首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Planar lipid bilayer recordings were used to study Ca channels from bovine cardiac sarcolemmal membranes. Ca channel activity was recorded in the absence of nucleotides or soluble enzymes, over a range of membrane potentials and ionic conditions that cannot be achieved in intact cells. The dihydropyridine-sensitive L-type Ca channel, studied in the presence of Bay K 8644, was identified by a detailed comparison of its properties in artificial membranes and in intact cells. L-type Ca channels in bilayers showed voltage dependence of channel activation and inactivation, open and closed times, and single-channel conductances in Ba2+ and Ca2+ very similar to those found in cell-attached patch recordings. Open channels were blocked by micromolar concentrations of external Cd2+. In this cell-free system, channel activity tended to decrease during the course of an experiment, reminiscent of Ca2+ channel "rundown" in whole-cell and excised-patch recordings. A purely voltage-dependent component of inactivation was observed in the absence of Ca2+ stores or changes in intracellular Ca2+. Millimolar internal Ca2+ reduced unitary Ba2+ influx but did not greatly increase the rate or extent of inactivation or the rate of channel rundown. In symmetrical Ba2+ solutions, unitary conductance saturated as the Ba2+ concentration was increased up to 500 mM. The bilayer recordings also revealed activity of a novel Ca2+-permeable channel, termed "B-type" because it may contribute a steady background current at negative membrane potentials, which is distinct from L-type or T-type Ca channels previously reported. Unlike L-type channels, B-type channels have a small unitary Ba2+ conductance (7 pS), but do not discriminate between Ba2+ and Ca2+, show no obvious sensitivity to Bay K 8644, and do not run down. Unlike either L- or T-type channels, B-type channels did not require a depolarization for activation and displayed mean open times of greater than 100 ms.  相似文献   

2.
Based on the model of a toroidal protein-lipid pore, the effect of calcium ions on colicin E1 channel was predicted. In electrophysiological experiments Ca2+ suppressed the activity of colicin E1 channels in membranes formed of diphytanoylphosphatidylglycerol, whereas no desorption of the protein occurred from the membrane surface. The effect of Ca2+ was not observed on membranes formed of diphytanoylphosphatidylcholine. Single-channel measurements revealed that Ca2+-induced reduction of the colicin-induced current across the negatively charged membrane was due to a decrease in the number of open colicin channels and not changes in their properties. In line with the toroidal model, the effect of Ca2+ on the colicin E1 channel-forming activity is explained by alteration of the membrane lipid curvature caused by electrostatic interaction of Ca2+ with negatively charged lipid head groups.  相似文献   

3.
Application of Ca2+ to the inner surface of red-cell membranes activates unitary currents that can be measured in cell-attached and cell-free membrane patches. Ca2+ can be replaced by Pb2+ to activate the single channels. In addition to internal Ca2+ external K+ has to be present. The channels are preferentially permeable to K+ with a selectivity ratio PK:PNa of about 15:1 as estimated from measurement of reversal potentials. The dependence of channel activity on Ca2+ is compatible with the conception that the binding of two Ca2+ is necessary to open a single channel. Both the channel activity and the single-channel conductance exhibit inward rectification. External and internal Na+ inhibit the K+ currents. The reported results suggest that the unitary current events are responsible for the Ca2+-dependent K+ permeability known from measurement on cell suspensions. Therefore, comparison of the two techniques allows calculation of the number of K+ channels per red cell, which on average is about 10.  相似文献   

4.
Binding studies as well as affinity labelling and immunoblot techniques were used to identify and characterize the receptors for Ca2+ channel blockers in Drosophila brain membranes. Despite structural analogies with mammalian receptors, Drosophila binding sites for phenylalkylamines and 1,4-dihydropyridines, unlike those described in skeletal and cardiac muscle, were found to be located on separate Ca2+ channels. Single-channel bilayer recordings from reconstituted membranes revealed the presence of eight distinct cobalt-sensitive Ba2+-conducting channels in Drosophila brain membrane preparations. In good agreement with binding studies, the most frequently observed Ca2+ channel type (Ba2+ conductance of 13 pS) was extremely sensitive to phenylalkylamines but not affected by micromolar concentrations of 1,4-dihydropyridines. Distinct 1,4-dihydropyridine-sensitive and phenylalkylamine-insensitive channels were also identified. They had unitary Ba2+ conductances of 21 and 31 pS. A detailed analysis of drug action showed that both 1,4-dihydropyridines and phenylalkylamines first increased channel open state probability before fully blocking channel activity. Other types of channels have been identified with unitary Ba2+ conductances of 9, 41, 53, 64 and 81 pS. They were insensitive to the previously described organic Ca2+ channel blockers. The Drosophila system seems to be a unique model to analyse the properties of several different types of Ca2+ channels and particularly those of channel types that are uniquely blocked by phenylalkylamines or uniquely blocked by 1,4-dihydropyridines.  相似文献   

