首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of daytime carbon dioxide concentration on dark respiration in rice   总被引:5,自引:1,他引:4  
Rising atmospheric carbon dioxide concentration ([CO2]) has generated considerable interest in the response of agricultural crops to [CO2]. The objectives of this study were to determine the effects of a wide range of daytime [CO2] on dark respiration of rice (Oryza sativa L. cv. IR-30). Rice plants were grown season-long in naturally sunlit plant growth chambers in subambient (160 and 250), ambient (330), or super-ambient (500, 660 and 900 μmol CO2 mol?1 air) [CO2] treatments. Canopy dark respiration, expressed on a ground area basis (Rd) increased with increasing [CO2] treatment from 160 to 500 μmol mol?1 treatments and was very similar among the superambient treatments. The trends in Rd over time and in response to increasing daytime [CO2] treatment were associated with and similar to trends previously described for photosynthesis. Specific respiration rate (Rdw) decreased with time during the growing season and was higher in the subambient than the ambient and superambient [CO2] treatments. This greater Rdw in the subambient [CO2] treatments was attributed to a higher specific maintenance respiration rate and was associated with higher plant tissue nitrogen concentration.  相似文献   

2.
Rice (Oryza sativa[L.] cv. IR-72) was grown for a season in sunlit, controlled-environment chambers at 350 or 700 µmol CO2 mol?1 under continuously flooded (unstressed) or drought-imposed periods at panicle initiation (stressed). The midday canopy photosynthetic rates (Pn), measured at the CO2 concentration ([CO2]) used for growth, were enhanced by high [CO2] but reduced by drought. High [CO2] increased Pn by 18 to 34% for the unstressed plants, and 6 to 12% for the stressed plants. In the unstressed plants, CO2 enrichment increased water-use efficiency (WUE) by 26%, and reduced evapotranspiration (ET) by 8 to 14%. Both high [CO2] and severe drought decreased the activity and content of ribulose bisphosphate carboxylase-oxygenase (Rubisco). High-CO2-unstressed plants had 6 to 22% smaller content and 5 to 25%, lower activity of Rubisco than ambient-CO2-unstressed plants. Under severe drought, reductions of Rubisco were 53 and 27% in activity and 40 and 12% in content, respectively, for ambient- and high-CO2 treatments. The apparent catalytic turnover rate (Kcat) of midday fully activated Rubisco was not altered by high [CO2], but severe drought reduced Kcat by 17 to 23%. Chloroplasts of the high-CO2 leaves contained more, and larger starch grains than those of the ambient CO2 leaves. High [CO2] did not affect the leaf sucrose content of unstressed plants. In contrast, severe drought reduced the leaf starch and increased the sucrose content in both CO2 treatments. The activity of leaf sucrose phosphate synthase of unstressed plants was not affected by high [CO2], whereas that of ambient-CO2-grown plants was reduced 45% by severe drought. Reduction in ET and enhancements in both Pn and WUE for rice grown under high [CO2] helped to delay the adverse effects of severe drought and allowed the stressed plants to assimilate CO2 for an extra day. Thus, rice grown in the next century may utilize less water, use water more efficiently, and be able to tolerate drought better under some situations.  相似文献   

