首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The relationship between biodiversity and ecosystem functioning (BEF) is one of the most concerned topics in ecology. However, most of the studies have been conducted in controlled experiments in grasslands, few observational field studies have been carried out in forests. In this paper, we report variations of species diversity, functional diversity and aboveground biomass (AGB) for woody plants (trees and shrubs) along a chronosequence of four successional stages (18-year-old fallow, 30-year-old fallow, 60-year-old fallow, and old-growth forest) in a tropical lowland rainforest recovered after shifting cultivation on Hainan Island, China. Fifty randomly selected sample plots of 20 m × 20 m were investigated in each of the four successional stages. Four functional traits (specific leaf area, wood density, maximum species height and leaf dry matter content) were measured for each woody plants species and the relationships between species/functional diversity and AGB during secondary succession were explored. The results showed that both plant diversity and AGB recovered gradually with the secondary succession. AGB was positively correlated with both species and functional diversity in each stage of succession. Consistent with many controlled experimental results in grasslands, our observational field study confirms that ecosystem functioning is closely related to biodiversity during secondary succession in species rich tropical forests.  相似文献   

2.
Dong Ming 《Plant Ecology》1987,72(1):35-44
Masson Pine (Pinus massoniana Lamb.) is a pioneer in forest succession in the subtropics of East Asia. However, the species persits, though with decreasing abundance, throughout the various successional phases. Agestructure, spatial pattern, density, population biomass, and their dynamics are described for a population in Sichuan, China, on the basis of a census of all individuals in the population while substituting space with time. In the course of succession, the population density increases and its rate of growth decreases until self-thinning starts; during the phase of self-thinning density decrease and continues to decrease even afterwards, but the rate of growth increase markedly after self-thinning has stopped. The development of population biomass (Bp) during the early succession from shrub-grassland to the early stages of mixed pine and broad-leaved forest can be described by a logistic equation. Later, Bp decrease rapidly. These changes are governed partly by inherent biological features of P. massoniana and partly by the invasion, establishment and development of shade-tolerant evergreen broad-leaved trees. Both self- and alien-thinning occur. Soil conditions affect the rates of these processes.  相似文献   

3.
Although it is clear that the farmlands neighbouring fragmented forests are utilized by some forest birds, it is not clear how birds in general respond to farmland habitat mosaic. An effort was made to determine how bird density and foraging assemblages were influenced by farm structural characteristics and distance from forest edge. Thirty farms up to a distance of 12 km around Kakamega forest in western Kenya were studied. Farm structure entailed size, hedge volume, habitat heterogeneity, woody plant density, plant diversity and crop cover. Birds were surveyed using line transects and DISTANCE analyses and classified into six feeding guilds and three habitat associations. Size of farms increased away from the forest, as woody plant density, plant diversity, indigenous trees and subsistence crop cover declined. The most important farm structure variable was hedge volume, which enhanced bird species richness, richness of shrub‐land bird species and insectivorous bird density (R = 0.58, P < 0.01). Bird density increased with tree density while indigenous trees were suitable for insectivores and nectarivores. There were very few forest bird encounters. Agricultural practices incorporating maintenance of hedges and sound selection of agroforestry trees can enhance conservation of birds on farmland, though, not significantly for forest species.  相似文献   

4.
Despite the diversity of trees in bottomland forests, restoration on bottomland sites is often initiated by planting only a few species of slow‐growing, hard mast–producing trees. Although successful at establishing trees, these young forests are slow to develop vertical structure, which is a key predictor of forest bird colonization. Furthermore, when natural seed sources are few, restored sites may be depauperate in woody species. To increase richness of woody species, maximum tree height, and total stem density, I supplemented traditional plantings on each of 40 bottomland restoration sites by planting 96 Eastern cottonwood (Populus deltoides) and American sycamore (Platanus occidentalis) in eight clusters of 12 trees. First‐year survival of cottonwood stem cuttings (25%) and sycamore seedlings (47%) was poor, but survival increased when afforded protection from competition with weeds. After five growing seasons, 165 of these 320 supplemental tree clusters had at least one surviving tree. Vegetation surrounding surviving clusters of supplemental trees harbored a greater number of woody species, increased stem density, and greater maximum tree height than was found on paired restoration sites without supplemental trees. These increases were primarily accounted for by the supplemental trees.  相似文献   

