共查询到20条相似文献,搜索用时 0 毫秒
1.
The locomotor system in sharks has been investigated for many decades, starting with the earliest kinematic studies by Sir James Gray in the 1930s. Early work on axial muscle anatomy also included sharks, and the first demonstration of the functional significance of red and white muscle fibre types was made on spinal preparations in sharks. Nevertheless, studies on teleosts dominate the literature on fish swimming. The purpose of this article is to review the current knowledge of muscle function and swimming in sharks, by considering their morphological features related to swimming, the anatomy and physiology of the axial musculature, kinematics and muscle dynamics, and special features of warm-bodied lamnids. In addition, new data are presented on muscle activation in fast-starts. Finally, recent developments in tracking technology that provide insights into shark swimming performance in their natural environment are highlighted. 相似文献
2.
Synopsis Observations on continuously swimming tunas were used to determine effects of temperature upon volitional locomotory activity and to determine upper and lower lethal temperatures. Experimental subjects were 10 skipjack tuna, Katsuwonus pelamis, 9 kawakawa, Euthynnus affinis, and 3 yellowfin tuna, Thunnus albacares.Our results: lower and upper lethal temperatures for the euthynnids (K. pelamis and E. affinis) were 15° and 33° C, respectively. Swimming speed for the euthynnids did not decrease with temperature within most of the zone of thermal tolerance; we observed either temperature independence or increases in speed as the temperature decreased. Yellowfin tuna swam slower as the water temperature decreased, but swimming speed changes lagged behind the water temperature changes. This effect was most certainly due to the large thermal inertia that is a property of tunas. The lag between swim speed and water temperature was eliminated by utilizing an estimate of red muscle temperature, rather than water temperature, as a covariate. Yellowfin tuna swim speed was best correlated with red muscle temperature rather than ambient water or brain temperatures. 相似文献
3.
Lucena-Frédou Flávia Mourato Bruno Frédou Thierry Lino Pedro G. Muñoz-Lechuga Rubén Palma Carlos Soares Andrey Pons Maite 《Reviews in Fish Biology and Fisheries》2021,31(3):709-736
Reviews in Fish Biology and Fisheries - Despite being an important source of wealth and food security for many countries, most of the small tuna stocks in the Atlantic Ocean and Mediterranean Sea... 相似文献
4.
Gemballa S Konstantinidis P Donley JM Sepulveda C Shadwick RE 《Journal of morphology》2006,267(4):477-493
In contrast to all other sharks, lamnid sharks perform a specialized fast and continuous "thunniform" type of locomotion, more similar to that of tunas than to any other known shark or bony fish. Within sharks, it has evolved from a subcarangiform mode. Experimental data show that the two swimming modes in sharks differ remarkably in kinematic patterns as well as in muscle activation patterns, but the morphology of the underlying musculotendinous system (red muscles and myosepta) that drives continuous locomotion remains largely unknown. The goal of this study was to identify differences in the musculotendinous system of the two swimming types and to evaluate these differences in an evolutionary context. Three subcarangiform sharks (the velvet belly lantern shark, Etmopterus spinax, the smallspotted catshark, Scyliorhinus canicula, and the blackmouth catshark, Galeus melanostomus) from the two major clades (two galeans, one squalean) and one lamnid shark, the shortfin mako, Isurus oxyrhinchus, were compared with respect to 1) the 3D shape of myomeres and myosepta of different body positions; 2) the tendinous architecture (collagenous fiber pathways) of myosepta from different body positions; and 3) the association of red muscles with myoseptal tendons. Results show that the three subcarangiform sharks are morphologically similar but differ remarkably from the lamnid condition. Moreover, the "subcarangiform" morphology is similar to the condition known from teleostomes. Thus, major features of the "subcarangiform" condition in sharks have evolved early in gnathostome history: Myosepta have one main anterior-pointing cone and two posterior-pointing cones that project into the musculature. Within a single myoseptum cones are connected by longitudinally oriented tendons (the hypaxial and epaxial lateral and myorhabdoid tendons). Mediolaterally oriented tendons (epineural and epipleural tendons; mediolateral fibers) connect vertebral axis and skin. An individual lateral tendon spans only a short distance along the body (a fraction between 0.05 and 0.075 of total length, L, of the shark). This span is similar in all tendons along the body. Red muscles insert into the midregion of the lateral tendons. The shortfin mako differs substantially from this condition in several respects: Red muscles are internalized and separated from white muscles by a sheath of lubricative connective tissue. They insert into the anterior part of the hypaxial lateral tendon. Rostrocaudally, this tendon becomes very distinct and its span increases threefold (0.06L anteriorly to 0.19L posteriorly). Mediolateral fibers do not form distinct epineural/epipleural tendons in the mako. Since our morphological findings are in good accordance with experimental data it seems likely that the thunniform swimming mode has evolved along with the described morphological specializations. 相似文献
5.