3.
Strawberry (Fragaria × ananassa) plants were grown in field plots at the current ambient [CO2], and at ambient + 300 and ambient + 600 μmol mol−1 [CO2]. Approximately weekly measurements were made of single leaf gas exchange of upper canopy leaves from early spring through fall of two years, in order to determine the temperature dependence of the stimulation of photosynthesis by elevated [CO2], whether growth at elevated [CO2] resulted in acclimation of photosynthesis, and whether any photosynthetic acclimation was reduced when fruiting created additional demand for the products of photosynthesis. Stimulation of photosynthetic CO2 assimilation by short-term increases in [CO2] increased strongly with measurement temperature. The stimulation exceeded that predicted from the kinetic characteristics of ribulose-1,5-bisphosphate carboxylase at all temperatures. Acclimation of photosynthesis to growth at elevated [CO2] was evident from early spring through summer, including the fruiting period in early summer, with lower rates under standard measurement conditions in plants grown at elevated [CO2]. The degree of acclimation increased with growth [CO2]. However, there were no significant differences between [CO2] treatments in total nitrogen per leaf area, and photosynthetic acclimation was reversed one day after switching the [CO2] treatments. Tests showed that acclimation did not result from a limitation of photosynthesis by triose phosphate utilization rate at elevated [CO2]. Photosynthetic acclimation was not evident during dry periods in midsummer, when the elevated [CO2] treatments conserved soil water and photosynthesis declined more at ambient than at elevated [CO2]. Acclimation was also not evident during the fall, when plants were vegetative, despite wet conditions and continued higher leaf starch content at elevated [CO2]. Stomatal conductance responded little to short-term changes in [CO2] except during drought, and changed in parallel with photosynthetic acclimation through the seasons in response to the long-term [CO2] treatments. The data do not support the hypothesis that source-sink balance controls the seasonal occurrence of photosynthetic acclimation to elevated [CO2] in this species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
This study investigated the effects of a gradual versus step increases in carbon dioxide (CO2) on plant photosynthesis and growth at two nitrogen (N) levels. Plantago lanceolata were grown for 80 days and then treated with the ambient CO2 (as the control), gradual CO2 increase and step CO2 increase as well as low and high N additions for 70 days. While [CO2] were kept at constant 350 and 700 μmol mol−1 for the ambient and step CO2 treatments, respectively, [CO2] in the gradual CO2 treatment was raised by 5 μmol mol−1 day−1, beginning at 350 μmol mol−1 and reaching 700 μmol mol−1 by the end of experiment. The step CO2 treatment immediately resulted in an approximate 50% increase in leaf photosynthetic carbon fixation at both the low and high N additions, leading to a 20–24% decrease in leaf N concentration. The CO2-induced nitrogen stress, in return, resulted in partial photosynthetic downregulation since the third week at the low N level and the fourth week at the high N level after treatments. In comparison, the gradual CO2 treatment induced a gradual increase in photosynthetic carbon fixation, leading to less reduction in leaf N concentration. In comparison to the ambient CO2, both the gradual and step CO2 increases resulted in decreases in specific leaf area, leaf N concentration but an increase in plant biomass. Responses of plant shoot:root ratio to CO2 treatments varied with N supply. It decreased with low N supply and increased with high N supply under the gradual and step CO2 treatments relative to that under the ambient CO2. Degrees of those changes in physiological and growth parameters were usually larger under the step than the gradual CO2 treatments, largely due to different photosynthetic C influxes under the two CO2 treatments.  相似文献   

5.
Global atmospheric carbon dioxide concentration ([CO2]) is increasing rapidly. The Intergovernmental Panel on Climate Change estimated that atmospheric [CO2] has risen from approximately 280 μmol mol?1 in pre-industrial times to approximately 381 μmol mol?1 at present and will reach 550 μmol mol?1 by 2050. In the absence of strict emission controls, atmospheric [CO2] is likely to reach 730–1020 μmol mol?1 by 2100. Rising atmospheric [CO2] is the primary driver of global warming, but as the principal substrate for photosynthesis it also directly affects the yield and quality of crops. Food quality is receiving much more attentions recently, however, compared with grain yield, our understanding in the response of grain quality to elevated [CO2] is very limited. Rice (Oryza sativa L.) is one of the most important crops in the world and the first staple food in Asia, providing nutrition to a large proportion of the world’s population. Elevated [CO2] leads to numerous physiological changes in rice crops, such as changes in the photosynthesis and assimilate translocation, nutrient uptake and translocation, water relation, and altered gene expression and enzyme activity. These altered processes are very likely to affect the chemical and physical characteristics of rice grains. In this review, we first describe main characteristics of rice grain quality, and then summarize findings in literature related to the impact of elevated [CO2] on grain quality falling into four categories: processing quality, appearance, cooking and eating quality, and nutritional quality, as well as the possible mechanisms responsible for the observed impacts. Elevated [CO2] caused serious deterioration of processing suitability, in particular, head rice percentage was significantly decreased. In most cases, elevated [CO2] increased chalkiness of rice grains. The evaluation of physicochemical characteristics together with starch Rapid Visco Analyser (RVA) properties indicated no change or small changes in cooking and eating quality under elevated [CO2], and these changes could not be detected by sensory taste panel evaluation. Elevated [CO2] significantly decreased nitrogen or protein concentration in rice grains, while in most cases other macro- and micro-nutrients showed no change or decrease in concentration. In addition, the responses of rice quality to elevated [CO2] might be modified by varieties, applied fertilizer rates or gas fumigation methodologies. The available information in the literature indicates a clear tendency of quality deterioration and thus lower commercial value for rice grains grown under a projected high CO2 environment. Understanding the factors causing quality deterioration in rice and the related biological mechanisms might be the utmost important scientific theme in future research. Here we also discuss the necessity of formulating adaptation strategies for rice production in future atmospheric environments, nevertheless, the increase in yield, the improvement in quality and stress resistance of rice should be combined and integrated into the adaptation approaches. Compared with enclosure studies, the field experiments using Free-Air CO2 Enrichment (FACE) system provide sufficient experimental space and the most realistic mimic of a future high CO2 atmosphere, and give scientists perhaps the best opportunity to achieve multiple goals.  相似文献   

