首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis of acetylene reduction at low concentrations ofacetylene involves a number of assumptions and both technicaland kinetic complexities. The major difficulty in convertingacetylene reduction rates to apparent N2 reduction rates isdetermining the Km for acetylene in the presence of N2. Thissubstrate competition is dominant over diffusion limitationeffects, but both introduce equivalent deviations in the observedKm. Because N2 is a non-linear partial competitive inhibitorof acetylene reduction, correction for its presence is difficult.Two further complications are introduced by the non-linear responseof nitrogenase to acetylene concentration even in the absenceof N2, and changes in the apparent Km of acetylene and K1 ofN2 as a function of other variables in the enzyme assay. Itis proposed that transient analysis may be used for measurementof diffusion coefficients and calculations of possible diffusionlimitations. It is demonstrated that one proposed model forestimating diffusion limitation (Denison et al., 1983, PlantPhysiology 73, 648–51) confounds substrate competitionwith diffusion limitation. Acetylene reduction, nitrogen fixation, diffusion limitation  相似文献   

2.
Hansen, A. P., Pate, J. S. and Atkins, C. A. 1987. Relationshipsbetween acetylene reduction activity, hydrogen evolution andnitrogen fixation in nodules of Acacia spp.: Experimental backgroundto assaying fixation by acetylene reduction under field conditions.—J.exp. Bot. 38: 1–12 Glasshouse grown, symbiotically-dependent seedlings of Acaciaalata R.Br., .A. extensa Lindl., and A. pulchella R.Br. wereexamined for acetylene reduction in closed assay systems usingundisturbed potted plants, excavated whole plants, nodulatedroots or detached nodules. Nitrogenase activity declined sharplyover the first hour after exposure of detached nodules to acetylene(10% v/v in air), less steeply or not at all over a 3 h periodin assays involving attached nodules. Using detached nodules,rates of acetylene reduction, nitrogen (15N2) fixation, andhydrogen evolution in air (15N2) and acetylene-containing atmosphereswere measured in comparable 30 min assays. Total electron flowthrough nitrogenase in air was determined from rates of nitrogen(15N2) fixation ( ? 3) plus hydrogen evolution, that in thepresence of acetylene from rates of acetylene reduction andhydrogen evolution in air: acetylene. Values for the ratio ofelectron flow in air: acetylene to that in air ranged from 0?43to 0?83 in A. pulcheila, from 0?44 to 0?66 in A. alala and from0?37 to 0?70 in A. extensa, indicating substantial inhibitionof electron flow through nitrogenase of detached nodules byacetylene. Relative efficiencies of nitrogenase functioningbased on hydrogen evolution and acetylene reduction were from0?15 to 0?79, those based on nitrogen (15N2) fixation and hydrogenevolution from 0?53 to 0?87. Molar ratios of acetylene reducedto nitrogen (15N2) fixed were 2?82 ? 0?24, 201 ? 0?15, and 1?91? 0?11 (?s.e.; n = 7) for A. pulcheila,A. extensa and A. alata respectively A standard 5–10 min acetylene reduction assay, conductedon freshly detached unwashed nodules in daytime (12.00–14.00h), was calibrated for field use by comparing total N accumulationof seedlings with estimated cumulative acetylene reduction overa 7-week period of glasshouse culture. Molar ratios for acetylenereduced: nitrogen fixed using this arbitrary method were 3?58for A. alata, 4?82 for A. extensa and 1?60 for A. pulchella.The significance of the data is discussed. Key words: Acacia spp, nitrogenase functioning  相似文献   