5.
缙云山马尾松种群数量动态初步研究   总被引:9,自引:1,他引:8       下载免费PDF全文
董鸣 《植物生态学报》1986,10(4):283-293
马尾松(Pinus massoniana)种群是我国亚热带森林植被演替的先锋种群之—。研究其数量动态对亚热带森林群落和生态系统的研究有着重要意义。“样地编年序列”的应用为长命多年生植物种群数量动态的研究提供了一条捷径。缙云山马尾松种群,约在7龄前,其密度随时间而增长,其后降低。其间关系可用下式近似表达:(07), 式中,D是种群密度估计值,A是种群年龄。缙云山马尾松种群生物量在灌草从到松阔混交林初期的演替中呈现Logistic增长。符合公式:式中,Bp是种群生物量的估计值,A,e是自然对数的底。在从混交林到常绿阔叶林的演替中,其生物量表现出随时间下降的趋势。在自疏过程中,马尾松种群平均植株生物量与种群密度服从-3/2稀疏定律。符合公式:式中,Bi是平均植株生物量,D是种群密度。导致缙云山马尾松种群数量动态变化的动力,主要是种内光资源竞争引起的自疏和种间光资源竞争引起的他疏。  相似文献   

6.
Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.  相似文献   

7.
Oldfield succession in Mediterranean ecosystems has been studied extensively in mesic conditions. However, this phenomenon is still poorly understood in semi-arid Mediterranean areas, where reduced plant cover, the importance of facilitation processes and the role of abiotic factors make these environments distinct. We first test whether the carob tree (Ceratonia siliqua) generates nucleation patterns in semi-arid oldfields, and to what extent such patterns change with abandonment age. Then we test to what extent nucleation can be explained by the perch effect. And finally, we test whether the nucleated pattern around carob trees is a source of diversity in the oldfields studied. To answer these questions we located oldfields abandoned 25 and 50 years ago (20 in each case) in the Alacant Province (SE Spain, Iberian Peninsula) on the basis of aerial photographs and personal interviews with local landowners and managers. In each oldfield woody plant density and richness were sampled on two microsites: under the carob tree and in the open field. Analysis was performed on all woody plants and by separating the species in two functional groups: fleshy-fruited (with fleshy mesocarp) and non-fleshy-fruited species. The results suggest that woody vegetation colonising abandoned C. siliqua fields in SE Spain is not randomly distributed but follows a nucleation pattern with higher plant density under the trees. However, the nucleation pattern is only significant for fleshy-fruited species, suggesting that facilitative interactions alone cannot explain the nucleation pattern and that the perch effect plays an important role. The results also show that the nucleation pattern (total plant density and density of non-fleshy-fruited plants) did not increase with abandonment age, while the perch effect (density of fleshy-fruited plants) did increase significantly. Furthermore, the results also show that the nucleation pattern is not only a loci of high plant density but also a loci of high species richness. Thus we can conclude that the nucleation pattern found in oldfield succession is best explained by the perch effect, while facilitation has a secondary importance. This emphasises the key role that dispersal mode has on the dynamics of vegetation recovery in formerly cropped areas.  相似文献   

8.
Vegetation structure and species composition of tropical ecosystems were studied through nine transects at Veerapuli and Kalamalai reserve forests in the Western Ghats of Tamil Nadu, India. Species diversity, dominance, species richness and evenness indices of plant communities and also population structure of woody plants were enumerated. A total of 244 species (183 genera and 76 families) were recorded. Species richness (number of species) were 82,142 and 96 species per 0.3 ha respectively for the study areas of low-elevation forest (LEF), mid-elevation forest (MEF) and high elevation forest (HEF). Species diversity indices were greater in MEF compared to the other two forests except juveniles. In contrast, greater dominance value indices were recorded in LEF than other forests. Density and basal area of the MEF were twice greater than the LEF, while HEF showed greater tree density and low basal area when compared to LEF. The stem density and species richness (number of species) decreased with increased size classes of trees observed in the present study indicated good regeneration status. Population structure of juveniles and seedlings also reflects good regeneration status. Terminalia paniculata (IVI of 99.9) and Hopea parviflora (IVI of 103.8) were dominant tree species respectively in LEF and MEF whereas in HEF Agrostistachys meeboldii (63.65), Cullenia excelsa (63.67) and Drypetes oblongifolia (39.67) share the dominance. Past damage (anthropogenic perturbation) may be one of the reasons for single species dominance in LEF and MEF. Occurrence of alien species such as Eupatorium odoratum and Ageratum conyzoides also indicated the past disturbance in LEF. The variations in plant diversity and population structure are largely due to anthropogenic perturbation and other abiotic factors.  相似文献   