5.
Increased membrane permeability (conductance) that is specific for K+ and directly activated by Ca2+ ions, has been identified in isolated adipocyte plasma membranes using the K+ analogue, 86Rb+. Activation of these K+ conductance pathways (channels) by free Ca2+ was concentration dependent with a half-maximal effect occurring at 32 +/- 4 nM free Ca2+ (n = 7). Addition of calmodulin further enhanced the Ca2+ activating effect on 86Rb+ uptake (K+ channel activity). Ca2+-dependent 86Rb+ uptake was inhibited by tetraethylammonium ion and low pH. It is concluded that the adipocyte plasma membrane possesses K+ channels that are activated by Ca2+ and amplified by calmodulin.  相似文献   

6.
Ca2+- and phospholipid-dependent protein kinase (protein kinase C) has been shown to modify receptor-mediated Ca2+ responses in a variety of cells. To assess its possible role in modulating voltage-dependent Ca2+ responses, we examined the effect of tumor-promoting phorbol esters, which activate protein kinase C, on Ca2+ channel function in the PC12 neural cell line. Phorbol 12-myristate 13-acetate reduced K+-depolarization-evoked 45Ca uptake and decreased binding of the Ca2+ channel antagonist [3H] (+)PN200-110 to intact cells. Inhibition of binding was markedly reduced in PC12 membranes, but was restored by reconstituting membranes with protein kinase C activity. Protein kinase C may therefore participate in endogenous regulation of voltage-dependent Ca2+ channels in mammalian neural cells.  相似文献   

7.
We investigated the functional interdependence of sarco-endoplasmic reticulum Ca2+ ATPase isoform 1 and ryanodine receptor isoform 1 in heavy sarcoplasmic reticulum membranes by synchronous fluorescence determination of extravesicular Ca2+ transients and catalytic activity. Under conditions of dynamic Ca2+ exchange ATPase catalytic activity was well coordinated to ryanodine receptor activation/inactivation states. Ryanodine-induced activation of Ca2+ release channel leaks also produced marked ATPase activation in the absence of measurable increases in bulk free extravesicular Ca2+. This suggested that Ca2+ pumps are highly sensitive to Ca2+ release channel leak status and potently buffer Ca2+ ions exiting cytoplasmic openings of ryanodine receptors. Conversely, ryanodine receptor activation was dependent on Ca2+-ATPase pump activity. Ryanodine receptor activation by cytosolic Ca2+ was (i) inversely proportional to luminal Ca2+ load and (ii) dependent upon the rate of presentation of cytosolic Ca2+. Progressive Ca2+ filling coincided with progressive loss of Ca2+ sequestration rates and at a threshold loading, ryanodine-induced Ca2+ release produced small transient reversals of catalytic activity. These data indicate that attainment of threshold luminal Ca2+ loads coordinates sensitization of Ca2+ release channels with autogenic inhibition of Ca2+ pumping. This suggests that Ca2+-dependent control of Ca2+ release in intact heavy sarcoplasmic reticulum membranes involves a Ca2+-mediated "cross-talk" between sarco-endoplasmic reticulum Ca2+ ATPase isoform 1 and ryanodine receptor isoform 1.  相似文献   

