首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The relationship between the structure and function of ferricytochrome c bound to the phosphoprotein phosvitin was investigated. The rates of reduction of phosvitin-bound ferricytochrome c by cytochrome b2, ascorbate and the superoxide radical generated by xanthine oxidase wer repressed where the binding ratio was less than half the maximum, but at higher ratios they were restored gradually with increase in the ratio. The affinity of cytochrome b2 for cytochrome c was not affected by binding of cytochrome c to phosvitin. The redox potential of the bond form was lower than that of the free form and only decreased with decrease in the ratio. The conformatin around the heme moiety and the electronic structure of the heme group of bound ferricytochrome c were similar to those of free ferricytochrome c, but the conformational stability in the vicinity of the prosthetic group was related to the binding ratio as ratios above half the maximum and was well correlated with the reduction rate. Since the binding of cytochrome c to phosvitin is much stronger at binding ratios below half the maximum, these results suggest that this binding strength exclusively affects the conformational flexibility of the heme crevice in the cytochrome molecule, thus altering the reduction rate.  相似文献   

2.
Electron transfer between horse heart and Candida krusei cytochromes c in the free and phosvitin-bound states was examined by difference spectrum and stopped-flow methods. The difference spectra in the wavelength range of 540-560 nm demonstrated that electrons are exchangeable between the cytochromes c of the two species. The equilibrium constants of the electron transfer reaction for the free and phosvitin-bound forms, estimated from these difference spectra, were close to unity at 20 degrees C in 20 mM Tris-HCl buffer (pH 7.4). The electron transfer rate for free cytochrome c was (2-3).10(4) M-1.s-1 under the same conditions. The transfer rate for the bound form increased with increase in the binding ratio at ratios below half the maximum, and was almost constant at higher ratios up to the maximum. The maximum electron exchange rate was about 2.10(6) M-1.s-1, which is 60-70 times that for the free form at a given concentration of cytochrome c. The activation energy of the reaction for the bound cytochrome c was equal to that for the free form, being about 10 kcal/mol. The dependence of the exchange rate on temperature, cytochrome c concentration and solvent viscosity suggests that enhancement of the electron transfer rate between cytochromes c on binding to phosvitin is due to increase in the collision frequency between cytochromes c concentrated on the phosvitin molecule.  相似文献   

3.
Candida krusei cytochrome c forms a molecular complex with phosphorprotein phosvitin in weakly alkaline solution of low ionic strength. At most, about 22 molecules of cytochrome c bind to a phosvitin molecule. The complex at the binding ratio below about 11 (half of the maximum ratio) as a much higher binding strength. Several lines of evidence indicate that the marked difference in the binding strength is due to the difference in negative charges on phosvitin molecule concerned in the binding of a cytochrome c molecule. The phosvitin-bound cytochrome c seems to have a preferred orientation with the front surface of the molecule containing the exposed heme edge in contact with the phosvitin molecule.  相似文献   

4.
Mutation of conserved Phe-82 of yeast iso-1 cytochrome c to Tyr, Gly, Ser, Leu, or Ile affects binding to and reaction with cytochrome-c oxidase from beef heart. The observed changes of binding and kinetic constants reflect mutation-induced rearrangements in the heme vicinity brought about by the replacement of Phe-82. Such conformational rearrangements are also revealed by altered circular dichroism spectra of the oxidase-bound mutant cytochromes c. Variations in Km for cytochrome c oxidation do not parallel variations in Kd, the dissociation constant for binding of cytochrome c to the oxidase. This observation does not support an enzymatic mechanism in which the rate of cytochrome c oxidation is governed by product dissociation.  相似文献   