6.
Leaf gas-exchange and chemical composition were investigated in seedlings of Quercus suber L. grown for 21 months either at elevated (700 μmol mol–1) or normal (350 μmol mol–1) ambient atmospheric CO2 concentrations, [CO2], in a sandy nutrient-poor soil with either ‘high’ N (0.3 mol N m–3 in the irrigation solution) or with ‘low’ N (0.05 mol N m–3) and with a constant suboptimal concentration of the other macro- and micronutrients. Although elevated [CO2] yielded the greatest total plant biomass in ‘high’ nitrogen treatment, it resulted in lower leaf nutrient concentrations in all cases, independent of the nutrient addition regime, and in greater nonstructural carbohydrate concentrations. By contrast, nitrogen treatment did not affect foliar N concentrations, but resulted in lower phosphorus concentrations, suggesting that under lower N, P use-efficiency in foliar biomass production was lower. Phosphorus deficiency was evident in all treatments, as photosynthesis became CO2 insensitive at intercellular CO2 concentrations larger than ≈ 300 μmol mol–1, and net assimilation rates measured at an ambient [CO2] of 350 μmol mol–1 or at 700 μmol mol–1 were not significantly different. Moreover, there was a positive correlation of foliar P with maximum Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase) carboxylase activity (Vcmax), which potentially limits photosynthesis at low [CO2], and the capacities of photosynthetic electron transport (Jmax) and phosphate utilization (Pmax), which are potentially limiting at high [CO2]. None of these potential limits was correlated with foliar nitrogen concentration, indicating that photosynthetic N use-efficiency was directly dependent on foliar P availability. Though the tendencies were towards lower capacities of potential limitations of photosynthesis in high [CO2] grown specimens, the effects were statistically insignificant, because of (i) large within-treatment variability related to foliar P, and (ii) small decreases in P/N ratio with increasing [CO2], resulting in balanced changes in other foliar compounds potentially limiting carbon acquisition. The results of the current study indicate that under P-deficiency, the down-regulation of excess biochemical capacities proceeds in a similar manner in leaves grown under normal and elevated [CO2], and also that foliar P/N ratios for optimum photosynthesis are likely to increase with increasing growth CO2 concentrations. Symbols: A, net assimilation rate (μmol m–2 s–1); Amax, light-saturated A (μmol m–2 s–1); α, initial quantum yield at saturating [CO2] and for an incident Q (mol mol–1); [CO2], atmospheric CO2 concentration (μmol mol–1); Ci, intercellular CO2 concentration (μmol mol–1); Ca, CO2 concentration in the gas-exchange cuvette (μmol mol–1); FB, fraction of leaf N in ‘photoenergetics’; FL, fraction of leaf N in light harvesting; FR, fraction of leaf N in Rubisco; Γ*, CO2 compensation concentration in the absence of Rd (μmol mol–1); Jmax*, capacity for photosynthetic electron transport; Jmc, capacity for photosynthetic electron transport per unit cytochrome f (mol e[mol cyt f]–1 s–1); Kc, Michaelis-Menten constant for carboxylation (μmol mol–1); Ko, Michaelis-Menten constant for oxygenation (mmol mol–1); MA, leaf dry mass per area (g m–2); O, intercellular oxygen concentration (mmol mol–1); [Pi], concentration of inorganic phosphate (mM); Pmax*, capacity for phosphate utilization; Q, photosynthetically active quantum flux density (μmol m–2 s–1); Rd*, day respiration (CO2 evolution from nonphotorespiratory processes continuing in the light); Rubisco, ribulose-1,5-bisphosphate carboxylase/oxygenase; RUBP, ribulose-1,5-bisphosphate; Tl, leaf temperature (°C); UTPU*, rate of triose phosphate utilization; Vcmax*, maximum Rubisco carboxylase activity; Vcr, specific activity of Rubisco (μmol CO2[g Rubisco]–1 s–1] *given in either μmol m–2 s–1 or in μmol g–1 s–1 as described in the text.  相似文献   

