共查询到20条相似文献,搜索用时 15 毫秒
1.
Deciduous larches, Larix spp., and evergreen pines, Pinus spp., are sympatric Pinaceae conifers. Adjacent monocultures of 10-year-old Larix decidua Mill. and Pinus resinosa Ait. were subjected to single-season artificial defoliation by clipping from 0% to 99% of each needle. Survival, above-ground
productivity, and architecture were measured for 36 months. P. resinosa and L. decidua exhibited differential relationships with defoliation intensity and recovery time. Two months after treatment, defoliation
reduced larch height growth but had no effect on radial growth. By contrast, P. resinosa stem radial growth was reduced immediately, but height growth was not decreased until the following year. Pine leader growth
and above-ground biomass following 66% defoliation never recovered to control values or 33% defoliated pines. Conversely,
defoliated larch quickly recovered from an initial growth loss to eliminate all treatment effects on biomass. The plasticity
in architectural response found in larch, but not pine, might partially account for defoliation tolerance. Both P. resinosa and L. decidua exhibited non-linear responses to defoliation. These patterns may be caused partially by the uneven distribution of nutrients
within needles, rather than a simple function of leaf area lost to defoliators. Concentrations of 13 nutrients in P. resinosa were highest either in the mid- (Ca, Mg, S, Zn, B, Mn, Fe, Al and Na) or basal- (N, P, K, and Cu) section. The relatively
low nutrient content in needle tips may contribute to similar biomass productivity between trees defoliated 33% and controls.
Removal of needle mid-sections significantly reduced whole-plant productivity. In contrast, L. decidua nutrients are concentrated in the distal sections. Nutrient concentrations were generally highest in larch. Our results agree
with an emergent prediction of the carbon/nutrient balance theory that defoliation more severely reduces growth of evergreen
than deciduous species. These results are discussed within the physiological, ecological and evolutionary context of allocation
theory, with implications for natural resource management and plant-insect interaction theory.
Received: 6 April 1995 / Accepted: 29 August 1995 相似文献
2.
Yigremachew Seyoum Masresha Fetene Simone Strobl Erwin Beck 《Trees - Structure and Function》2012,26(5):1495-1512
Foliage dynamics of three functional tree types representing major components of the tropical montane evergreen forest in southern part of Central Ethiopia were compared. The species were Podocarpus falcatus (evergreen gymnosperm), Prunus africana (evergreen broadleaf), and Croton macrostachyus (facultative deciduous). The hypothesis examined is that in such tropical trees, endogenous control of foliage dynamics by the leaf life-spans (LLS) is largely dominant over external signals. Crown foliage turnover, leafiness of twigs, LLS, photosynthetic performance, respiration rate, specific leaf area, and relative growth rates of the stems were investigated. Foliage dynamics and leafiness of the twigs were monitored over 2?years while leaf traits were followed over 3?months. The degree of inter and intra-individual synchronization of foliage phenophases was examined to get an estimate of the contributions of endogenous and external signals to the dynamics of the foliages. Autoregression analysis indicated significant influence of the moisture regime on leaf sprouting of Croton and Podocarpus. During pronounced dry periods, new leaves were not developed. Analysis of phenological data using circular statistics revealed that in spite of strong inter-individual synchronization of leaf flush and fall (Podocarpus and Croton), the dynamics of individual parts of the crowns were less synchronized. LLS was independent of climate factors and it had substantial contribution to the control of foliage turnover. Moreover, examination of ecophysiological traits of developing leaves of the studied functional types showed differing patterns with LLS corroborating the ecophysiological characteristics. Although overlaid by fungal infestation, both the foliage and ecophysiological properties of Prunus resemble that of Podocarpus but the former exhibited a shorter LLS and slightly higher metabolic rates. Nevertheless, all species reacted positively to high moisture with respect to stem growth. In spite of largely differing weather conditions of the 2?years, direct competitive advantage of one of the species over the others could not be detected. 相似文献
3.