5.
The effect of ionic strength on the one-electron reduction of oxidized bovine cytochrome c oxidase by reduced bovine cytochrome c has been studied by using flavin semiquinone reductants generated in situ by laser flash photolysis. In the absence of cytochrome c, direct reduction of the heme a prosthetic group of the oxidase by the one-electron reductant 5-deazariboflavin semiquinone occurred slowly, despite a driving force of approximately +1 V. This is consistent with a sterically inaccessible heme a center. This reduction process was independent of ionic strength from 10 to 100 mM. Addition of cytochrome c resulted in a marked increase in the amount of reduced oxidase generated per laser flash. Reduction of the oxidase at the heme a site was monophasic, whereas oxidation of cytochrome c was multiphasic, the fastest phase corresponding in rate constant to the reduction of the heme a. During the fast kinetic phase, 2 equiv of cytochrome c was oxidized per heme a reduced. We presume that the second equivalent was used to reduce the Cua center, although this was not directly measured. The first-order rate-limiting process which controls electron transfer to the heme a showed a marked ionic strength effect, with a maximum rate constant occurring at mu = 110 mM (1470 s-1), whereas the rate constant obtained at mu = 10 mM was 630 s-1 and at mu = 510 mM was 45 s-1. There was no effect of "pulsing" the enzyme on this rate-limiting one-electron transfer process. These results suggest that there are structural differences in the complex(es) formed between mitochondrial cytochrome c and cytochrome c oxidase at very low and more physiologically relevant ionic strengths, which lead to differences in electron-transfer rate constants.  相似文献   

6.
We have devised a relatively simple method for the purification of cytochrome aa3 of Paracoccus denitrificans with three major subunits similar to those of the larger subunits of the mitochondrial cytochrome oxidase. This preparation has no c-type cytochrome. Studies were made of the oxidation of soluble cytochromes c from bovine heart and Paracoccus. The cytochrome-c oxidase activity was stimulated by low concentrations of either cytochrome c, providing an explanation for the multiphasic nature of plots of v/S versus v. Kinetics of the oxidation of bovine cytochrome c by the Paracoccus oxidase resembled those of bovine oxidase with bovine cytochrome c in every way; the Paracoccus oxidase with bovine cytochrome c can serve as an appropriate model for the mitochondrial system. The kinetics of the oxidation of the soluble Paracoccus cytochrome c by the Paracoccus oxidase were different from those seen with bovine cytochrome c, but resembled the latter if poly(L-lysine) was added to the assays. The important difference between the two species of cytochrome c is the more highly negative hemisphere on the side of the molecule way from the heme crevice in the Paracoccus cytochrome. Thus, the data emphasize the importance of all of the charged groups on cytochrome c in influencing the binding or electron transfer reactions of this oxidation-reduction system. The data also permit some interesting connotations about the possible evolution from the bacterial to the mitochondrial electron transport system.  相似文献   

7.
One of the nuclear-coded subunits of yeast cytochrome c oxidase is specified by a gene family composed of two genes, COX5a and COX5b. These genes are regulated differentially by oxygen and encode isoforms of subunit V, designated Va and Vb, which have only 66% primary sequence identity. Yeast cells require one or the other isoform for a functional cytochrome c oxidase (Trueblood, C. E., and Poyton, R. O. (1987) Mol. Cell Biol. 7, 3520-3526). To determine if these isoforms of subunit V alter the catalytic properties of holocytochrome c oxidase, we have analyzed various aspects of cytochrome c oxidase function in intact yeast cells that produce only one type of isoform. From measurements of room temperature turnover numbers and low temperature rates of ligand binding, single turnover cytochrome c oxidation, and internal electron transfer (heme a oxidation), we have found that isozymes which incorporate the Vb isoform have both higher turnover rates and higher rates of heme a oxidation than isozymes which incorporate Va. These findings support the conclusion that the isoforms of subunit V modulate cytochrome c oxidase activity in vivo and suggest that they do so by altering the rates of one or more intramolecular electron transfer reactions.  相似文献   

8.
The mechanism of electron transfer catalyzed by cytochrome oxidase was investigated by monitoring the reaction of cytochrome oxidase with cytochrome c under carefully controlled anaerobic conditions. The kinetics of the reaction were examined by varying conditions of ionic strength, inhibitor binding, and oxidation-reduction potential. An analogue of cytochrome c in which the iron atom was replaced with cobalt was used to probe the effect of redox potential on the reaction. Under conditions of low ionic strength, there is very rapid oxidation of cytochrome c and reduction of oxidase which occurs at a rate of 3 X 10(7) M-1 s-1. The number of electrons transferred exhibit a hyperbolic dependence on the concentration of cytochrome c reaching a maximum of 2 electrons transferred at the highest concentration of reduced cytochrome c employed. The total number of electrons transferred was always observed to be distributed equally between cytochrome a and a second acceptor which appears to be the associated copper center; electron transfer to cytochrome a3 did not occur in the absence of oxygen. Substitution of cytochrome c by the cobalt analogue (which represents a decrease in oxidation-reduction potential of about 400 mV) yielded identical results indicating that the origin of the lack of reactivity of cytochrome a3 is of a kinetic nature. The effect of increasing the ionic strength on the reaction was 2-fold: a marked decrease in reaction rate and the appearance of biphasic kinetics with the amplitude of the very fast absorbance changes at 605 nm decreasing from 80% to 40% of the total anticipated from static absorbance measurements. Each of the two phases accounted for a maximum of 1 electron at the highest ionic strength employed. These results are simulated in terms of a sample kinetic reaction scheme involving a two-step electron transfer at one binding site.  相似文献   