7.
To examine the role of sink size on photosynthetic acclimation under elevated atmospheric CO2 concentrations ([CO2]), we tested the effects of panicle-removal (PR) treatment on photosynthesis in rice (Oryza sativa L.). Rice was grown at two [CO2] levels (ambient and ambient + 200 μmol mol−1) throughout the growing season, and at full-heading stage, at half the plants, a sink-limitation treatment was imposed by the removal of the panicles. The PR treatment alleviated the reduction of green leaf area, the contents of chlorophyll (Chl) and Rubisco after the full-heading stage, suggesting delay of senescence. Nonetheless, elevated [CO2] decreased photosynthesis (measured at current [CO2]) of plants exposed to the PR treatment. No significant [CO2] × PR interaction on photosynthesis was observed. The decrease of photosynthesis by elevated [CO2] of plants was associated with decreased leaf Rubisco content and N content. Leaf glucose content was increased by the PR treatment and also by elevated [CO2]. In conclusion, a sink-limitation in rice improved N status in the leaves, but this did not prevent the photosynthetic down-regulation under elevated [CO2].  相似文献   

8.
Over time, the relative effects of elevated [CO2] on the aboveground photosynthesis, growth and development of rice (Oryza sativa L.) are likely to be changed with increasing duration of CO2 exposure, but the resultant effects on rice belowground responses remain to be evaluated. To investigate the impacts of elevated [CO2] on seasonal changes in root growth, morphology and physiology of rice, a free‐air CO2 enrichment (FACE) experiment was performed at Wuxi, Jiangsu, China, in 2002–2003. A japonica cultivar with large panicle was exposed to two [CO2] (ambient [CO2], 370 μmol mol−1; elevated [CO2], 570 μmol mol−1) at three levels of nitrogen (N): low (LN, 15 g N m−2), medium (MN, 25 g N m−2) and high N (HN, 35 g N m−2). Elevated [CO2] increased cumulative root volume, root dry weight, adventitious root length and adventitious root number at all developmental stages by 25–71%, which was mainly associated with increased root growth rate during early growth period (EGP) and lower rate of root senescence during late growth period (LGP), while a slight inhibition of root growth rate occurred during middle growth period (MGP). For individual adventitious roots, elevated [CO2] increased average length, volume, diameter and dry weight early in the season, but the effects gradually disappeared in subsequent stages. Total surface area and active adsorption area per unit root dry weight reached their maxima 10 days earlier in FACE vs. ambient plants, but both of them together with root oxidation ability per unit root dry weight declined with elevated [CO2] during MGP and LGP, the decline being larger during MGP than LGP. The CO2‐induced decreases in specific root activities during MGP and LGP were associated with a larger amount of root accumulation during EGP and lower N concentration and higher C/N ratio in roots during MGP and LGP in FACE vs. ambient plants. The results suggest that most of the CO2‐induced increases in shoot growth of rice are similarly associated with increased root growth.  相似文献   

9.
The C4 grass Zea mays (maize or corn) is the third most important food crop globally in terms of production and demand is predicted to increase 45% from 1997 to 2020. However, the effects of rising [CO2] upon C4 plants, and Z. mays specifically, are not sufficiently understood to allow accurate predictions of future crop production. A rainfed, field experiment utilizing free‐air concentration enrichment (FACE) technology in the primary area of global corn production (US Corn Belt) was undertaken to determine the effects of elevated [CO2] on corn. FACE technology allows experimental treatments to be imposed upon a complete soil–plant–atmosphere continuum with none of the effects of experimental enclosures on plant microclimate. Crop performance was compared at ambient [CO2] (354 μ mol mol?1) and the elevated [CO2] (549 μmol mol?1) predicted for 2050. Previous laboratory studies suggest that under favorable growing conditions C4 photosynthesis is not typically enhanced by elevated [CO2]. However, stomatal conductance and transpiration are decreased, which can indirectly increase photosynthesis in dry climates. Given the deep soils and relatively high rainfall of the US Corn Belt, it was predicted that photosynthesis would not be enhanced by elevated [CO2]. The diurnal course of gas exchange of upper canopy leaves was measured in situ across the growing season of 2002. Contrary to the prediction, growth at elevated [CO2] significantly increased leaf photosynthetic CO2 uptake rate (A) by up to 41%, and 10% on average. Greater A was associated with greater intercellular [CO2], lower stomatal conductance and lower transpiration. Summer rainfall during 2002 was very close to the 50‐year average for this site, indicating that the year was not atypical or a drought year. The results call for a reassessment of the established view that C4 photosynthesis is insensitive to elevated [CO2] under favorable growing conditions and that the production potential of corn in the US Corn Belt will not be affected by the global rise in [CO2].  相似文献   