8.
FKBP12 was removed from ryanodine receptors (RyRs) by incubation of rabbit skeletal muscle terminal cisternae membranes with rapamycin. The extent of FKBP12 removal was estimated by immunostaining Western blots of terminal cisternae proteins. Single FKBP12-depleted RyR channels, incorporated into planar lipid bilayers, were modulated by Ca2+, ATP, ryanodine, and ruthenium red in the cis chamber and opened frequently to the normal maximum conductance of approximately 230 pS and to substate levels of approximately 0.25, approximately 0.5, and approximately 0.75 of the maximum conductance. Substate activity was rarely seen in native RyRs. Ryanodine did not after the number of conductance levels in FKBP12-depleted channels, but, at a membrane potential of +40 mV, reduced both the maximum and the substate conductances by approximately 50%. FKBP12-stripped channels were activated by a 10-fold-lower [Ca2+] and inhibited by a 10-fold-higher [Ca2+], than RyRs from control-incubated and native terminal cisternae vesicles. The open probability (Po) of these FKBP12-deficient channels was greater than that of control channels at 0.1 microM and 1 mM cis Ca2+ but no different at 10 microM cis Ca2+, where channels showed maximal Ca2+ activation. The approximately 0.25 substate was less sensitive than the maximum conductance to inhibition by Ca2+ and was the dominant level in channels inhibited by 1 mM cis Ca2+. The results show that FKBP12 coordinates the gating of channel activity in control and ryanodine-modified RyRs.  相似文献   

9.
Charybdotoxin is a high-affinity specific inhibitor of the high-conductance Ca2+-activated K+ channel found in the plasma membranes of many vertebrate cell types. Using Ca2+-activated K+ channels reconstituted into planar lipid bilayer membranes as an assay, we have purified the toxin from the venom of the scorpion Leiurus quinquestriatus by a two-step procedure involving chromatofocusing on SP-Sephadex, followed by reversed-phase high-performance liquid chromatography. Charybdotoxin is shown to be a highly basic protein with a mass of 10 kDa. Under our standard assay conditions, the purified toxin inhibits the Ca2+-activated K+ channel with an apparent dissociation constant of 3.5 nM. The protein is unusually stable, with inhibitory potency being insensitive to boiling or exposure to organic solvents. The toxin's activity is sensitive to chymotrypsin treatment and to acylation of lysine groups. The protein may be radioiodinated without loss of activity.  相似文献   

10.
Ca2+ regulation of vascular smooth muscle   总被引:5,自引:0,他引:5  
Regulation of intracellular free Ca2+ concentrations in vascular smooth muscle is accomplished mainly by Ca2+ channels and ATP-dependent Ca2+ pumps in the plasmalemma and sarcoplasmic reticulum (SR). Ca2+ entry through the plasmalemma is apparently mediated by four different pathways: leak; receptor-operated Ca2+ channels; potential sensitive Ca2+ channels; and stretch-activated channels. The agonist releasable intracellular Ca2+ store appears to be identical with the SR. Evidence for the involvement of Ca2+-induced Ca2+ release and inositol-1,4,5-trisphosphate in the release of SR Ca2+ is discussed. Smooth muscle contractions induced by certain agonists may be further enhanced by inhibition of Ca2+ uptake by the SR and of active Ca2+ extrusion across the plasmalemma. At the moment it is not clear from a consideration of the Ca2+ regulatory mechanisms present in vascular smooth muscle how dietary Ca2+ affects vascular tone. The increased Ca2+ permeation through smooth muscle cell membranes of resistance arteries taken from spontaneously hypertensive rats may be relevant to this problem.  相似文献   

11.
Regulation of ciliary adenylate cyclase by Ca2+ in Paramecium.   总被引:2,自引:0,他引:2       下载免费PDF全文
In the ciliated protozoan Paramecium, Ca2+ and cyclic nucleotides are believed to act as second messengers in the regulation of the ciliary beat. Ciliary adenylate cyclase was activated 20-30-fold (half-maximal at 0.8 microM) and inhibited by higher concentrations (10-20 microM) of free Ca2+ ion. Ca2+ activation was the result of an increase in Vmax., not a change in Km for ATP. The activation by Ca2+ was seen only with Mg2+ATP as substrate; with Mn2+ATP the basal adenylate cyclase activity was 10-20-fold above that with Mg2+ATP, and there was no further activation by Ca2+. The stimulation by Ca2+ of the enzyme in cilia and ciliary membranes was blocked by the calmodulin antagonists calmidazolium (half-inhibition at 5 microM), trifluoperazine (70 microM) and W-7 (50-100 microM). When ciliary membranes (which contained most of the ciliary adenylate cyclase) were prepared in the presence of Ca2+, their adenylate cyclase was insensitive to Ca2+ in the assay. However, the inclusion of EGTA in buffers used for fractionation of cilia resulted in full retention of Ca2+-sensitivity by the ciliary membrane adenylate cyclase. The membrane-active agent saponin specifically suppressed the Ca2+-dependent adenylate cyclase without inhibiting basal activity with Mg2+ATP or Mn2+ATP. The ciliary adenylate cyclase was shown to be distinct from the Ca2+-dependent guanylate cyclase; the two activities had different kinetic parameters and different responses to added calmodulin and calmodulin antagonists. Our results suggest that Ca2+ influx through the voltage-sensitive Ca2+ channels in the ciliary membrane may influence intraciliary cyclic AMP concentrations by regulating adenylate cyclase.  相似文献   