9.
朱弘  杨乐  岳春雷  李贺鹏 《生态学报》2022,42(15):6220-6228
木本植物幼苗是森林生态系统的重要的组成部分,其定居、存活、生长的生态学过程对于森林植被的更新具有潜在指示和筛选作用。为探究浙江杭州午潮山亚热带常绿阔叶次生林群落更新和演替机制,基于样方法对150 m2样地内天然更新幼苗的物种组成、数量特征和基径结构进行统计,在此基础上采用最近邻分析和Ripley''s K函数的点格局方法,分析其中主要优势树种的更新动态及其时空分布格局。结果表明:(1)样地内乔木幼苗树种组成丰富,共调查到幼苗811株,隶属12科20属27种,其中樟科Lauraceae、壳斗科Fagaceae、山茶科Theaceae和山矾科Symplocaceae为主要优势科。(2)红楠Machilus thunbergii、薄叶润楠M. leptophylla、毛柄连蕊茶Camellia fraterna和刨花润楠M. spauhoi在所有调查物种重要值排序前4,因而被确定为优势林下植物,绘制的基径结构小提琴图(violin plot)进一步显示它们的种群分属快速增长型、稳定增长型、缓慢增长型和稳定型。(3)红楠、薄叶润楠和刨花润楠在小径级和小尺度上多呈聚集分布,随生长发育和空间尺度的增加,聚集强度呈现先增高后降低趋势,最终向离散分布或随机分布转变,可视为群落演替的早期树种;同时,三者在聚集强度上有所差异,排序为红楠>薄叶润楠>刨花润楠。毛柄连蕊茶Camellia fraterna种群密度较低,在小径级和小尺度上呈随机分布,随生长发育和空间尺度的增加,聚集强度呈波动趋势,最终向离散分布转变,可视为演替的中期树种。本研究在小尺度上初步揭了午潮山木本幼苗种群的演替过程中的种群结构和分布格局,可以为亚热带森林管理与植被恢复提供理论依据。  相似文献   

10.
Abstract. This paper describes vegetation changes on cultivation terraces after abandonment, considered as secondary succession, and vegetation responses after clear-cutting, considered as regeneration. Species were grouped in life form and dynamic categories in order to infer dynamic patterns. By applying the Shannon diversity index to these characteristics, an index of functional diversity is obtained. Regenerative succession is considered here as a particular case of secondary succession, characterized by a fast vegetative regeneration of the dominant woody species, which controls the succession of the understorey species. Post-agricultural succession and forest regeneration succession show a similar relation between the diversity index and a forest index, indicating the relative amount of forest species. It appeared that the old-field dynamics resemble the deciduous oak-forest regeneration after the woody species have established. The species diversity at the end of the post-agricultural succession and in the forest is controlled by the nature of the dominant tree species.  相似文献   

11.
We investigated plant species diversity as it related to stand structure and landscape parameters in abandoned coppice forests in a temperate, deciduous forest area of central Japan, where Fagus crenata was originally dominant. The species occurring in the study plots were classified into habitat types based on a statistical analysis of their occurrence bias in particular habitats (e.g., primary forest, coniferous plantation) in the landscape studied. The relationships between stand structure, which reflected the gradient of management, and forest floor plant species diversity (H and J) and richness (number of species per unit area) were not significant. However, these factors did influence the forest floor plant composition of the different types of habitat. According to the multiple regression analysis, species diversity and the richness of forest floor plants was affected by landscape parameters rather than by stand structure. For trees, species richness was mainly affected by the relative dominance of F. crenata, which is one of the stand structure parameters that decreases with intensive management. This is probably because many of the tree species that are characteristic of coppice forests increase after F. crenata have been eliminated by management; these species are not dominant in the original forest, where they are suppressed by F. crenata, the shade-tolerant dominant species. The species diversity (H and J) of trees was positively correlated with some landscape parameters, including the road density around the study plot, which may be associated with the intensity of management activity. The number of disturbance-tolerant species increased with increasing road density. Stand structure mainly affected disturbance-intolerant forest floor plant species and disturbance-tolerant tree species. Thus, the species diversity responses differed between forest floor plants and trees. The impact of forest management on species diversity was more prominent for forest floor plants.  相似文献   