10.
The C4 cereal Sorghum bicolor was grown under either ambient (350 μmol mol?1) or elevated (700 μmol mol?1) [CO2] in either the presence or absence of the C3 obligate root hemi-parasites Striga hermonthica or S. asiatica. Both uninfected and infected sorghum plants were taller and had greater biomass, photosynthetic rates, water-use efficiencies and leaf areas under elevated compared with ambient [CO2]. There was no evidence of any downregula-tion of photosynthesis in sorghum grown at elevated [CO2]. Biomass of infected sorghum was lower under both ambient and elevated [CO2], and although infected plants were larger under elevated [CO2] the relative impact of infection on host biomass was either the same (S. asiatica) or only slightly less (S. hermonthica) than under ambient [CO2]. In contrast, biomass of S. hermonthica and S. asiatica per host was lower under elevated than ambient [CO2], although rates of photosynthesis were higher at elevated [CO2] and parasite stomatal conductance was not responsive to [CO2]. Parasites emerged above-ground and flowered earlier under ambient compared with elevated [CO2]. It appears that the mechanism(s) by which the parasites affect host growth is (are) relatively insensitive to increased atmospheric [CO2], although the parasites themselves were adversely affected by growth at elevated [CO2].  相似文献   

11.
Bunce  J.A. 《Photosynthetica》2000,38(1):83-89
Leaves developed at high irradiance (I) often have higher photosynthetic capacity than those developed at low I, while leaves developed at elevated CO2 concentration [CO2] often have reduced photosynthetic capacity compared with leaves developed at lower [CO2]. Because both high I and elevated [CO2] stimulate photosynthesis of developing leaves, their contrasting effects on photosynthetic capacity at maturity suggest that the extra photosynthate may be utilized differently depending on whether I or [CO2] stimulates photosynthesis. These experiments were designed to test whether relationships between photosynthetic income and the net accumulation of soluble protein in developing leaves, or relationships between soluble protein and photosynthetic capacity at full expansion differed depending on whether I or [CO2] was varied during leaf development. Soybean plants were grown initially with a photosynthetic photon flux density (PPFD) of 950 µmol m–2 s–1 and 350 µmol [CO2] mol–1, then exposed to [CO2] ranging from 135 to 1400 µmol mol–1 for the last 3 d of expansion of third trifoliolate leaves. These results were compared with experiments in which I was varied at a constant [CO2] of 350 µmol mol–1 over the same developmental period. Increases in area and dry mass over the 3 d were determined along with daily photosynthesis and respiration. Photosynthetic CO2 exchange characteristics and soluble protein content of leaves were determined at the end of the treatment periods. The increase in leaflet mass was about 28 % of the dry mass income from photosynthesis minus respiration, regardless of whether [CO2] or I was varied, except that very low I or [CO2] increased this percentage. Leaflet soluble protein per unit of area at full expansion had the same positive linear relationship to photosynthetic income whether [CO2] or I was varied. For variation in I, photosynthetic capacity varied directly with soluble protein per unit area. This was not the case for variation in [CO2]. Increasing [CO2] reduced photosynthetic capacity per unit of soluble protein by up to a factor of 2.5, and photosynthetic capacity exhibited an optimum with respect to growth [CO2]. Thus CO2 did not alter the relationship between photosynthetic income and the utilization of photosynthate in the net accumulation of soluble protein, but did alter the relationship between soluble protein content and photosynthetic characteristics in this species.  相似文献   