4.
Using dendrochronological techniques, this study examined whether tree-ring width of two evergreen broad-leaved species (Cleyera japonica, Eurya japonica) at their inland northern distribution limit in central Japan is more limited by low temperature compared with two co-dominating
deciduous broad-leaved species (Fagus japonica, Magnolia hypoleuca) and two evergreen conifer species (Chamaecyparis obtusa, Abies firma), whose distribution limits are further north. The two deciduous broad-leaved species and the two evergreen conifers are
tall tree species. Evergreen broad-leaved Cleyera japonica is a sub-canopy species and Eurya japonica is a small tree species. The tree-ring widths of four of the six species (except for Eurya japonica and Magnolia hypoleuca) correlated positively with the March temperature just before the start of the growth period. For deciduous broad-leaved
Magnolia hypoleuca, the tree-ring width was correlated positively and negatively with July temperature and precipitation, respectively. However,
the other deciduous broad-leaved Fagus japonica showed no such relationships. For the evergreen broad-leaved Cleyera japonica and evergreen conifers Chamaecyparis obtusa and Abies firma, tree-ring widths correlated positively with winter temperatures, probably because evergreen species can assimilate during
warm winters. The tree-ring width of Cleyera japonica also correlated positively with temperatures of many months of the growth period. By contrast, the tree-ring width of the
other evergreen broad-leaved Eurya japonica showed no positive correlation with the temperature in any month. Most Eurya japonica trees were suppressed by tall trees, which might disguise any climate effect. Thus, there were species differences in response
to climate for each life form, and the tree-ring width of Cleyera japonica at the northern distribution limit was more limited by low temperatures compared with co-dominating species. It is suggested
that growth of Cleyera japonica is increased by global warming at the latitudinal ecotone. 相似文献
5.
M. Piwczyński A. Ponikierska R. Puchałka J.M. Corral 《Plant biology (Stuttgart, Germany)》2013,15(3):522-530
We investigated the anatomical expression of leaf traits in hybrids between evergreen Vaccinium vitis‐idaea and deciduous V. myrtillus. We compared parents from four populations with their respective F1 hybrids and tested whether (i) transgression can be the source of novel anatomical traits in hybrids; (ii) expression of transgressive traits is more probable for traits with similar values in parents and intermediate for more distinct values, as predicted by theory; and (iii) independent origin of hybrids leads to identical trait expression profiles among populations. We found that anatomical leaf traits can be divided into four categories based on their similarity to parents: intermediate, parental‐like, transgressive and non‐significant. Contrary to the common view, parental‐like trait values were equally important in shaping the hybrid profile, as were intermediate traits. Transgression was revealed in 17/144 cases and concerned mainly cell and tissue sizes. As predicted by theory, we observed transgressive segregation more often when there was little phenotypic divergence, but intermediate values when parental traits were differentiated. It is likely that cell and tissue sizes are phylogenetically more conserved due to stabilising selection, whereas traits such as leaf thickness and volume fraction of the intercellular spaces, showing a consistent intermediate pattern across populations, are more susceptible to directional selection. Hybrid populations showed little similarity in expression profile, with only three traits identically expressed across all populations. Thus local adaptation of parental species and specific genetic background may be of importance. 相似文献
6.