12.
Twedt  Daniel J. 《Plant Ecology》2004,172(2):251-263
Reforestation of bottomland hardwood sites in the southeastern United States has markedly increased in recent years due, in part, to financial incentives provided by conservation programs. Currently >250,000 ha of marginal farmland have been returned to hardwood forests. I observed establishment of trees and shrubs on 205 reforested bottomlands: 133 sites were planted primarily with oak species (Quercus spp.), 60 sites were planted with pulpwood producing species (Populus deltoides, Liquidambar styraciflua, or Platanus occidentalis), and 12 sites were not planted (i.e., passive regeneration). Although oak sites were planted with more species, sites planted with pulpwood species were more rapidly colonized by additional species. The density of naturally colonizing species exceeded that of planted species but density of invaders decreased rapidly with distance from forest edge. Trees were shorter in height on sites planted with oaks than on sites planted with pulpwood species but within a site, planted trees attained greater heights than did colonizing species. Thus, planted trees dominated the canopy of reforested sites as they matured. Planted species acted in concert with natural invasion to influence the current condition of woody vegetation on reforested sites. Cluster analysis of species importance values distinguished three woody vegetation conditions: (1) Populus deltoides stands (2) oak stands with little natural invasion by other tree species, and (3) stands dominated by planted or naturally invading species other than oaks. Increased diversity on reforested sites would likely result from (a) greater diversity of planted species, particularly when sites are far from existing forest edges and (b) thinning of planted trees as they attain closed canopies.  相似文献   

13.
Questions: 1. Do the species composition, richness and diversity of sapling communities vary significantly in differently sized patches? 2. Do forest patches of different sizes differ in woody plant colonization patterns? Location: São Francisco de Paula, Rio Grande do Sul, Brazil, 29°28'S,50°13'W. Methods: Three woody vegetation types, differing in structural development (patch size) and recovering for 10 years from cattle and burning disturbances, were sampled on grassland. We analysed the composition and complexity of the woody sapling communities, through relative abundance, richness and diversity patterns. We also evaluated recruitment status (residents vs. colonizers) of species in communities occurring in different forest patch size classes. Results : 1. There is a compositional gradient in sapling communities strongly associated with forest patch area. 2. Richness and diversity are positively correlated to patch area, but only in poorly structured patches; large patches present richness and diversity values similar to small patches. 3. Resident to colonizer abundance ratio increases from nurse plants to large patches. The species number proportion between residents and colonizers is similar in small and large patches and did not differ between these patch types. 4. Large patches presented a high number of exclusive species, while nurse plants and small patches did not. Conclusions: Woody plant communities in Araucaria forest patches are associated with patch structure development. Richness and diversity patterns are linked to patch colonization patterns. Generalist species colonize the understorey of nurse plants and small patches; resident species cannot recruit many new individuals. In large patches, sapling recruitment by resident adults precludes the immigration of new species into the patches, limiting richness and diversity.  相似文献   

14.
Abstract Araucaria Forest expansion over grassland takes place under wet climate conditions and low disturbance and it is hypothesized that isolated trees established on grassland facilitate the establishment of forest woody species beneath their canopies. Forest with Araucaria angustifolia is a particular type of Brazilian Atlantic Forest and the main forest type on the highland plateau in south Brazil, often forming mosaics with natural Campos grassland. The objectives of this paper were to evaluate the role of isolated shrubs and trees as colonization sites for seedlings of Araucaria Forest woody species on grassland, to determine which species function as preferential nurse plants in the process and the importance of vertebrate diaspore dispersal on the structure of seedling communities beneath nurse plants. The study was conducted in São Francisco de Paula, Rio Grande do Sul State, where we sampled isolated shrubs and trees in natural grassland near Araucaria Forest edges. Seedlings were counted and identified, and seedling diaspore dispersal syndromes, size and colour were registered. We detected 11 woody species with a potential role in nucleating grassland colonization by forest species. Beneath the canopies of nurse plants more forest species seedlings were found compared with open field grassland and the seedlings had diaspores mostly dispersed by vertebrates. Also, more seedlings were found under the canopy of A. angustifolia than beneath other nurse plant species. We conclude that A. angustifolia trees established on grassland act as nurse plants, by attracting disperser birds that promote colonization of the site by other forest species seedlings, and that under low level of grassland disturbance, conservation of frugivorous vertebrate assemblages may increase forest expansion over natural grassland and also facilitate the regeneration of degraded forest areas.  相似文献   