12.
Recent work has suggested that the photosynthetic rate of certain C4 species can be stimulated by increasing CO2 concentration, [CO2], even under optimal water and nutrients. To determine the basis for the observed photosynthetic stimulation, we tested the hypothesis that the CO2 leak rate from the bundle sheath would be directly related to any observed stimulation in single leaf photosynthesis at double the current [CO2]. Three C4 species that differed in the reported degree of bundle sheath leakiness to CO2, Flaveria trinervia, Panicum miliaceum, and Panicum maximum, were grown for 31–48 days after sowing at a [CO2] of 350 μl l?1 (ambient) or 700 μl l?1 (elevated). Assimilation as a function of increasing [CO2] at high photosynthetic photon flux density (PPFD, 1 600 μmol m?2 s?1) indicated that leaf photosynthesis was not saturated under current ambient [CO2] for any of the three C4 species. Assimilation as a function of increasing PPFD also indicated that the response of leaf photosynthesis to elevated [CO2] was light dependent for all three C4 species. The stimulation of leaf photosynthesis at elevated [CO2] was not associated with previously published values of CO2 leak rates from the bundle sheath, changes in the ratio of activities of PEP-carboxylase to RuBP carboxylase/oxgenase, or any improvement in daytime leaf water potential for the species tested in this experiment. In spite of the simulation of leaf photosynthesis, a significant increase in growth at elevated [CO2] was only observed for one species, F. trinervia. Results from this study indicate that leaf photosynthetic rates of certain C4 species can respond directly to increased [CO2] under optimal growth conditions, but that the stimulation of whole plant growth at elevated carbon dioxide cannot be predicted solely on the response of individual leaves.  相似文献   

13.
This study was conducted to determine the response in leaf growth and gas exchange of soybean (Glycine max Merr.) to the combined effects of water deficits and carbon dioxide (CO2) enrichment. Plants grown in pots were allowed to develop initially in a glasshouse under ambient CO2 and well-watered conditions. Four-week old plants were transferred into two different glasshouses with either ambient (360 μmol mol-1) or elevated (700 μmol mol-1) CO2. Following a 2-day acclimation period, the soil of the drought-stressed pots was allowed to dry slowly over a 2-week period. The stressed pots were watered daily so that the soil dried at an equivalent rate under the two CO2 levels. Elevated [CO2] decreased water loss rate and increased leaf area development and photosynthetic rate under both well-watered and drought-stressed conditions. There was, however, no significant effect of [CO2] in the response relative to soil water content of normalized leaf gas exchange and leaf area. The drought response based on soil water content for transpiration, leaf area, and photosynthesis provide an effective method for describing the responses of soybean physiological processes to the available soil water, independent of [CO2].  相似文献   

14.
Native scrub‐oak communities in Florida were exposed for three seasons in open top chambers to present atmospheric [CO2] (approx. 350 μmol mol?1) and to high [CO2] (increased by 350 μmol mol?1). Stomatal and photosynthetic acclimation to high [CO2] of the dominant species Quercus myrtifolia was examined by leaf gas exchange of excised shoots. Stomatal conductance (gs) was approximately 40% lower in the high‐ compared to low‐[CO2]‐grown plants when measured at their respective growth concentrations. Reciprocal measurements of gs in both high‐ and low‐[CO2]‐grown plants showed that there was negative acclimation in the high‐[CO2]‐grown plants (9–16% reduction in gs when measured at 700 μmol mol?1), but these were small compared to those for net CO2 assimilation rate (A, 21–36%). Stomatal acclimation was more clearly evident in the curve of stomatal response to intercellular [CO2] (ci) which showed a reduction in stomatal sensitivity at low ci in the high‐[CO2]‐grown plants. Stomatal density showed no change in response to growth in high growth [CO2]. Long‐term stomatal and photosynthetic acclimation to growth in high [CO2] did not markedly change the 2·5‐ to 3‐fold increase in gas‐exchange‐derived water use efficiency caused by high [CO2].  相似文献   

15.
Will elevated CO2 concentrations protect the yield of wheat from O3 damage?   总被引:4,自引:2,他引:2  
This study investigated the interacting effects of carbon dioxide and ozone concentrations on the growth and yield of spring whet (Triticum aestivum L. cv. Wembley). Plants were exposed from time of sowing to harvest to reciprocal combinations of two carbon dioxide and two ozone treatments: [CO2] at 350 or 700 μmol mol?1, and [O3] at < 5 or 60 nmol mol?1. Records of leaf emergence, leaf duration and tillering were taken throughout leaf development. At harvest, biomass, yield and partitioning were analysed. Our data showed that elevated [CO2] fully protected against the detrimental effect of elevated [O3] on biomass, but not yield.  相似文献   