9.
The reaction between cytochrome c oxidase and ferrocytochrome c has been investigated by the stopped-flow method. It has been found that only one electron acceptor, a heme group, in the oxidase is rapidly reduced by cytochrome c. The presence of N3- does not affect the reduction of the acceptor, which supports the hypothesis that this is identical with cytochrome a. The results are consistent with the existence of a simple equilibrium between cytochrome a and cytochrome c: c-2 + a-3+ in equilibrium c-3+ + a-2+ with an equilibrium constant corresponding to an oxidation-reduction potential of cytochrome a 30 mV higher than that for cytochrome c at pH 7.4. The oxidation-reduction potential of the a-3+ /a-2+ couple, 285 mV (based on a potential of 255 mV for cytochrome c), and the optical properties of the reduced form indicate that it is identical with neither of the reduced hemes seen in potentiometric titrations. The oxidase species resulting from the rapid reduction of cytochrome a by cytochrome c is proposed to represent a metastable intermediate state which, under anaerobic conditions, eventually is transformed into a more stable state characterized by a reduced high-potential heme.  相似文献   

10.
Magnetic circular dichroism (MCD), electron paramagnetic resonance (EPR), and optical absorption spectroscopies have been used to monitor the concentrations of oxidized and reduced heme and copper during stoichiometric reductive titrations of purified beef heart cytochrome oxidase. The MCD data are deconvoluted to obtain the concentrations of reduced cytochromes a and a3 during the titrations; analysis of the EPR spectra provides complementary data on the concentrations of the EPR-detectable species. For the native enzyme in the absence of exogenous ligands, cytochromes a and a3 are reduced to approximately the same extent at all points in the titration. The reduction of the EPR-detectable copper, on the other hand, initially lags the reduction of the two cytochromes but in the final stages of the titration is completely reduced prior to either cytochrome a or a3. These non-Nernstian titration results are interpreted to indicate that the primary mode of heme-heme interaction in cytochrome oxidase involves shifts in oxidation-reduction potential for each of the two cytochromes such that a change in oxidation state for one of the hemes lowers the oxidation-reduction potential of the second heme by approximately 135 mV. In these titrations high spin species are detected which account for 0.25 spin/oxidase maximally. Evidence is presented to indicate that at least some of these signals can be attributed to cytochrome a3+ which has undergone a low-spin to high-spin state transition in the course of the titration. In the presence of carbon monoxide the oxidation-reduction properties of cytochromes a and a3 are markedly altered. The a32+. CO complex is fully formed prior to reduction of either cytochrome a3+ or the EPR-detectable copper. The g = 3 EPR signal attributed to cytochrome a3+ decreases as the MCD intensity of cytochrome a2+ increases; no significant high-spin intensity is observed at any intermediate stage of reduction. We interpret these Nernstian titration results to indicate that in the presence of ligands the oxidation-reduction potential of cytochrome a relative to cytochrome a3 is determined by the oxidation-reduction state of the stabilized cytochrome a3 ligand complex; if ligand binding occurs to reduced cytochrome a3 then cytochrome a titrates with a lower potential; cytochrome a titrates with a higher potential if oxidized cytochrome a3 is stabilized by ligand binding.  相似文献   