12.
Dihydropyridine-sensitive Ca2+ channels from skeletal muscle are multisubunit proteins and are regulated by protein phosphorylation. The purpose of this study was to determine: 1) which subunits are the preferential targets of various protein kinases when the channels are phosphorylated in vitro in their native membrane-bound state and 2) the consequences of these phosphorylations in functional assays. Using as substrates channels present in purified transverse (T) tubule membranes, cAMP-dependent protein kinase (PKA), protein kinase C (PKC), and a multifunctional Ca2+/calmodulin-dependent protein kinase (CaM protein kinase) preferentially phosphorylated the 165-kDa alpha 1 subunit to an extent that was 2-5-fold greater than the 52-kDa beta subunit. A protein kinase endogenous to the skeletal muscle membranes preferentially phosphorylated the beta peptide and showed little activity toward the alpha 1 subunit; however, the extent of phosphorylation was low. Reconstitution of partially purified channels into liposomes was used to determine the functional consequences of phosphorylation by these kinases. Phosphorylation of channels by PKA or PKC resulted in an activation of the channels that was observed as increases in both the rate and extent of Ca2+ influx. However, phosphorylation of channels by either the CaM protein kinase or the endogenous kinase in T-tubule membranes was without effect. Phosphorylation did not affect the sensitivities of the channels toward the dihydropyridines. Taken together, the results demonstrate that the alpha 1 subunit is the preferred substrate of PKA, PKC, and CaM protein kinase when the channels are phosphorylated in the membrane-bound state and that phosphorylation of the channels by PKA and PKC, but not by CaM protein kinase or an endogenous T-tubule membrane protein kinase, results in activation of the dihydropyridine-sensitive Ca2+ channels from skeletal muscle.  相似文献   

13.
Store-operated Ca2+ entry (SOCE) is the Ca2+ influx that is activated on depletion of intracellular Ca2+ stores. Although SOCE is found in a variety of cell types, its activation mechanism and molecular identity remain to be clarified. Current experimental results suggest that SOCE channels are activated by direct coupling with Ca2+ release channels on depleted stores. Here we report SOCE in cardiac myocytes, that was prominently sensitive to Zn2+ but resistant to inhibitors for voltage-dependent Ca2+ channels and Na+/Ca2+ exchangers. The SOCE activity may be developmentally regulated, because the SOCE was easily detected during embryonic and neonatal stages but not in mature myocytes from adult hearts. In cardiac myocytes, ryanodine receptor type 2 (RyR-2) is thought to be the sole Ca2+ release channel on the intracellular store, and junctophilin type 2 (JP-2) contributes to formation of the junctional complex between the cell surface and store membranes. Using the knockout mice, we also examined possible involvement of the Ca2+ release channel and junctional membrane complex in cardiac SOCE. Apparently normal SOCE activities were retained in mutant myocytes lacking RyR-2 or JP-2, suggesting that neither the Ca2+ release channel nor junctional membrane complex is involved in activation of cardiac SOCE.  相似文献   

14.
By using the patch-clamp technique the effect of 2-decenoic acid (DA) on Ca2+-activated potassium (K+) channels in the membrane of smooth muscle cells from the human aorta was studied. In the presence of 0.5 microM Ca2+ and 2 mM Mg2+ on the cytoplasmic side of the membrane, a more than tenfold elevation in the probability of the channels being open (po) was observed under the effect of DA. With divalent cation concentrations of less than 1 nM DA caused a more than twofold elevation in po. In the DA-treated membranes Mg2+ ions, which normally fail to activate the channels, brought about a nearly threefold increase in the channel activity when applied to the inner membrane surface. Channel sensitivity to the activating effect of cytoplasmic Ca2+ ions did not increase with the application of DA. Single-channel conductance was unchanged by DA exposure. We suggest that DA alters the Ca2+-binding mechanism of the channel, increasing its sensitivity to Mg2+ ions, presumably owing to membrane fluidization.  相似文献   