16.
In order to separate the net effect of growth at elevated [CO2] on stomatal conductance (gs) into direct and acclimatory responses, mid‐day values of gs were measured for plants grown in field plots in open‐topped chambers at the current ambient [CO2], which averaged 350 μmol mol?1 in the daytime, and at ambient + 350 μmol mol?1[CO2] for winter wheat, winter barley, potato and sorghum. The acclimatory response was determined by comparing gs measured at 700 μmol mol?1[CO2] for plants grown at the two [CO2]. The direct effect of increasing [CO2] from 350 to 700 μmol mol?1 was determined for plants grown at the lower concentration. Photosynthetic rates were measured concurrently with gs. For all species, growth at the higher [CO2] significantly reduced gs measured at 700 μmol mol?1[CO2]. The reduction in gs caused by growth at the higher [CO2] was larger for all species on days with low leaf to air water vapour pressure difference for a given temperature, which coincided with highest conductances and also the smallest direct effects of increased [CO2] on conductance. For barley, there was no other evidence for stomatal acclimation, despite consistent down‐regulation of photosynthetic rate in plants grown at the higher [CO2]. In wheat and potato, in addition to the vapour pressure difference interaction, the magnitude of stomatal acclimation varied directly in proportion to the magnitude of down‐regulation of photosynthetic rate through the season. In sorghum, gs consistently exhibited acclimation, but there was no down‐regulation of photosynthetic rate. In none of the species except barley was the direct effect the larger component of the net reduction in gs when averaged over measurement dates. The net effect of growth at elevated [CO2] on mid‐day gs resulted from unique combinations of direct and acclimatory responses in the various species.  相似文献   

17.
Spring wheat cv. Minaret was grown to maturity under three carbon dioxide (CO2) and two ozone (O3) concentrations in open-top chambers (OTC). Green leaf area index (LAI) was increased by elevated CO2 under ambient O3 conditions as a direct result of increases in tillering, rather than individual leaf areas. Yellow LAI was also greater in the 550 and 680 μmol mol–1 CO2 treatments than in the chambered ambient control; individual leaves on the main shoot senesced more rapidly under 550 μmol mol–1 CO2, but senescence was delayed at 680 μmol mol–1 CO2. Fractional light interception (f) during the vegetative period was up to 26% greater under 680 μmol mol–1 CO2 than in the control treatment, but seasonal accumulated intercepted radiation was only increased by 8%. As a result of greater carbon assimilation during canopy development, plants grown under elevated CO2 were taller at anthesis and stem and ear biomass were 27 and 16% greater than in control plants. At maturity, yield was 30% greater in the 680 μmol mol–1 CO2 treatment, due to a combination of increases in the number of ears per m–2, grain number per ear and individual grain weight (IGW). Exposure to a seasonal mean (7 h d–1) of 84 nmol mol–1 O3 under ambient CO2 decreased green LAI and increased yellow LAI, thereby reducing both f and accumulated intercepted radiation by ≈ 16%. Individual leaves senesced completely 7–28 days earlier than in control plants. At anthesis, the plants were shorter than controls and exhibited reductions in stem and ear biomass of 15 and 23%. Grain yield at maturity was decreased by 30% due to a combination of reductions in ear number m–2, the numbers of grains per spikelet and per ear and IGW. The presence of elevated CO2 reduced the rate of O3-induced leaf senescence and resulted in the maintenance of a higher green LAI during vegetative growth under ambient CO2 conditions. Grain yields at maturity were nevertheless lower than those obtained in the corresponding elevated CO2 treatments in the absence of elevated O3. Thus, although the presence of elevated CO2 reduced the damaging impact of ozone on radiation interception and vegetative growth, substantial yield losses were nevertheless induced. These data suggest that spring wheat may be susceptible to O3-induced injury during anthesis irrespective of the atmospheric CO2 concentration. Possible deleterious mechanisms operating through effects on pollen viability, seed set and the duration of grain filling are discussed.  相似文献   