15.
Vast areas of forests in North‐eastern Ethiopia have been replaced by cropland, shrub land or grazing areas. Thus, information about how vegetation composition and structure varies with disturbance is fundamental to conservation of such areas. This study aimed to investigate the effects of disturbance on the population structure and regeneration potential of five dominant woody species within forest where local communities harvest wood and graze livestock. Vegetation structure and environmental variables were assessed in 50 quadrats (20 m × 20 m). In most of both disturbed and undisturbed treatments, Juniperus procera was the highest contributor to the basal area of the forest, while that of Olinia rochetiana was the lowest. Analysis of population structure showed high density at lower Diameter at Breast Height (DBH) and low density at higher DBH classes. Undisturbed forest treatments had 84% canopy cover, 22 m mean vegetation height and a density of 1320 trees of dominant species and 1024 seedlings/saplings ha?1. In disturbed habitats, canopy cover (73%), mean vegetation height (18 m) and density of dominant trees and saplings were significantly lower than in undisturbed habitats. Thus, to ensure species, survival and maintain species diversity managed use of the protected area is essential.  相似文献   

16.
The Aljibe Mountains are located in the southern tip of the Iberian Peninsula and have a remarkable biogeographical interest. The complete plant species list (trees, climbers, shrubs, perennial and annual herbs, ferns, lichens, bryophytes and macroscopic algae) was recorded in four 0.1 ha plots from each of the most representative community types (Quercus suber woodland, Q. canariensis forest, open heathland and Q. coccifera shrubland). Up to 119 plant species were found in total in the Q. suber woodland plot. The diversity of woody plants was analysed from 44 samples of cover (100 m line), and the herbaceous layer was explored in 200 quadrats (of 0.5 × 0.5 m). Three biodiversity components (species richness, endemism, and taxonomic singularity) were evaluated in both shrub and herbaceous layers. Open heathlands showed the highest richness of endemic species, both woody and herbaceous. The highest number of woody species was found in the evergreen Q. suber woodland, and of herbaceous species in the semi-deciduous Q. canariensis woodland. Taxonomic singularity was higher in Q. canariensis woodlands and Q. coccifera shrublands for woody species, but there were no significant differences in the herbaceous layer. Local species diversity of heathlands in this region resembles that of South African heathlands (fynbos), despite the obvious geographic and floristic distance, and contrasts with the low diversity of biogeographically closer, European temperate heathlands. The Aljibe Mountains show high diversity values for different life forms (from trees to mosses) and spatial scales (from community to region), and are rich in endemic species. Thus, this area should be recognised as a relevant unit within the Mediterranean plant diversity hot spots.  相似文献   

17.
Question: How do the diversity, size structure, and spatial pattern of woody species in a temperate (Mediterranean climate) forest compare to temperate and tropical forests? Location: Mixed evergreen coastal forest in the Santa Cruz Mountains, California, USA. Methods: We mapped, tagged, identified, and measured all woody stems (≥1 cm diameter) in a 6‐ha forest plot, following Center for Tropical Forest Science protocols. We compared patterns to those found in 14 tropical and 12 temperate forest plots. Results: The forest is dominated by Douglas‐fir (Pseudotsuga menziesii) and three species of Fagaceae (Quercus agrifolia, Q. parvula var. shrevei, and Lithocarpus densiflorus), and includes 31 woody species and 8180 individuals. Much of the diversity was in small‐diameter shrubs, treelets, and vines that have not been included in most other temperate forest plots because stems <5‐cm diameter had been excluded from study. The density of woody stems (1363 stems ha?1) was lower than that in all but one tropical plot. The density of large trees (diameter ≥30 cm) and basal area were higher than in any tropical plot. Stem density and basal area were similar to most other temperate plots, but were less than in low‐diversity conifer forests. Rare species were strongly aggregated, with the degree of aggregation decreasing with abundance so that the most common species were significantly more regular than random. Conclusions: The patterns raise questions about differences in structure and dynamics between tropical and temperate forests; these need to be confirmed with additional temperate zone mapped plots that include small‐diameter individuals.  相似文献   