3.
Diffusion resistance to oxygen within nodules was calculatedusing the respiratory quotient (RQ) of nodules from intact plantsof subterranean clover (Trifolium subterraneum L.) cv. SeatonPark nodulated by Rhizobiun trifolii WU95. From 21 to 52% O2,the RQ remained between 0.94 and 1.04, whereas at 10% O2, theRQ was 1.65. When nodulated roots of intact plants were exposedto sub-ambient pO2 in a continuous flow-through system, respirationdeclined immediately, followed by a partial recovery within30 min. The magnitude of the final respiration rate was dependentupon the pO2 in the gas stream. Initial rates of respirationwere re-established after 24 h at sub-ambient pO2 as a resultof changes in the resistance of the variable barrier to oxygendiffusion within the nodules. Nitrogenase activity also decreasedlinearly with decreasing pO2 in the gas stream, but partialrecovery occurred after 24 h incubation at sub-ambient pO2.Maximum rates of nitrogenase activity occurred at rhizosphereoxygen concentrations between 21% and 36% O2. Resistance tothe diffusion of oxygen within the nodules increased at supra-ambientpO2 and at oxygen concentrations above 36% O2, resulted in adecrease in both nitrogenase activity and nodulated root respiration.The diffusion resistance of nodules to oxygen increased rapidlyin the presence of either supra-ambient pO2 or saturating pC2H2.Reductions in nodule diffusion resistance either during recoveryfrom exposure to 10% acetylene or to sub-ambient pO2 occurredmore slowly. It is concluded that subterranean clover is welladapted for maximum nitrogen fixation at ambient pO2. Key words: Nitrogenase activity, oxygen, subterranean clover, diffusion resistance  相似文献   

4.
Diurnal variations in acetylene reduction and net hydrogen evolutionwere shown in five tropical and subtropical nitrogen-fixingtree symbioses. The symbioses studied in a growth chamber were:Acacia albida x TAL 1457, Leucaena leucocephala x TAL 1145,Prosopis chilensis x TAL 600, Casuarina glauca x HFP Cc13 andC. obesa x HFP Cc13. Acetylene reduction was highest at the end of the light periodin all symbioses studied. In the A. albida x TAL 1457 symbiosis,the diurnal variations in acetylene reduction and net hydrogenevolution showed a minor synchrony, while in the other symbiosesthe diurnal pattern of acetylene reduction and net hydrogenevolution clearly differed. Also, a diurnal variation in relativeefficiency of nitrogenase was shown in the A. albida x TAL 1457symbiosis. A hydrogen uptake enzyme was detected at a low substrate concentration(24.5 mmol m–3 H2) for L. leucocephala x TAL 1145, C.obesa x HFP Cc13 and has earlier been found for C. glauca xHFP CcI3. A hydrogen uptake system was also found for P. chilensisx TAL 600 and A. albida x TAL 1457 at a 17-fold higher substrateconcentration. The results show that a diurnal variation in C2H2 reductionand H2 evolution occurs, and that diurnal variation in the conversionfactor between C2H2 reduction and N2 fixation could occur. Thisfact raises criticisms regarding the use of a point estimateof this factor. Key words: Acetylene reduction, hydrogen evolution, uptake hydrogenase, nitrogen-fixing tree symbioses  相似文献   

5.
A flow-through gas system was used to study the effects of disturbanceon nitrogenase (acetylene reduction) activity of nodulated rootsystems of soyabean (Glycine max) and white clover (Trifoliumrepens). Detopping plus removal of the rooting medium (by shaking)produced a substantial decrease in maximum nitrogenase activity.This response is due to a reduction in oxygen flux to the bacteroidscaused by an increase in the oxygen diffusion resistance ofthe nodule. The decrease in maximum nitrogenase activity wasmuch smaller for roots subjected to detopping only. Thus, theeffect of root shaking is more important than that of shootremoval. The effect of detopping plus root shaking on nitrogenase activityoccurred whether the plants were equilibrated and assayed at25°C or 15°C. However, the effect of disturbance onthe oxygen diffusion resistance of the nodules, and thus onnitrogenase activity, was greater at the higher temperature.At the lower temperature the oxygen diffusion resistance ofthe nodules had already been increased in response to the reducedrequirement for oxygen. These nodules were less susceptibleto the effects of disturbance. Thus, comparisons of the effectsof equilibration temperature on nitrogenase activity produceddifferent results depending on whether intact or disturbed systemswere used. With intact systems activity was lower at the lowertemperature but with detopped/shaken roots the lowest activityoccurred at the higher temperature. It is concluded that the use of detopped/shaken roots can producesubstantial errors in the acetylene reduction assay, which makesthe assay invalid even when used for comparative purposes. However,comparisons with rates of 15N2 fixation and H2 production showthat accurate measurements of nitrogenase activity can be obtainedfrom maximum rates of acetylene reduction by intact plants ina flow-through gas system. The continued use of assay proceduresin which cumulated ethylene production from disturbed systemsis measured in closed vessels must be questioned. Key words: Nodules, acetylene, nitrogenase activity  相似文献   