18.
Peanut (Arachis hypogaea L. cv. Florunner) was grown from seed sowing to plant maturity under two daytime CO2 concentrations ([CO2]) of 360 μmol mol−1 (ambient) and 720 μmol mol−1 (elevated) and at two temperatures of 1.5 and 6.0 °C above ambient temperature. The objectives were to characterize peanut leaf photosynthesis responses to long-term elevated growth [CO2] and temperature, and to assess whether elevated [CO2] regulated peanut leaf photosynthetic capacity, in terms of activity and protein content of ribulose bisphosphate carboxylase-oxygenase (Rubisco), Rubisco photosynthetic efficiency, and carbohydrate metabolism. At both growth temperatures, leaves of plants grown under elevated [CO2] had higher midday photosynthetic CO2 exchange rate (CER), lower transpiration and stomatal conductance and higher water-use efficiency, compared to those of plants grown at ambient [CO2]. Both activity and protein content of Rubisco, expressed on a leaf area basis, were reduced at elevated growth [CO2]. Declines in Rubisco under elevated growth [CO2] were 27–30% for initial activity, 5–12% for total activity, and 9–20% for protein content. Although Rubisco protein content and activity were down-regulated by elevated [CO2], Rubisco photosynthetic efficiency, the ratio of midday light-saturated CER to Rubisco initial or total activity, of the elevated-[CO2] plants was 1.3- to 1.9-fold greater than that of the ambient-[CO2] plants at both growth temperatures. Leaf soluble sugars and starch of plants grown at elevated [CO2] were 1.3- and 2-fold higher, respectively, than those of plants grown at ambient [CO2]. Under elevated [CO2], leaf soluble sugars and starch, however, were not affected by high growth temperature. In contrast, high temperature reduced leaf soluble sugars and starch of the ambient-[CO2] plants. Activity of sucrose-P synthase, but not adenosine 5′-diphosphoglucose pyrophosphorylase, was up-regulated under elevated growth [CO2]. Thus, in the absence of other environmental stresses, peanut leaf photosynthesis would perform well under rising atmospheric [CO2] and temperature as predicted for this century.  相似文献   

19.
The purpose of this study was to test for direct inhibition of rice canopy apparent respiration by elevated atmospheric carbon dioxide concentration ([CO2]) across a range of short‐term air temperature treatments. Rice (cv. IR‐72) was grown in eight naturally sunlit, semiclosed, plant growth chambers at daytime [CO2] treatments of 350 and 700 μmol mol?1. Short‐term night‐time air temperature treatments ranged from 21 to 40 °C. Whole canopy respiration, expressed on a ground area basis (Rd), was measured at night by periodically venting the chambers with ambient air. This night‐time chamber venting and resealing procedure produced a range of increasing chamber [CO2] which we used to test for potential inhibitory effects of rising [CO2] on Rd. A nitrous oxide leak detection system was used to correct Rd measurements for chamber leakage rate (L) and also to determine if apparent reductions in night‐time Rd with rising [CO2] could be completely accounted for by L. The L was affected by both CO2 concentration gradient between the chamber and ambient air and the inherent leakiness of each individual chamber. Nevertheless, after correcting Rd for L, we detected a rapid and reversible, direct inhibition of Rd with rising chamber [CO2] for air temperatures above 21 °C. This effect was larger for the 350 compared with the 700 μmol mol?1 daytime [CO2] treatment and was also increased with increasing short‐term air temperature treatments. However, little difference in Rd was found between the two daytime [CO2] treatments when night‐time [CO2] was at the respective daytime [CO2]. These results suggest that naturally occurring diurnal changes in both ambient [CO2] and air temperature can affect Rd. Because naturally occurring diurnal changes in both [CO2] and air temperature can be expected in a future higher CO2 world, short‐term direct effects of these environmental variables on rice Rd can also be expected.  相似文献   

20.
The atmospheric CO2 concentration has increased from the pre-industrial concentration of about 280 μmol mol−1 to its present concentration of over 350 μmol mol−1, and continues to increase. As the rate of photosynthesis in C3 plants is strongly dependent on CO2 concentration, this should have a marked effect on photosynthesis, and hence on plant growth and productivity. The magnitude of photo-synthetic responses can be calculated based on the well-developed theory of photosynthetic response to intercellular CO2 concentration. A simple biochemically based model of photosynthesis was coupled to a model of stomatal conductance to calculate photosynthetic responses to ambient CO2 concentration. In the combined model, photosynthesis was much more responsive to CO2 at high than at low temperatures. At 350 μmol mol−1, photosynthesis at 35°C reached 51% of the rate that would have been possible with non-limiting CO2, whereas at 5°C, 77% of the CO2 non-limited rate was attained. Relative CO2 sensitivity also became smaller at elevated CO2, as CO2 concentration increased towards saturation. As photosynthesis was far from being saturated at the current ambient CO2 concentration, considerable further gains in photosynthesis were predicted through continuing increases in CO2 concentration. The strong interaction with temperature also leads to photosynthesis in different global regions experiencing very different sensitivities to increasing CO2 concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号