15.
The lipidic polymer, poly-3-hydroxybutyrate (PHB), is found in the plasma membranes of Escherichia col complexed to calcium polyphosphate (CaPPi). The composition, location, and putative structure of the polymer salt complexes led Reusch and Sadoff (1988) to propose that the complexes function as Ca2+ channels. Here we use bilayer patch-clamp techniques to demonstrate that voltage-activated Ca2+ channels composed of PHB and CaPPi are in the plasma membranes of E. coli. Single channel calcium currents were observed in vesicles of plasma membranes incorporated into planar bilayers of synthetic 1-palmitoyl, 2-oleoyl phosphatidylcholine. The channels were extracted from cells and incorporated into bilayers, where they displayed many of the signal characteristics of protein Ca2+ channels: voltage-activated selective for divalent over monovalent cations, permeant to Ca2+, manner by La3+, Co2+, Cd2+, and Mg2+, in that order. The channel-active extract, purified by size exclusion chromatography, was found to contain only PHB and CaPPi. This composition was confirmed by the observation of comparable single channel currents with complexes reconstituted from synthetic CaPPi and PHB, isolated from E. coli. This is the first report of a biological non-proteinaceous calcium channel. We suggest that poly-3-hydroxybutyrate/calcium polyphosphate complexes are evolutionary antecedents of protein Ca2+ channels.  相似文献   

16.
The correlation between the ATP-dependent Ca2+ binding and the phosphorylation of the membranes from swine and bovine erythrocytes was studied. The Ca2+ binding was measured by using 45CaCl2, and the phosphorylation by [gamma-32P]ATP was studied with the technique of SDS polyacrylamide gel electrophoresis. 200 mM NaCl and KCl markedly repressed the Ca2+ binding of swine erythrocyte membranes. The radioactivity of 32P-labelled membranes was revealed mainly in 250,000 dalton protein and a lipid fraction. NaCl and KCl also repressed the phosphorylation of the lipid which was identified as triphosphoinositide by paper chromatography. The membranes prepared from trypsin-digested erythrocytes completely retained the Ca2+-binding activity, and lost 30% of (Ca2+ + Mg2+)-ATPase activity. The Ca2+-binding and ATPase activity of isolated membranes decreased to 55% and to 0%, respectively, by tryptic digestion. Neither the Ca2+ binding nor the phosphorylation of polyphosphoinositides were detected in bovine erythrocyte membranes. These results suggest that the formation of triphosphoinositide rather than the (C2+ + Mg2+)-ATPase of membranes is linked to the ATP-dependent Ca2+ binding of erythrocyte membranes.  相似文献   

17.
Opening of the stomata is driven by the light-activated plasma membrane proton pumping ATPase, although the activation and inactivation mechanism of the enzyme is not known. In this study, we show that the H+-ATPase in guard cells is reversibly inhibited by Ca2+ at physiological concentrations. Isolated microsomal membranes of guard cell protoplasts from fava bean exhibited vanadate-sensitive, ATP-dependent proton pumping. The activity was inhibited almost completely by 1 [mu]M Ca2+ with a half-inhibitory concentration at 0.3 [mu]M and was restored immediately by the addition of 1,2-bis(2-aminophenoxy)ethane N,N,N[prime],N[prime]-tetraacetic acid, a calcium chelating reagent. Similar reversible inhibition by Ca2+ was shown by the generation of electrical potential in the membranes. Activity of ATP hydrolysis was inhibited similarly by Ca2+ in the same membrane preparations. The addition of 1,2-bis(2-aminophenoxy)ethane N,N,N[prime],N[prime]-tetraacetic acid and EGTA, Ca2+ chelators, to epidermal peels of fava bean induced stomatal opening in the dark, and the opening was suppressed by vanadate. This suggests that the lowered cytosolic Ca2+ activated the proton pump in vivo and that the activated pump elicited stomatal opening. Inhibition of H+-ATPase by Ca2+ may depolarize the membrane potential and could be a key step in the process of stomatal closing through activation of the anion channels. Furthermore, similar inhibition of the proton pumping and ATP hydrolysis by Ca2+ was found in isolated plasma membranes of mesophyll cells of fava bean. These results suggest that Ca2+ regulates the activity of plasma membrane H+-ATPases in higher plant cells, thereby modulating stomatal movement and other cellular processes in plants.  相似文献   