The escape swimming performance of the Antarctic scallop, Adamussium colbecki, was measured in animals acclimated for 6 weeks to –1, 0 or 2°C and tested at –1.5 to +1.5°C. Clap duration and swimming velocity were significantly related to temperature, but were not affected by acclimation, demonstrating no phenotypic plasticity. Comparisons of the mean swimming velocity of A. colbecki with the published data for temperate and tropical species showed little evidence for evolutionary compensation for temperature, with all data fitting to a single exponential relationship with a Q10 of 2.08 (0–20°C). The contraction kinetics of the isolated fast adductor muscle of A. colbecki were determined and the times to 50% peak tension and 50% relaxation had Q10s (0–4°C) of 3.6 and 4.7, respectively. The Q10 of the overall relationship for pooled time to peak twitch data for four scallop species was 2.05 (0–20°C). Field studies revealed low mobility and poor escape performance in wild A. colbecki. A combination of thermodynamic constraints, reduced food supply, and lower selective pressure probably explains the low levels of swimming performance seen in A. colbecki. 相似文献
6.
7.
Most viruses express during infection products that prevent or neutralize the effect of the host dsRNA activated protein kinase (PKR). Translation of Sindbis virus (SINV) mRNA escapes to PKR activation and eIF2 phosphorylation in infected cells by a mechanism that requires a stem loop structure in viral 26S mRNA termed DLP to initiate translation in the absence of functional eIF2. Unlike the rest of viruses tested, we found that Alphavirus infection allowed a strong PKR activation and eIF2α phosphorylation in vitro and in infected animals so that the presence of DLP structure in mRNA was critical for translation and replication of SINV. Interestingly, infection of MEFs with some viruses that express PKR inhibitors prevented eIF2α phosphorylation after superinfection with SINV, suggesting that viral anti-PKR mechanisms could be exchangeable. Thus, translation of SINV mutant lacking the DLP structure (ΔDLP) in 26S mRNA was partially rescued in cells expressing vaccinia virus (VV) E3 protein, a known inhibitor of PKR. This case of heterotypic complementation among evolutionary distant viruses confirmed experimentally a remarkable case of convergent evolution in viral anti-PKR mechanisms. Our data reinforce the critical role of PKR in regulating virus-host interaction and reveal the versatility of viruses to find different solutions to solve the same conflict. 相似文献
8.
Schmitz S Schankin CJ Prinz H Curwen RS Ashton PD Caves LS Fink RH Sparrow JC Mayhew PJ Veigel C 《Molecular biology and evolution》2003,20(12):2019-2033
Uniquely, the asynchronous flight muscle myofibrils of many insects contain arthrin, a stable 1:1 conjugate between actin and ubiquitin. The function of arthrin is still unknown. Here we survey for the presence of arthrin in 63 species of insect across nine orders using Western blotting. Analysis of the evolutionary distribution shows that arthrin has evolved a limited number of times but at least once in the Diptera and once in the Hemiptera. However, the presence of arthrin does not correlate with any observed common features of flight mechanism, natural history, or morphology. We also identify the site of the isopeptide bond in arthrin from Drosophila melanogaster (Diptera) and Lethocerus griseus (Hemiptera) using mass spectrometry. In both species, the isopeptide bond is formed between lysine 118 of the actin and the C-terminal glycine 76 of ubiquitin. Thus, not only the ubiquitination of actin but also the site of the isopeptide bond has evolved convergently in Diptera and Hemiptera. In terms of the actin monomer, lysine 118 is near neither the binding sites of the major actin-binding proteins, myosin, tropomyosin, or the troponins, nor the actin polymerization sites. However, molecular modeling supports the idea that ubiquitin bound to an actin in one F-actin strand might be able to interact with tropomyosin bound to the actin monomers of the other strand and thereby interfere with thin filament regulation. 相似文献
9.
V. Schluessel I. P. Rick K. Plischke 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2014,200(11):939-947
Despite convincing data collected by microspectrophotometry and molecular biology, rendering sharks colourblind cone monochromats, the question of whether sharks can perceive colour had not been finally resolved in the absence of any behavioural experiments compensating for the confounding factor of brightness. The present study tested the ability of juvenile grey bamboo sharks to perceive colour in an experimental design based on a paradigm established by Karl von Frisch using colours in combination with grey distractor stimuli of equal brightness. Results showed that contrasts but no colours could be discriminated. Blue and yellow stimuli were not distinguished from a grey distractor stimulus of equal brightness but could be distinguished from distractor stimuli of varying brightness. In addition, different grey stimuli were distinguished significantly above chance level from one another. In conclusion, the behavioural results support the previously collected physiological data on bamboo sharks, which mutually show that the grey bamboo shark, like several marine mammals, is a cone monochromate and colourblind. 相似文献
10.