Trade-off between water transport efficiency and leaf life-span in a tropical dry forest 总被引:5,自引:0,他引:5
M. A. Sobrado 《Oecologia》1993,96(1):19-23
Drought-deciduous and evergreen species coexist in tropical dry forests. Drought-deciduous species must cope with greater seasonal leaf water-potential fluctuations than evergreen species and this may increase their susceptibility to drought-induced xylem embolism. The relationship between water transport efficiency and leaf life-span were determined for both groups. They differed in seasonal changes of both, wood water content (Wc) and wood specific gravity (G). During the dry season, the Wc in drought-deciduous species declined and the minimum value was recorded when leaf fall was complete. At this time, the volumetric fraction of gas (Vg) increased indicating air entry into xylem vessels. In contrast, Wc, G and Vg changed only slightly throughout the year for evergreen species. Maximum hydraulic conductivity of drought-deciduous species was 2–6 times that of the evergreen species. but was severely reduced at leaf fall. In the evergreen species, similar water conductivities were measured during wet and dry seasons. The trade-off between xylem water transport capacity and leaf lifespan found in species coexisting in this forest reveals the existence of contrasting but successful adaptations to this environment. Drought-deciduous species maximize production in the short term with higher water transport efficiency which leads to the seasonal occurrence of embolisms. Conversely, the behaviour of evergreen species with reduced maximum efficiency is conservative but safe in relation to xylem embolism. 相似文献
7.
Leaf and bud demography and shoot growth in evergreen and deciduous trees of central Himalaya, India
G. C. S. Negi 《Trees - Structure and Function》2006,20(4):416-429
Leaf and bud demography and shoot growth were studied in 10 evergreen (ES) and 15 deciduous (DS) tree species occurring between 600 and 2200 m elevation in the central Himalayan mountains in India. Results were analyzed to help explain why ES prevail in the vegetation of this region, even though the number of ES is no greater than for DS. Although each species had its own pattern with regard to leaf and bud demography and seasonality of shoot extension and radial growth, it was possible to group the species on the basis of shoot growth phenology. In most species, leaves emerged during March-April, at the onset of warm and dry summer season. The ES recruit leaves in shoots more rapidly than the DS. Across all species, peak number of leaves per shoot (5.8–20.7), peak leaf area per shoot (116.2–1559.2 cm2), peak number of vegetative buds per shoot (1.9–14.5), bud survival per shoot (23–84%), shoot extension growth (6.4–40.8 cm) and shoot extension period (13–30 weeks) varied considerably. The peak leaf area per shoot (587.7 vs. 246.7 cm2) and shoot extension growth (19.3 vs. 11.2 cm) were significantly greater for DS than for ES, and these two functional groups of species were clearly separable with regard to shoot growth characteristics.Results indicate that rapid recruitment of leaf crop in the shoots, longer leaf life-span, and access to ground water due to deep roots were some of the advantages, the ES had over the DS, that may have likely enable them to maintain growth for a longer period in this region of warm winters and longer winter day length as compared to temperate climates. In the shallow rooted DS, shoot growth seems to be much affected by a seasonal drought in winter and they are likely to be affected more in the event of failure of monsoon rains in this region. 相似文献
8.
Rien Aerts 《Oecologia》1990,84(3):391-397
Summary The nutrient (N, P) use efficiency (NUE: g g–1 nutrient), measured for the entire plant, of field populations of the evergreen shrubs Erica tetralix (in a wet heathland) and Calluna vulgaris (in a dry heathland) and the deciduous grass Molinia caerulea (both in a wet and a dry heathland) was compared. Erica and Calluna are crowded out by Molinia when nutrient availability increases. NUE was measured as the product of the mean residence time of a unit of nutrient in the population (MRT: yr) and nutrient productivity (A: annual productivity per unit of nutrient in the population, g g–1 nutrient yr–1. It was hypothesized that 1) in low-nutrient habitats selection is on features leading to a high MRT, whereas in high-nutrient habitats selection is on features leading to a high A; and that 2) due to evolutionary trade-offs plants cannot combine genotypically determined features which maximize both components of NUE.Both total productivity and litter production of the Molinia populations exceeded that of both evergreens about three-fold. Nitrogen and phosphorus resorption from senescing shoots was much lower in the evergreens compared with Molinia. In a split-root experiment no nutrient resorption from senescing roots was observed. Nutrient concentrations in the litter were equal for all species, except for litter P-concentration of Molinia at the wet site. Both Erica and Calluna had a long mean residence time of both nitrogen and phosphorus and a low nitrogen and phosphorus productivity. The Molinia populations showed a shorter mean residence time of N and P and a higher N- and P-productivity. These patterns resulted in an equal nitrogen use efficiency and an almost equal phosphorus use efficiency for the species under study. However, when only aboveground NUE was considered the Molinia populations had a much higher NUE than the evergreens.The results are consistent with the hypotheses. Thus, the low potential growth rate of species from low-nutrient habitats is probably the consequence of their nutrient conserving strategy rather than a feature on which direct selection takes place in these habitats. 相似文献
9.