6.
From homogenates prepared from surface-sterilized nodules ofseedlings of Casuarina cunninghamiana grown aeroponically, astrain of Frankia designated HFPCc13 was isolated and has beengrown in pure filamentous culture in a defined synthetic nutrientmedium. Vesicle and sporangium formation can be induced by removalof combined nitrogen from the medium.Frankia strain HFPCc13nodulates young seedlings of C. cunninghamiana and C. equisetifoliawithin three weeks of inoculation with an optimum root mediumpH of 6–7 for nodulation and optimum temperature of 30–35°C. The presence of combined nitrogen in the root mediuminhibits nodulation with NH4+ more inhibitory than NO3.Frankia HFPCc13 does not nodulate Allocasuarina species withinthe same family nor several other possible actinorhizal plantstested. Thus this strain is quite precise in its host specificity.The rate of acetylene reduction was greater in C. cunninghamianathan the closely related species C. equisetifolia. In neitherof these host species were vesicles observed to occur withinthe infected root nodules which had been demonstrated to beactively fixing dinitrogen. Root nodules were shown to be activein acetylene reduction over a range of O2 concentration in thegaseous environment with an optimum at about 20 per cent O2,the ambient PO2 of the air. The mechanism(s) for oxygen protectionof nitrogenase within the filamentous form of Frankia withinthese nodules remains to be explained. Casuarina, Frankia, nodulation, nitrogen fixation  相似文献   

7.
Cultures of the water fern Azolla pinnata R, Br. exposed for1 week to atmospheric NO2 (50, 100 or 200 nl l-1) induced additionallevels of nitrate reductase (NaR) protein and nitrite reductase(NiR) activity. At low concentrations of NO2 (50 nl l-1), nitratederived from NO2 provides an alternative N source for Azollabut does not affect rates of acetylene reduction. However, thesymbiotic relationship between Azolla and its endosymbiont,Anabaena azollae is only affected adversely by high concentrations(100 and 200 nl l-1) of atmospheric NO2. The resultant decreasesin rate of growth, nitrogen fixation, heterocyst formation,and overall nitrogen cycling are probably due to the additionalaccumulation of N products derived from higher levels of atmosphericNO2. Parallel increases in levels of polyamines suggest thatAzolla partially alleviates these harmful effects by incorporatingsome of the extra NO2-induced N into polyamines.Copyright 1994,1999 Academic Press Azolla-Anabaena symbiosis, nitrogen dioxide pollution, nitrogen metabolism, polyamines  相似文献   

8.
Simulated mixed swards of Perennial Ryegrass (Lolium perenneL.) cv. S23 and White clover (Trifolium repens L.) cv. S100were grown from seed under a constant 20 °C day/15 °Cnight temperature regime and harvested at intervals over and88 d growht period. The swards received a nutrient solutiondaily, which was either High (220 mg l1) or Low (10 mgl–1) in nitrate N. The nitrate was labelled with the 15Nisotope. An acetylene reduction assay was carried out on eachsward just prior to harvest. Rates of acetylene reduction agreed qualitatively with the l5Nanalyses but absolute values did not match (assuming a 4:1 C2H4:N2ratio) and errors in the acetylene assay are discussed. In theLow-N swards clover relied almost entirely on symbioticallyfixed N2, fixing more than ten times as much as the High-N cloverplants. In the Low-N treatment the grass was N-deficient despiteobtaining much more nitrate per unit root dry weight than clover.In the High-N swards, however, clover took up more nitrate perunit root weight than grass. The High-N clover plants also fixedsome N2 and maintained a higher total-N content than grass throughoutthe period. There was no evidence of transfer of symbioticallyfixed N from the clover to the grass in either treatment. Trifolium repens, Lolium perenne, nitrate, nitrogen fixation, 15N, acetylene reduction  相似文献   