Thomas D. Schneider 《Nucleic acids research》2010,38(18):5995-6006
The relationship between information and energy is key to understanding biological systems. We can display the information in DNA sequences specifically bound by proteins by using sequence logos, and we can measure the corresponding binding energy. These can be compared by noting that one of the forms of the second law of thermodynamics defines the minimum energy dissipation required to gain one bit of information. Under the isothermal conditions that molecular machines function this is joules per bit ( is Boltzmann''s constant and T is the absolute temperature). Then an efficiency of binding can be computed by dividing the information in a logo by the free energy of binding after it has been converted to bits. The isothermal efficiencies of not only genetic control systems, but also visual pigments are near 70%. From information and coding theory, the theoretical efficiency limit for bistate molecular machines is ln 2 = 0.6931. Evolutionary convergence to maximum efficiency is limited by the constraint that molecular states must be distinct from each other. The result indicates that natural molecular machines operate close to their information processing maximum (the channel capacity), and implies that nanotechnology can attain this goal. 相似文献
11.
A Thornton D Lukas 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2012,367(1603):2773-2783
Animal cognition experiments frequently reveal striking individual variation but rarely consider its causes and largely ignore its potential consequences. Studies often focus on a subset of high-performing subjects, sometimes viewing evidence from a single individual as sufficient to demonstrate the cognitive capacity of a species. We argue that the emphasis on demonstrating species-level cognitive capacities detracts from the value of individual variation in understanding cognitive development and evolution. We consider developmental and evolutionary interpretations of individual variation and use meta-analyses of data from published studies to examine predictors of individual performance. We show that reliance on small sample sizes precludes robust conclusions about individual abilities as well as inter- and intraspecific differences. We advocate standardization of experimental protocols and pooling of data between laboratories to improve statistical rigour. Our analyses show that cognitive performance is influenced by age, sex, rearing conditions and previous experience. These effects limit the validity of comparative analyses unless developmental histories are taken into account, and complicate attempts to understand how cognitive traits are expressed and selected under natural conditions. Further understanding of cognitive evolution requires efforts to elucidate the heritability of cognitive traits and establish whether elevated cognitive performance confers fitness advantages in nature. 相似文献
12.
M. Struck 《Plant Systematics and Evolution》1997,208(1-2):71-97
Based on field observations and a survey of the available literature, the functional and evolutionary significance of floral characters ofPelargonium is investigated in relation to a recent infrageneric re-classification. Most of the 208Pelargonium taxa (recognized as species, subspecies or varieties) involved show bee and long-proboscid hovering fly pollination syndromes (about 60% and 25%, respectively), only 7% of the taxa are pollinated by butterflies, some 2 to 4% by hawkmoths and presumably 1% by birds. The heterogeneity ofPelargonium in terms of structural blossom types and pollination syndromes indicates an independent and repeated evolution of convergent flower morphs in the genus and even in sections. 相似文献
13.
14.
15.
《Journal of thermal biology》2005,30(2):119-124
The phenotypic plasticity of muscle performance and locomotory physiology allows the maintenance of essential activity capacity in the face of environmental change, and has been demonstrated in a wide phylogenetic range of eurythermal vertebrates. This study used the scallop, Aequipecten opercularis, as a model eurythermal invertebrate. Animals caught in different seasons demonstrated marked differences in their swimming performance and the relationship between temperature and performance. When stimulated to swim at natural ranges of temperature, Winter (cold acclimatised), animals accelerated faster than autumn collected animals swimming at the same temperature (×2 at 11 °C) and attained higher velocities during jetting. The effects of acclimatisation were confined to the jetting phase and may be a mechanism for the maintenance of acceleration during predator–prey interactions. This is the first demonstration of the thermal acclimatisation of muscle performance in a mollusc and one of very few studies in invertebrates. 相似文献
16.