18.
Recently, we reported indirect evidence that plasma membrane Ca2+-ATPase (PMCA) can mediate B-type Ca2+ channels of cardiac myocytes. In the present study, in order to bring more direct evidence, purified PMCA from human red blood cells (RBC) was reconstituted into giant azolectin liposomes amenable to the patch-clamp technique. Purified RBC PMCA was used because it is available pure in larger quantity than cardiac PMCA. The presence of B-type Ca2+ channels was first investigated in native membranes of human RBC. They were detected and share the characteristics of cardiac myocytes. They spontaneously appeared in scarce short bursts of activity, they were activated by chlorpromazine (CPZ) with an EC50 of 149 mmole/l or 1 mmole/l vanadate, and then switched off by 10 mmole/l eosin or dose-dependently blocked by 1-5 mmole/l ATP. Independent of membrane potential, the channel gating exhibited complex patterns of many conductance levels, with three most often observed conductance levels of 22, 47 and 80 pS. The activation by vanadate suggests that these channels could play a role in the influx of extracellular Ca2+ involved in the vanadate-induced Gardos effect. In PMCA-reconstituted proteoliposomes, nearly half of the ATPase activity was retained and clear "channel-like" openings of Ba2+- or Ca2+-conducting channels were detected. Channel activity could be spontaneously present, lasting the patch lifetime or, when previously quiescent, activity could be induced by application of 50 mmole/l CPZ only in presence of 25 U/ml calmodulin (CaM), or by application of 1 mmole/l vanadate alone. Eosin (10 mmole/l) and ATP (5 mmole/l) significantly reduced spontaneous activity. Channel gating characteristics were similar to those of RBC, with main conductance levels of 21, 40 and 72 pS. The lack of direct activation by CPZ alone might be attributed to a purification-induced modification or absence of unidentified regulatory component(s) of PMCA. Despite a few differences in results between RBC and reincorporated PMCA, most probably attributable to the decrease in ATPase activity following the procedure of reincorporation, the present experimental conditions appear to reveal a channel-mode of the PMCA that shares many similarities with the B-type Ca2+ channel.  相似文献   

19.
The effect of annexin VI (67-kDa calcimedin) on the activity of the Ca2+ release channel was studied using heavy sarcoplasmic reticulum membranes reconstituted into planar bilayers. Annexin VI, in a range of 5-40 nM, modified the gating behavior of the Ca2+ release channel by increasing the probability of opening by 2.7-fold and the mean open time by 82-fold relative to controls. Annexin VI caused no change in the slope conductance of the channel. The modulatory effect of annexin VI on the activity of Ca2+ release channels was Ca2+ dependent, and the annexin VI-modified channel was sensitive to both ruthenium red and ryanodine. The effect of annexin VI was observed when this protein was added specifically to the trans chamber, which corresponds to the luminal side of sarcoplasmic reticulum as determined by the ATP activation of the channel. In addition, differential extraction studies demonstrated that some annexin VI is localized within the lumen of the isolated heavy sarcoplasmic reticulum vesicles prepared by several different procedures. Annexin VI did not modify, from either the cis or trans chambers, the activity of K+ or Cl- channels from sarcoplasmic reticulum or the dihydropyridine sensitive Ca2+ channel from transverse tubules. In addition, the 38-kDa core proteolytic fragments of annexin VI had no effect on the Ca2+ release channel activity. Annexin VI is therefore a candidate for a physiological modulator of the Ca2+ release channel and as such, may play an important role in the excitation-contraction coupling.  相似文献   

20.
Inositol triphosphate-induced Ca2+ release from human platelet membranes   总被引:3,自引:0,他引:3  
Inositol (1,4,5) triphosphate (IP3) was observed to induce release of sequestered Ca2+ from crude human platelet membranes. This activity was also shown to be present in purified membranes enriched in Ca2+-ATPase activity. Maximal Ca2+ release occurred at 8 microM IP3 and half maximal activity was at 0.4 microM. Release was quite rapid and was complete by 40 s. Released Ca2+ was pumped back into the membrane vesicles and the rate of this reuptake was increased by the presence of phosphate. These results demonstrate that internal platelet membranes that possess an active Ca2+-pump will release sequestered Ca2+ in the presence of the second messenger IP3. IP3 did not induce release of Ca2+ from skeletal muscle sarcoplasmic reticulum when ATP was present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号