18.
The destruction and fragmentation of tropical forests are major sources of global biodiversity loss. A better understanding of anthropogenically altered landscapes and their relationships with species diversity and composition is needed in order to protect biodiversity in these environments. The spatial patterns of a landscape may control the ecological processes that shape species diversity and composition. However, there is little information about how plant diversity varies with the spatial configuration of forest patches especially in fragmented tropical habitats. The northeastern part of Puerto Rico provides the opportunity to study the relationships between species richness and composition of woody plants (shrubs and trees) and spatial variables [i.e., patch area and shape, patch isolation, connectivity, and distance to the Luquillo Experimental Forest (LEF)] in tropical forest patches that have regenerated from pasturelands. The spatial data were obtained from aerial color photographs from year 2000. Each photo interpretation was digitized into a GIS package, and 12 forest patches (24–34 years old) were selected within a study area of 28 km2. The woody plant species composition of the patches was determined by a systematic floristic survey. The species diversity (Shannon index) and species richness of woody plants correlated positively with the area and the shape of the forest patch. Larger patches, and patches with more habitat edge or convolution, provided conditions for a higher diversity of woody plants. Moreover, the distance of the forest patches to the LEF, which is a source of propagules, correlated negatively with species richness. Plant species composition was also related to patch size and shape and distance to the LEF. These results indicate that there is a link between landscape structure and species diversity and composition and that patches that have similar area, shape, and distance to the LEF provide similar conditions for the existence of a particular plant community. In addition, forest patches that were closer together had more similarity in woody plant species composition than patches that were farther apart, suggesting that seed dispersal for some species is limited at the scale of 10 km.  相似文献   

19.
African forest elephants (Loxodonta cyclotis) are ecosystem engineers that browse and damage large quantities of vegetation during their foraging and movement. Though elephant trail networks and clearings are conspicuous features of many African forests, the consequences of elephant foraging for forest structure and diversity are poorly documented. In this study in northeastern Gabon, we compare stem size, stem density, proportional damage, species diversity, and species relative abundance of seedlings and saplings in the vicinity of seven tree species that produce elephant-preferred fruits (“elephant trees”) relative to control trees that do not. Across 34 survey trees, with a combined census area of 2.04 ha, we recorded data on 26,128 woody stems in three sizes classes. Compared with control trees, the area around elephant trees had the following: (a) a significantly greater proportion of damaged seedlings and a marginally greater proportion of damaged saplings (with 82% and 24% greater odds of damage, respectively); (b) no significant difference in stem density or species diversity; and (c) a significantly greater relative abundance of seedlings of elephant tree species. Increasing distance away from focal elephant trees was associated with significantly reduced sapling stem damage, significantly increased sapling stem density, and significantly increased sapling species diversity. Considered in sum, our results suggest that elephants can affect the structure and diversity of Afrotropical forests through their foraging activities, with some variation based on location and plant size class. Developing a more complete understanding of elephants’ ecological effects will require continued research, ideally with manipulative experiments.  相似文献   

20.
Mount Kenya is of ecological importance in tropical east Africa due to the dramatic gradient in vegetation types that can be observed from low to high elevation zones. However, species richness and phylogenetic diversity of this mountain have not been well studied. Here, we surveyed distribution patterns for a total of 1,335 seed plants of this mountain and calculated species richness and phylogenetic diversity across seven vegetation zones. We also measured phylogenetic structure using the net relatedness index (NRI) and the nearest species index (NTI). Our results show that lower montane wet forest has the highest level of species richness, density, and phylogenetic diversity of woody plants, while lower montane dry forest has the highest level of species richness, density, and phylogenetic diversity in herbaceous plants. In total plants, NRI and NTI of four forest zones were smaller than three alpine zones. In woody plants, lower montane wet forest and upper montane forest have overdispersed phylogenetic structures. In herbaceous plants, NRI of Afro‐alpine zone and nival zone are smaller than those of bamboo zone, upper montane forest, and heath zone. We suggest that compared to open dry forest, humid forest has fewer herbaceous plants because of the closed canopy of woody plants. Woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. We also proposed lower and upper montane forests with high species richness or overdispersed phylogenetic structures as the priority areas in conservation of Mount Kenya and other high mountains in the Eastern Afro‐montane biodiversity hotspot regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号