11.
N Capitanio  G Capitanio  D Boffoli  S Papa 《Biochemistry》2000,39(50):15454-15461
Measurements of the H(+)/heme a, Cu(A) ratios for proton-electron coupling at these centers (redox Bohr effect) in CO-inhibited cytochrome c oxidase purified from bovine heart mitochondria, both in the soluble state and reconstituted in liposomes, are presented. In the soluble oxidase, the H(+)/heme a, Cu(A) ratios were experimentally determined upon oxidation by ferricyanide of these centers as well as upon their reduction by hexammineruthenium(II). These measurements showed that in order to obtain H(+)/heme a, Cu(A) ratios approaching 1, one-step full oxidation of both metal centers by ferricyanide had to be induced by a stoicheiometric amount of the oxidant. Partial stepwise oxidation or reduction of heme a and Cu(A) did produce H(+)/heme a, Cu(A) ratios significantly lower or higher than 1, respectively. The experimental H(+)/heme a, Cu(A) ratios measured upon stepwise reduction/oxidation of the metals were reproduced by mathematical simulation based on the coupling of oxido-reduction of both heme a and Cu(A) to pK shifts of common acid-base groups. The vectorial nature of the proton-electron coupling at heme a/Cu(A) was analyzed by measuring pH changes in the external bulk phase associated with oxido-reduction of these redox centers in the CO-inhibited oxidase reconstituted in liposomes. The results show that the proton release associated with the oxidation of heme a and Cu(A) takes place in the external aqueous phase. Protons taken up by the oxidase upon rereduction of the centers derive, on the other hand, from the inner space. These results provide evidence supporting the view that cooperative proton-electron coupling at heme a/Cu(A) is involved in the proton pump of the oxidase.  相似文献   

12.
The interaction of solvent water protons with the bound paramagnetic metal ions of beef heart cytochrome c oxidase has been examined. The observed proton relaxation rates of enzyme solutions had a negative temperature dependence, indicating a rapid exchange between solvent protons in the coordination sphere of the metal ions and bulk solvent. An analysis of the dependence of the proton relaxation rate on the observation frequency indicated that the correlation time, which modulates the interaction between solvent protons and the unpaired electrons on the metal ions, is due to the electron spin relaxation time of the heme irons of cytochrome c oxidase. This means that at least one of the hemes is exposed to solvent. The proton relaxation rate of the oxidized enzyme was found to be sensitive to changes in ionic strength and to changes in the spin states of the metal ions. Heme a3 was found to be relatively inaccessible to bulk solvent. Partial reduction of the enzyme caused a slight increase in the relaxation rate, which may be due to a change in the antiferromagnetic coupling between two of the bound paramagnetic centers. Further reduction resulted in a decreased relaxation rate, and the fully reduced enzyme was no longer sensitive to changes in ionic strength. The binding of cytochrome c to cytochrome c oxidase had little effect on the proton relaxation rates of oxidized cytochrome oxidase indicating that cytochrome c binding has little effect on solvent accessibility to the metal ion sites.  相似文献   

13.
The redox properties, the site of action of the inhibitor NQNO, and the question of interheme transfer in the chloroplast cytochrome b6 have been examined with regard to the role of the b6-f complex in quinol oxidation and H+ translocation. (i) The two hemes of the cytochrome ba and bp, have similar (delta Em less than or equal to 50 mV) oxidation-reduction midpoint potentials that are pH-independent in the range pH 6.5-8.0 (Em7 = -40 mV) but are pH dependent below this range with an estimated pK = 6.7. (ii) Only half of cytochrome b6, the stromal-side heme, ba, was reducible by NADPH and ferredoxin. (iii) The 2-3-fold increase (to 0.60 +/- 0.09 heme/600 Chl) in the amplitude of flash-induced cytochrome reduction caused by NQNO was not affected when heme ba was initially reduced, implying that NQNO affects flash reduction at the site of heme bp. (iv) Multiple light flashes did not increase the amplitude of b6 reduction in the presence or absence of NQNO or show binary oscillations. Together with localization of a site of action of NQNO near heme bp, these data provide no evidence for efficient electron transfer from heme bp to heme ba as specified by the Q cycle model. (v) NQNO interaction with heme bp does not block its oxidation, since reoxidation of the flash-reduced cytochrome in its presence or absence was 4-5 times faster (t1/2 approximately 30 ms) when heme ba was reduced. The faster oxidation of the photoreduced cytochrome after NADPH-Fd reduction of heme ba indicates that the oxidation of ba and bp may be cooperative.  相似文献   