9.
The aquatic legume Neptunia plena (L.) Benth. was grown in non-aeratedwater culture or vermiculite. Growth, nodulation, nitrogen fixationand nodule physiology were investigated. Over an 80-d period,plants grew and fixed nitrogen and carbon equally well in bothrooting media, although distribution of growth between plantparts varied. Total nodule dry weights and volumes were similarbut vermiculite-grown plants had three times as many (smaller)nodules than those grown in water. Oxygen diffusion resistanceof nodules exposed to 21% oxygen and 10% acetylene did not differsignificantly. Both treatments showed similar declines in rootrespiration and acetylene reduction activity (approx. 10%) whenroot systems were exposed to stepped decreases and increasesin rhizosphere oxygen concentration. However, nitrogenase activityof aquatically grown plants was irreversibly inhibited by rapidexposure of nodules to ambient air, whereas vermiculite-grownplants were unaffected. Aeration of water-cultured N. plenareduced stem length (but not mass) and number of nodules perplant. The concentration of nitrogen fixation by 163%. PossibleO2 transport pathways from the shoot atmosphere to roots andnodules are discussed. Aquatic legume, diffusion resistance, Neptunia plena, nitrogen fixation, oxygen, root nodules  相似文献   

10.
The inhibitory effect exerted by water stress on acetylene reductionactivity (ARA) by nodulated roots of faba beans (Vicia fabaL.) was correlated with a 40% decline in the organic acid poolof nodule cytosol. Oxalate concentration was lowered (–55%)whereas a stimulation of the bacteroid oxalate oxidase concomitantlyoccurred. This enzyme was characterized by an optimal activityat pH 8 but, as in higher plants, exhibited a Km for oxalateof 1.4 mM and an inhibition by substrate excess. Oxalate providedto bacteroid incubations supported C2H2 reduction up to 2.5mM whereas higher concentrations were strongly inhibitory. Incontrast, purified symbiosomes incubated with oxyleghaemoglobinreduced C2H2 in the presence of oxalate concentrations up to10 mM. The peribacteroid membrane (PBM), in controlling theoxalate flux to the bacteroids avoided the substrate inhibitionwhich would limit its efficiency. Thus, oxalate present in highconcentration in faba bean nodules could play a role as complementarysubstrate for bacteroids slowing down the nitrogen fixationdecline induced by water restricted conditions. Key words: Faba bean, water stress, oxalate, acetylene reduction, bacteroid  相似文献   

11.
Short-term effects of water deficit on nitrogenase activitywere investigated with hydroponically grown soybean plants (Glycinemax L. Merr. cv. Biloxi) by adding polyethylene glycol (PEG)to the hydroponic solution and measuring nitrogenase activity,nodule respiration, and permeability to oxygen diffusion (Po).These experiments showed a rapid decrease in acetylene reductionactivity (ARA) and nodule respiration. A consequence of thedecreased respiration rate was that Po calculated by Fick'sLaw also decreased. However, these results following PEG treatmentwere in direct conflict with a previous report of stabilityin Po determined by using an alternative technique. To resolvethis conflict, an hypothesis describing a sequence of responsesto the initial PEG treatment is presented. An important findingof this study was that the response to water deficit inducedby PEG occurred in two stages. The first stage of decreasednodule activity was O2-limited and could be reversed by exposingthe nodules to elevated pO2. The second stage which developedafter 24 h of exposure to PEG resulted in substantial loss innodule activity and this activity could not be recovered withincreased pO2. Severe water deficit treatments disrupt noduleactivity to such a degree that O2 is no longer the major limitation. Key words: Glycine max, N2 fixation, soybean, oxygen permeability, water deficit  相似文献   

12.
A growth-chamber study was carried out to determine whetherthe response of apparent nitrogenase activity (C2 H2 reduction)to complete defoliation is influenced by the availability ofcarbohydrate reserves Reserve carbohydrate (TNC) concentrationsof 6-week-old white clover (Trifoliun repens L) plants weremodified by CO2 pretreatments There was no difference in theresponse of apparent nitrogenase activity to defoliation betweenplants with different TNC concentrations C2H2 reduction activitydeclined sharply after defoliation and then recovered similarlyin both high- and low-TNC plants Further experiments were conductedto explain the lack of response of apparent nitrogenase activityto TNC levels Bacteroid degradation was ruled out because invitro nitrogenase activity of crude nodule extracts was stillintact 24 h after defoliation Sufficient carbohydrates appearedto be available to the nodules of defoliated plants becauseadding [14C]glucose to the nutrient solution did not preventthe decline in apparent nitrogenase activity These conclusionswere supported by the finding that an increase in pO2 aroundthe nodules of defoliated plants completely restored their C2H2reduction activity The comparison of the effects of defoliationand darkness suggested that the decrease in apparent nitrogenaseactivity was not related directly to the interruption of photosynthesisIt appears that lack of photosynthates is not the immediatecause of the decline of nitrogen-fixing activity after defoliation White clover, Trifolium repens L, defoliation, nitrogen fixation, regrowth, reserves, carbohydrates, acetylene reduction, nodule extract  相似文献   