The study described patterns of leaf dry mass change, leaf mass per area (LMA), relative growth rate and leaf life span (LL) for 14 evergreen and 7 deciduous species of a tropical forest of Southern Assam, India. Leaf expansion in both the groups was, in general, completed before June (i.e. well before the onset of monsoon rains). Although leaf dry mass during leaf initiation phase was significantly higher (P < 0.01) in evergreen species than in deciduous species, at the time of full leaf expansion, average leaf dry mass relative to the peak leaf dry mass, realised by the evergreen species was lower (66 %) than for deciduous species (76 %). Leaf dry mass increase in both groups continued after leaf full expansion. Evergreen species had a longer leaf dry mass steady phase than deciduous species (2–6 vs 2–3 months). Average LMA of mature leaves for evergreen species (77.43 g m?2) was significantly greater than that of deciduous species (48.43 g m?2). LL ranged from 165 days in Gmelina arborea (deciduous) to 509 days in Dipterocarpus turbinatus (evergreen). LMA was correlated positively with LL, indicating that evergreen species with higher leaf construction cost retain leaves for longer period to pay back. The average leaf dry mass loss before leaf shedding was greater (P < 0.01) for deciduous species (30.29 %) than for evergreen species (18.31 %). Although the cost of leaf construction in deciduous species was lower than for evergreen species, they replace leaves at a faster rate. Deciduous species perhaps compensate the cost involved in faster leaf replacement through higher reabsorption of dry mass during senescence, which they remobilise to initiate growth in the following spring when soil resources remain limiting. 相似文献
10.
In the present study phenological activities such as leaf and shoot growth, leaf pool size and leaf fall were observed for 3 years (March 2007–March 2010) in 19 tree species (13 evergreen and 6 deciduous species) in a wet tropical forest in Assam, India. The study area receives total annual average rainfall of 2,318 mm of which most rain fall (>70 %) occurs during June–September. Both the plant groups varied significantly on most of the shoot and leaf phenology parameters. In general, growth in deciduous species initiated before the evergreen species and showed a rapid shoot growth, leaf recruitment and leaf expansion compared to evergreen species. Leaf recruitment period was significantly different between evergreen (4.2 months) and deciduous species (6.8 months). Shoot elongation rate was also significantly different for evergreen and deciduous species (0.09 vs. 0.14 cm day?1 shoot?1). Leaf number per shoot was greater for deciduous species than for evergreen species (34 vs. 16 leaves). The average leaf life span of evergreen species (328 ± 32 days) was significantly greater than that of deciduous species (205 ± 16 days). The leaf fall in deciduous species was concentrated during the winter season (Nov–Feb), whereas evergreens retained their leaves until the next growing season. Although the climate of the study area supports evergreen forests, the strategies of the deciduous species such as faster leaf recruitment rate, longer leaf recruitment time, faster shoot elongation rate during favorable growing season and short leaf life span perhaps allows them to coexist with evergreen species that have the liberty to photosynthesize round the year. Variations in phenological strategies perhaps help to reduce the competition among evergreen and deciduous species for resources in these forests and enable the coexistence of both the groups. 相似文献
11.