14.
C J Kay  L P Solomonson  M J Barber 《Biochemistry》1991,30(48):11445-11450
Assimilatory nitrate reductase (NR) from Chlorella is homotetrameric, each subunit containing FAD, heme, and Mo-pterin in a 1:1:1 stoichiometry. Measurements of NR activity and steady-state reduction of the heme component under conditions of NADH limitation or competitive inhibition by nitrite suggested intramolecular electron transfer between heme and Mo-pterin was a rate-limiting step and provided evidence that heme is an obligate intermediate in the transfer of electrons between FAD and Mo-pterin. In addition to the physiological substrates NADH and nitrate, various redox mediators undergo reactions with one or more of the prosthetic groups. These reactions are coupled by NR to NADH oxidation or nitrate reduction. To test whether intramolecular redox reactions of NR were rate-determining, rate constants for redox reactions between NR and several chemically diverse mediators were measured by cyclic voltammetry in the presence of NADH or nitrate. Reduction of ferrocenecarboxylic acid, dichlorophenolindophenol, and cytochrome c by NADH-reduced NR was coupled to reoxidation at a glassy carbon electrode (ferrocene and dichlorophenolindophenol) or at a bis(4-pyridyl) disulfide modified gold electrode (cytochrome c), yielding rate constants of 10.5 x 10(6), 1.7 x 10(6), and 2.7 x 10(6) M-1 s-1, respectively, at pH 7. Kinetics were consistent with a second-order reaction, implying that intramolecular heme reduction by NADH and endogenous FAD was not limiting. In contrast, reduction of methyl viologen and diquat at a glassy carbon electrode, coupled to oxidation by NR and nitrate, yielded similar kinetics for the two dyes. In both cases, second-order kinetics were not obeyed, and reoxidation of dye-reduced Mo-pterin of NR by nitrate became limiting at low scan rates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The effects of monoclonal antibodies to bovine and Paracoccus denitrificans cytochromes c (Kuo, L.M. and Davies, H.C. (1983) Mol. Immunol. 20, 827-838) in the reactions of the cytochromes c with cytochrome c oxidase, reductase and peroxidase were studied. Spectrophotometric assays were employed, under conditions where binding of cytochrome c to the enzymes appears to be rate-limiting. Less than stoichiometric amounts of antibodies to P. denitrificans cytochrome c added to the cytochrome rendered some of it nonoxidizable or nonreducible by the P. denitrificans membrane-bound electron transport system and decreased the rate constant with the remaining cytochrome c. The antibodies appear to affect both electron transport reactions (blocking effects) with the oxidase and reductase and binding effects (effects on rate constants) and to distinguish between the two. Different ratios of antibody site to cytochrome c gave different extents of blocking of the reductase as compared with the oxidase reaction. Differences were also apparent in the effect of these antibodies on the reaction of yeast peroxidase and the oxidase with the P. denitrificans cytochrome c. Antibodies to bovine and P. denitrificans cytochromes c had considerably less effect on the reactions of the bovine cytochrome with bovine oxidase and reductase. One antibody was inhibitory to the oxidase reaction with bovine cytochrome c, but not to that with the reductase. Also, an antibody which inhibited the oxidase reaction had no effect on the reaction with yeast peroxidase. The data give evidence that the interaction areas on cytochrome c for oxidase and reductase and peroxidase are not identical, although they may be nearby.  相似文献   

16.
Binding to cytochrome c oxidase induces a conformational change in the cytochrome c molecule. This conformational change has been characterized by comparing the binding of native cytochrome c and chemically modified cytochrome c derivatives to bovine cytochrome c oxidase by using absorption, circular dichroism (CD), and magnetic circular dichroism (MCD) spectroscopy. The following derivatives were analyzed: (i) cytochrome c modified at all 19 lysine residues to yield the (N epsilon-acetimidyl)19 cytochrome c, (N epsilon-isopropyl)19 cytochrome c, and (N epsilon,N epsilon-dimethyl)19 cytochrome c; (ii) cytochrome c in which Met65 and Met80 are converted to the methionine sulfoxide; (iii) cytochrome c with a single break in the polypeptide chain at Arg38 or Gly37. The derivatives bind to cytochrome c oxidase at a ratio of one heme c per heme aa3. The association constants are similar to that of native cytochrome c except for (N epsilon-isopropyl)19 and (N epsilon,N epsilon-dimethyl)19 cytochromes c, which bind respectively four times and six times less strongly. The derivatives are good substrates for the cytochrome c oxidase reaction. The spectral changes accompanying the binding of the modified cytochromes c to cytochrome c oxidase are quite different from the spectral changes observed with native cytochrome c. The different optical absorption and MCD changes are explained by a polarity change around the exposed heme edge in the cytochrome c-cytochrome c oxidase complex. The CD changes indicate a conformational rearrangement restricted to the surface area surrounding the exposed heme edge. The rearrangement may involve a movement of the evolutionarily conserved Phe82 out of the vicinity of the heme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Rate constants for reduction of cytochrome b561 by internal ascorbate (k0A) and oxidation by external ferricyanide (k1F) were determined as a function of pH from rates of steady-state electron transfer across chromaffin-vesicle membranes. The pH dependence of electron transfer from cytochrome b561 to ferricyanide (k1F) may be attributed to the pH dependence of the membrane surface potential. The rate constant for reduction by internal ascorbate (k0A), like the previously measured rate constant for reduction by external ascorbate (k-1A), is not very pH-dependent and is not consistent with reduction of cytochrome b561 by the ascorbate dianion. The rate at which ascorbate reduces cytochrome b561 is orders of magnitude faster than the rate at which it reduces cytochrome c, despite the fact that midpoint reduction potentials favor reduction of cytochrome c. Moreover, the rate constant for oxidation of cytochrome b561 by ferricyanide (k1F) is smaller than the previously measured rate constant for oxidation by semidehydroascorbate, despite the fact that ferricyanide has a higher midpoint reduction potential. These results may be reconciled by a mechanism in which electron transfer between cytochrome b561 and ascorbate/semidehydroascorbate is accelerated by concerted transfer of a proton. This may be a general property of biologically significant electron transfer reactions of ascorbic acid.  相似文献   