Wilkie MP Turnbull S Bird J Wang YS Claude JF Youson JH 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2004,138(4):405-492
We observed 10 sea lampreys (Petromyzon marinus) parasitizing basking sharks (Cetorhinus maximus), the world's second largest fish, in the Bay of Fundy. Due to the high concentrations of urea in the blood and tissues of ureosmotic elasmobranchs, we hypothesized that sea lampreys would have mechanisms to eliminate co-ingested urea while feeding on basking sharks. Post-removal urea excretion rates (J(Urea)) in two lampreys, removed from separate sharks by divers, were initially 450 ( approximately 9000 micromol N kg-1 h-1) and 75 times ( approximately 1500 micromol N kg-1 h-1) greater than basal (non-feeding) rates ( approximately 20 micromol N kg-1 h-1). In contrast, J(Urea) increased by 15-fold after parasitic lampreys were removed from non-ureosmotic rainbow trout (Oncorhynchus mykiss). Since activities of the ornithine urea cycle (OUC) enzymes, carbamoyl phosphate synthetase III (CPSase III) and ornithine carbamoyl transferase (OCT) were relatively low in liver and below detection in intestine and muscle, it is unlikely that the excreted urea arose from de novo urea synthesis. Measurements of arginase activity suggested that hydrolysis of dietary arginine made a minor contribution to J(Urea.). Post-feeding ammonia excretion rates (J(Amm)) were 15- to 25-fold greater than basal rates in lampreys removed from both basking sharks and rainbow trout, suggesting that parasitic lampreys have a high capacity to deaminate amino acids. We conclude that the sea lamprey's ability to penetrate the dermal denticle armor of sharks, to rapidly excrete large volumes of urea and a high capacity to deaminate amino acids, represent adaptations that have contributed to the evolutionary success of these phylogenetically ancient vertebrates. 相似文献
17.
In short-horn sculpin Myoxocephalus scorpius , the power requirements for fast-start swimming and the length-specific velocity of the curvature wave travelling down the spine ( Û ) were not influenced significantly by acclimation to summer and winter conditions at test temperatures of 5 and 15° C. However, in-vivo and in-vitro muscle performance exhibited acclimation responses at 15° C. Seasonal acclimation altered the escape performance curves for power and Û significantly over a wider temperature range of 0·8–20° C. Û was significantly higher at 20° C in the summer- than winter-acclimation group. The acclimation of lower levels of physiological organization at 15° C may thus serve to extend the thermal limits for escape performance in summer acclimated fish. 相似文献
18.
19.
Claireaux G Handelsman C Standen E Nelson JA 《Physiological and biochemical zoology : PBZ》2007,80(2):186-196
Studies of locomotor performance have contributed to the elucidation of how suborganismal traits ultimately relate to fitness. In terrestrial populations, exploring the physiological and environmental contributions to whole-animal performance measures has improved our understanding of phenotypic selection. Conversely, very little is known about the links between phenotypic selection and swimming abilities in fish. Most research on swimming performance in fish has focused on morphological, physiological, and biochemical traits contributing to performance or has used swimming performance as a measure of environmental suitability. Few studies have explored how swimming performance is integrated with life-history traits or contributes to Darwinian fitness. In addition, while there are many studies on how the environment influences the swimming performance of fish, few have been done at the individual level. The objective of this study was to broaden our understanding of the relevance of fish swimming performance studies by testing the hypothesis that swimming performance (endurance and sprint) is ontogenetically and temporally stable across fluctuating environmental conditions. We found that individual sprint performances recorded at 12 degrees C were significantly repeatable after a 4-wk acclimation to 22 degrees C, although relative sprint performance of fish that survived 6 mo of natural conditions in a mesocosm was not significantly repeatable. Endurance swimming performance, as measured by critical swimming speed (U(crit)) before and after the 6-mo exposure to simulated natural conditions, was significantly repeatable within survivors. Relative sprint and critical swimming performances were not significantly related to each other. We concluded that within a time frame of up to 6 mo, the swimming performances of individual bass are ontogenetically nearly stable (sprint) to stable (endurance) despite large fluctuations in environmental conditions. Moreover, because they rely on different physiological performance traits, critical swimming and sprinting follow different patterns of change. This observation suggests the absence of a trade-off between these two swimming modes and introduces the possibly of independent selection trajectories. 相似文献
20.
The tooth types in the embryos of the hammerhead sharks Sphyrna tiburo, Sphyrna tudes and Eusphyra blochii are here described in labial and lingual views, and, in some cases, in additional views. The presence of cusplets was observed in the anterior teeth of S. tiburo and S. tudes, which is secondarily lost after early embryonic stages. Many aligned root foramina were detected in the sphyrnids, which, as the cusplets, are shared by many phylogenetic-related carcharhinids. Other anatomic features, related to the root and central cusp, are presented for the first time. Such characters represent the first step to compare the teeth of extant and fossil species. 相似文献