Meinzer FC Woodruff DR Domec JC Goldstein G Campanello PI Gatti MG Villalobos-Vega R 《Oecologia》2008,156(1):31-41
Stomatal regulation of transpiration constrains leaf water potential (ΨL) within species-specific ranges that presumably avoid excessive tension and embolism in the stem xylem upstream. However,
the hydraulic resistance of leaves can be highly variable over short time scales, uncoupling tension in the xylem of leaves
from that in the stems to which they are attached. We evaluated a suite of leaf and stem functional traits governing water
relations in individuals of 11 lowland tropical forest tree species to determine the manner in which the traits were coordinated
with stem xylem vulnerability to embolism. Stomatal regulation of ΨL was associated with minimum values of water potential in branches (Ψbr) whose functional significance was similar across species. Minimum values of Ψbr coincided with the bulk sapwood tissue osmotic potential at zero turgor derived from pressure–volume curves and with the
transition from a linear to exponential increase in xylem embolism with increasing sapwood water deficits. Branch xylem pressure
corresponding to 50% loss of hydraulic conductivity (P
50) declined linearly with daily minimum Ψbr in a manner that caused the difference between Ψbr and P
50 to increase from 0.4 MPa in the species with the least negative Ψbr to 1.2 MPa in the species with the most negative Ψbr. Both branch P
50 and minimum Ψbr increased linearly with sapwood capacitance (C) such that the difference between Ψbr and P
50, an estimate of the safety margin for avoiding runaway embolism, decreased with increasing sapwood C. The results implied a trade-off between maximizing water transport and minimizing the risk of xylem embolism, suggesting
a prominent role for the buffering effect of C in preserving the integrity of xylem water transport. At the whole-tree level, discharge and recharge of internal C appeared to generate variations in apparent leaf-specific conductance to which stomata respond dynamically. 相似文献
12.
This study was carried out in pioneer and successional forest tree species in a lower montane tropical forest with seasonal rains. We tested whether pioneer species feature high hydraulic conductance allowing them to use water profusely at leaf level. Conversely, forest species may have relatively low hydraulic conductance accompanied with better control over water use. This may lead in turn to pioneer species being at a relatively higher risk of shoot water potential falling below the threshold value at which cavitations occur compared to forest. Specific hydraulic conductance ( K s) measured during the wet season was comparable between pioneers and forest species. During drought, K s was significantly reduced, and species of both plant groups responded to this by modifying the relationship between conducting area and leaf area (Huver value), such that leaf specific conductivity ( K l) was unaffected. Thus, leaf area seemed to be adjusted to maintain constant hydraulic sufficiency during drought. Pioneer species were more efficient in conducting water to their leaves but had low control over water use compared to forest species. A trade-off between water transport and leaf water use efficiency was suggested. These ecophysiological differences may have an impact on the performance of the species occupying contrasting habitats. Nonetheless, drought-induced embolisms occurred in trees growing in both open and forest habitats. Overall, during drought, adjustment of leaf area occurred in order to maintain a homeostasis of some physiological traits (leaf-specific conductivity and carbon assimilation). 相似文献
13.
Winter photosynthesis by saplings of evergreen broad-leaved trees in a deciduous temperate forest 总被引:3,自引:0,他引:3
* Here we investigated photosynthetic traits of evergreen species under a deciduous canopy in a temperate forest and revealed the importance of CO2 assimilation during winter for annual CO2 assimilation. * Saplings were shaded by the canopy trees from spring through to autumn, but were less shaded during the winter months. Photosynthetic rates at light saturation (Aarea) were lower during winter than during the growing season. Aarea was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus during the winter, but differed little during summer and autumn. * Estimated daily CO2 assimilation (Aday) was higher during the winter than during the growing season in Camellia, Ilex and Photinia but was higher than that during the growing season only at the beginning and end of winter in Castanopsis, Cleyera and Quercus. Aday was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus but differed little among them during the growing season. * These results reveal the importance of winter CO2 assimilation for the growth of Camellia, Ilex and Photinia. Furthermore, differences in annual CO2 assimilation among species are strongly modified by species-specific photosynthetic traits during the winter under deciduous canopy trees. 相似文献
14.
