found in the bonitos (tribe Sardini), the sister group to the Thunnini. The most recent scombrid classification places the slender tuna, Allothunnus fallai, in the tribe Sardini, but some earlier studies suggested that this species should be a member of the Thunnini. Allothunnus fallai does not possess the lateral subcutaneous arteries and veins or the lateral heat‐exchanging retia typical of tunas. However, we have found that this species has a highly modified central circulation (dorsal aorta, post cardinal vein, and associated branch vessels) similar to the central heat‐exchanging retia of certain tunas, an enlarged haemal arch to accommodate this structure, and the anterior, internal placement of red muscle characteristic of tunas. With these new characters, phylogenetic reconstructions based on parsimony place A. fallai as the sister taxon to the tunas, establish that it is the most basal tuna species, and support the hypothesis that the derivation of tunas from a bonito‐like ancestor occurred through selection for an integrated set of characteristics affecting locomotion and endothermy. The major features of this hypothesis are as follows. (1) Selection for continuous, steady, and efficient swimming resulted in changes in body shape (the result of enlargement of the anterior myotomes, the anterior and internal shift of red muscle, and a narrowing of the caudal peduncle) which increased streamlining and led to the adoption of the thunniform swimming mode unique to the tunas. (2) Alterations in blood supply necessitated by the anterior shift in red muscle led to the interdigitation of numerous arterial and venous branches which set the stage for heat conservation. (3) The evolution of endothermy, together with thunniform swimming, contributed significantly to the ecological radiation and diversification of tunas during the Early Tertiary Period. Our studies of A fall thus suggest that the shift in red muscle position and changes in central circulation preerded the evolution of red‐muscle endothermy. Co‐evolutionary changes in red muscle quantity and distribution and in vascular specializations for heat conservation have led to different macroevolutionary trajectories among the now five genera and 14 tuna species of tunas and appear to reflect the influence of changing paleocological and paleoccanographic conditions, including cooling, that occurred in the Tertiary  相似文献   

17.
The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology.  相似文献   

18.
It had been suggested that the activity of anaerobic enzymes in the white muscle of fish increases exponentially with body size to meet the increasing hydrodynamic costs of burst swimming. We tested whether this relationship holds across a very large size range of striped bass, spanning a nearly 3,000-fold range in body mass. We examined the scaling of marker enzymes of anaerobic (lactate dehydrogenase and pyruvate kinase) and aerobic (citrate synthase and malate dehydrogenase) metabolism in the red and white locomotor muscles. In white muscle, we found positive scaling of anaerobic enzymes only in smaller fishes. Positive scaling of anaerobic enzymes was not found among the samples that included fishes >1,000 g despite having a sufficiently large sample size to detect such scaling. The absence of positive scaling in the white muscles of large bass suggests that they are unable to generate sufficient power to sustain relative burst swimming performance. Enzymes from aerobic pathways had activities that were mass independent in both red and white muscle. Red and white muscles were metabolically distinct except among the smallest fishes. Among young of the year, the anaerobic capacity of red muscle approached that of white muscle and also showed positive scaling. This unusual pattern suggests that red muscle might augment white muscle during burst swimming and add to the total power generated by these small fish. Maximizing burst swimming performance may be critical for small fishes vulnerable to predation but unimportant for large fishes.  相似文献   

19.
Because tunas possess countercurrent vascular pathways servingthe trunk musculature, metabolic heat is retained, and muscletemperatures can considerably exceed that of the surroundingwater (+1° to +21°C). And because tunas have this excess,it is reasonable to suppose they have some means of controllingits magnitude. Tunas must contend with two exigencies whichcan perturb body temperature: changes in water temperature and,in contrast to non-thermoconserving fish, changes in activity.Both can be met by adaptive change in excess muscle temperature.If this could be accomplished in the absence of changes in environmentaltemperature or activity level, this would constitute physiologicalthermoregulation. If excess muscle temperature cannot be alteredsufficiently to acceptable levels, more favorable environmentaltemperatures must be sought or activity levels changed. We wouldconsider this behavioral thermoregulation. High sustained swimspeeds, characteristic of the continuously swimming tunas, requirespecial consideration. Heat production is proportional to approximatelythe cube of swim speed. In order to maintain a slight temperatureexcess at basal swim speeds (1–2 lengths/sec), and yetnot overheat during sustained high speed swimming (>4 lengths/sec),mechanisms are required to conserve heat under the former conditionsand to dissipate it effectively under the latter. In this report,we review published observations other investigators have interpretedas physiological thermoregulation in tunas, describe recentfindings in our laboratory, and suggest some possible thermoregulatorymechanisms.  相似文献   

20.
Batoids differ from other elasmobranch fishes in that they possess dorsoventrally flattened bodies with enlarged muscled pectoral fins. Most batoids also swim using either of two modes of locomotion: undulation or oscillation of the pectoral fins. In other elasmobranchs (e.g., sharks), the main locomotory muscle is located in the axial myotome; in contrast, the main locomotory muscle in batoids is found in the enlarged pectoral fins. The pectoral fin muscles of sharks have a simple structure, confined to the base of the fin; however, little to no data are available on the more complex musculature within the pectoral fins of batoids. Understanding the types of fibers and their arrangement within the pectoral fins may elucidate how batoid fishes are able to utilize such unique swimming modes. In the present study, histochemical methods including succinate dehydrogenase (SDH) and immunofluoresence were used to determine the different fiber types comprising these muscles in three batoid species: Atlantic stingray (Dasyatis sabina), ocellate river stingray (Potamotrygon motoro) and cownose ray (Rhinoptera bonasus). All three species had muscles comprised of two muscle fiber types (slow-red and fast-white). The undulatory species, D. sabina and P. motoro, had a larger proportion of fast-white muscle fibers compared to the oscillatory species, R. bonasus. The muscle fiber sizes were similar between each species, though generally smaller compared to the axial musculature in other elasmobranch fishes. These results suggest that batoid locomotion can be distinguished using muscle fiber type proportions. Undulatory species are more benthic with fast-white fibers allowing them to contract their muscles quickly, as a possible means of escape from potential predators. Oscillatory species are pelagic and are known to migrate long distances with muscles using slow-red fibers to aid in sustained swimming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号