18.
Energy transduction in the cytochrome bc(1) complex is achieved by catalyzing opposite oxido-reduction reactions at two different quinone binding sites. We have determined the pre-steady state kinetics of cytochrome b and c(1) reduction at varying quinol/quinone ratios in the isolated yeast bc(1) complex to investigate the mechanisms that minimize inhibition of quinol oxidation at center P by reduction of the b(H) heme through center N. The faster rate of initial cytochrome b reduction as well as its lower sensitivity to quinone concentrations with respect to cytochrome c(1) reduction indicated that the b(H) hemes equilibrated with the quinone pool through center N before significant catalysis at center P occurred. The extent of this initial cytochrome b reduction corresponded to a level of b(H) heme reduction of 33%-55% depending on the quinol/quinone ratio. The extent of initial cytochrome c(1) reduction remained constant as long as the fast electron equilibration through center N reduced no more than 50% of the b(H) hemes. Using kinetic modeling, the resilience of center P catalysis to inhibition caused by partial pre-reduction of the b(H) hemes was explained using kinetics in terms of the dimeric structure of the bc(1) complex which allows electrons to equilibrate between monomers.  相似文献   

19.
Nuclear magnetic resonance (nmr) spectroscopy has been used to investigate the heme undecapeptide from cytochrome c. Assignments of resonances to specific residues have been made based on spin decoupling, redox titration, and the pH and temperature dependence of resonance lines. An outline structure is presented based on the assignments, secondary shift data, and the x-ray crystal structure of cytochrome c. An equation is derived to relate the width of an nmr line during a redox titration to the percentage of each oxidation state. Using this equation the self-exchange rate constant for electron transfer for the heme peptide is 1.3 x 10(7) M-1 sec-1 at 330 degrees K. Discussion of the self-exchange rate constants of cytochrome c, cytochrome c3, and cytochrome c551 is related to this constant for the heme undecapeptide.  相似文献   

20.
I Ahmad  M A Cusanovich  G Tollin 《Biochemistry》1982,21(13):3122-3128
Laser flash photolysis has been used to determine the rate constants for the reduction of bovine cytochrome oxidase and the cytochrome c-cytochrome oxidase complex by the semiquinone and fully reduced forms of various flavin analogues (FH. and FH-, respectively). Under the condition used, the reaction of FH. with free cytochrome oxidase is too slow to compete with FH. disproportionation whereas FH- reacts measurably. Both FH. and FH- are effective in reducing the complex. The reduction of heme a in the complex is shown to proceed via cytochrome c, and a limiting first-order rate is observed in the case of FH- at high complex concentrations. The data indicate that the interaction site for electron transfer to cytochrome c is the same in the complex as with the free protein, and although a tight complex exists, at least small reactants like the flavins are not sterically hindered in their access to the bound cytochrome c. Moreover, the results also establish that intramolecular electron transfer between cytochrome c and cytochrome oxidase within the complex occurs with a first-order rate constant of greater than 700 s-1. Thus, the presence of cytochrome c greatly enhances electron transfer from reduced flavins to cytochrome oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号