Relative growth rate in phylogenetically related deciduous and evergreen woody species 总被引:10,自引:0,他引:10
Relative growth rate (RGR) and other growth parameters were studied in eight pairs of closely related deciduous and evergreen species (within the same genus or family). The main objective of this study was to test the association between leaf turnover rate and RGR, specific leaf area (SLA, leaf area/leaf dry weight) and other growth variables. Plants were grown for 6 months in a greenhouse under favourable water and nutrient conditions. Variation in RGR among the 16 woody species was due mainly to differences in morphological parameters such as leaf area ratio (LAR, whole plant area/whole plant dry weight) and SLA). However, temporal variation in RGR within species was due mainly to variation in net assimilation rate. When phylogeny was not taken into account, analyses showed that deciduous species grew faster than evergreens. In contrast, when phylogeny was taken into account, the data analysis showed that a faster RGR is not consistently associated with the deciduous habit (in five pairs it was, but in the other three it was not). The faster growth of the deciduous trees (in the five positive contrasts) could be explained by their higher LAR and higher SLA relative to evergreens. The lack of differences in RGR between deciduous and evergreens (in three pairs) was due to the higher leaf mass ratio (LMR, leaf dry biomass/total dry biomass) for the evergreens, which offset the higher SLA of the deciduous species, resulting in a similar LAR in both functional groups (LAR=LMR2SLA). Deciduous species had consistently higher SLA than evergreens. We suggest that SLA, more than RGR, could be an important parameter in determining adaptive advantages of deciduous and evergreen species. 相似文献
15.
Trade-offs between seedling growth and survival in deciduous broadleaved trees in a temperate forest 总被引:1,自引:0,他引:1
Seiwa K 《Annals of botany》2007,99(3):537-544
BACKGROUND AND AIMS: In spatially heterogeneous environments, a trade-off between seedling survival and relative growth rate may promote the coexistence of plant species. In temperate forests, however, little support for this hypothesis has been found under field conditions, as compared with shade-house experiments. Performance trade-offs were examined over a large resource gradient in a temperate hardwood forest. METHODS: The relationship between seedling survival and seedling relative growth rate in mass (RGR(M)) or height (RGR(H)) was examined at three levels of canopy cover (forest understorey, FU; small gap, SG; and large gap, LG) and at two microsites within each level of canopy cover (presence or absence of leaf litter) for five deciduous broad-leaved tree species with different seed sizes. KEY RESULTS: Within each species, both RGR(M) and RGR(H) usually increased with increasing light levels (in the order FU < SG < LG), whereas little difference was observed based on the presence or absence of litter. Seedling survival in FU was negatively correlated with both RGR(M) and RGR(H) in both LG and SG. The trade-off between high-light growth and low-light survival was more evident in the relationship with LG as compared with SG. An intraspecific trade-off between survival and RGR was observed along environmental gradients in Acer mono, whereas seedlings of Betula platyphylla var. japonica survived and grew better in LG. CONCLUSIONS: The results presented here strongly support the idea of light gradient partitioning (i.e. species coexistence) in spatially heterogeneous light environments in temperate forests, and that further species diversity would be promoted by increased spatial heterogeneity. The intraspecific trade-off between survival and RGR in Acer suggests that it has broad habitat requirements, whereas Betula has narrow habitat requirements and specializes in high-light environments. 相似文献
16.
17.
Plant phenological events are influenced by climate factors such as temperature and rainfall. To evaluate phenological responses to water availability in a Spring Heath-Pine wood (Erico-Pinetum typicum), the focus of this study was to determine intra-annual dynamics of apical and lateral growth of co-occurring early successional Larix decidua and Pinus sylvestris and late successional Picea abies exposed to drought. The effect of reduced plant water availability on growth phenology was investigated by conducting a rainfall exclusion experiment. Timing of key phenological dates (onset, maximum rate, end, duration) of growth processes were compared among species at the rain-sheltered and control plot during 2011 and 2012. Shoot and needle elongation were monitored on lateral branches in the canopy at c. 16 m height and radial growth was recorded by automatic dendrometers at c. 1.3 m height of >120 yr old trees. Different sequences in aboveground growth phenology were detected among the three species under the same growing conditions. While onset of radial growth in April through early May was considerably preceded by onset of needle growth in Larix decidua (5–6 weeks) and shoot growth in Pinus sylvestris (c. 3 weeks), it occurred quite simultaneously with onset of shoot growth in Picea abies. Low water availability had a minor impact on onset of aboveground growth, which is related to utilization of stored water, but caused premature cessation of aboveground growth. At the control plot mean growing season length was 130 days in Pinus sylvestris, 95 days in Larix decidua and 73 days in Picea abies, supporting the hypothesis that early successional species are resource expenders, while late successional species are more efficient in utilizing resources and develop safer life strategies. High synchronicity found in culmination of radial growth in late spring (mid-May through early June) prior to occurrence of more favourable environmental conditions in summer might indicate sink competition for carbohydrates to belowground organs. This is supported by completion of apical growth in mid June in all species, except for needle growth of Pinus sylvestris which lasted until early August. Phenological observations of conifers exposed to drought revealed that tree water status early during the growing season determines total annual aboveground growth and, besides temperature, species-specific endogenous and/or environmental factors (most likely photoperiod and/or different threshold temperatures) are involved in controlling apical and lateral growth resumption after winter dormancy. 相似文献
18.
Abstract. Tissue and cell water relations parameters were followed for Heteromeles arbutifolia, Cercis occidentalis and Aesculus californica , in an environment exhibiting seasonally increasing drought. The extensive seasonal osmotic adjustment of evergreen H. arbutifolia and the moderate adjustment in C. occidentalis closely matched their respective seasonal decreases in minimum daily water potential. Summer deciduous A. californica exhibited only small drops in osmotic potential and water potential. Experiments with irrigated plants indicated that drought was not required for the osmotic adjustment of H. arbutifolia and C. occidentalis. However, in H. arbutifolia drought treatment enhanced osmotic adjustment. In irrigated H. arbutifolia , osmotic adjustment was mainly the result of an accumulation of osmotica. In drought-stressed plants, the same change in osmotic potential resulted from a combination of accumulation of osmotica and a decrease in symplast volume. 相似文献
19.
Leaf and soil nutrient levels interact with and may each influence the other. We hypothesize that to the extent soil fertility influences the nutritional state of trees, soil fertility should correlate with summer leaf nutrient levels, whereas to the extent that trees influence soil nutrient levels, the quality of leaf litterfall should correlate with soil fertility. We examined these correlations for five sympatric oak species (genus Quercus) in central coastal California. Soil fertility, including both nitrogen and especially phosphorus, correlated significantly with summer leaf nutrient levels. In contrast, phosphorus, but not nitrogen, in the leaf litterfall correlated positively with soil nutrients. These results suggest that soil nitrogen and phosphorus influence tree nutrient levels and that leaf phosphorus, but not leaf nitrogen, influence soil fertility under the trees. Feedback between the soil and the tree for phosphorus, but not nitrogen, is apparently significant and caused by species-specific differences in leaf quality and not by litterfall quality differences within a species. We also compared functional differences between the evergreen and deciduous oak species at our study site. There were no differences in soil nitrogen and only small differences for soil phosphorus between the phenological types. Differences in leaf nutrient concentration were much more pronounced, with the evergreen species having substantially lower levels of both nitrogen and phosphorus. Evergreen species conserved more phosphorus, but not more nitrogen, than the deciduous species, but there was no consistent relationship between retranslocation and either soil nitrogen or phosphorus. These results do not support the hypothesis that evergreenness is an adaptation to low soil fertility in this system. 相似文献
20.
Plant and Soil - Our understanding of the determinants of leaf litter decomposition is lacking for mixed evergreen and deciduous broad-leaved forests compared with tropical and temperate forests.... 相似文献