13.
Established, nodulated white clover plants were transferredto eight tanks of a flowing culture apparatus with solutiontemperatures of 5, 11, 17, and 25 ?C (two tanks per temperature).Shoot temperature and light environment were common to all plants.After 7 d, (10 mmol m–3) was continuouslysupplied to one tank at each temperature while in the remainingfour tanks (one at each temperature) the plants were completelydependent on nodule N2-fixation. Plants were randomly selected at intervals during the following14 d period in order to measure root and nodule respirationand acetylene reduction activity (ARA) in a flow-through systemset at the adapted root temperature. Additional plants wereassayed for in vitro nitrate reductase activity in leaves, roots,and nodules. Apparent nitrogenase activity (ARA) and respiration associatedwith it were each markedly affected by temperature in two ways;(1) Activity per unit weight of nodule was reduced at lowertemperatures; (2) Development of the plant, and thus also nodulemass, was restricted at lower temperatures which, in turn, restrictedtotal nodule activity per plant. The presence of nitrate significantly reduced ARA of nodules,particularly at higher temperatures. However, significant discrepancieswere found when N2-fixation rates, estimated from the acetylenereduction assay, were compared with N2-fixation rates calculatedfrom curves fitted to N accumulation data (minus the rate of uptake in the case of nitrate-treated plants). Carbon use efficiency (CO2 respired per C2H4 produced) was notsignificantly affected by temperature or the presence of nitrate. Nitrate reductase activity (NRA) developed in all plant partsat the three highest temperatures, but not at 5 ?C. We calculatethat leaf NRA may account for 82, 75, and 68% of total nitratereduction at 11, 17, and 25 ?C respectively. Key words: Trifolium repens, white clover, N2 fixation, root temperature, acetylene reduction assay, nitrate, nitrate reductase  相似文献   

14.
Ammonia at a concentration of 1 ? 10–3M completely inhibitednitrogenase activity, as measured by acetylene reduction, inthe blue-green alga Anabaena cylindrica. Free ammonia was undetectablein cells grown either on N2 or ammonia within the limits ofprecision of the method used. Glutamic acid formed a major aminoacid pool in N2-grown cells, and basic amino acids, i.e. lysine,histidine and arginine were abundant in ammonia-grown cells.A 10-fold increase in the amounts of labile amino compound(s)was observed when N2-grown cells were exposed to ammonia. When cells were incubated under anaerobic conditions, the acetylene-reducingactivity increased 2-fold or more; ammonia had no effect. Oxygenwas required for ammonia to inhibit acetylene reduction. Modes of inhibition by ammonia on acetylene reduction were comparedwith those by chloramphenicol, puromycin, cycloheximide, DCMUand CCCP. On the basis of these comparisons we concluded thatammonia not only acts as a suppressor of nitrogenase synthesisbut also inhibits acetylene-reducing activity by lowering thesupply of reductant and/or of energy for the nitrogenase system. 1This work was supported by grant No. 38814 from the Ministryof Education. (Received July 30, 1973; )  相似文献   

15.
Nitrogen Fixation in the Canopy of Temperate Forest Trees: A Re-examination   总被引:1,自引:0,他引:1  
JONES  K. 《Annals of botany》1982,50(3):329-334
15N2 studies and acetylene reduction assays of leaves and shootsof Douglas fir and other forest trees do not confirm previousreports that extensive nitrogen fixation occurs on leaf surfacesand it is concluded that the importance of nitrogen fixationin the canopy of forest trees has been exaggerated. The presenceof nitrogen-fixing bacteria on the leaves of trees is confirmed,however, and they have been identified as Enterobacter agglomerans,Clostridium butyricum and Bacillus sp. Their distribution onleaves is fortuitous since dead oak leaves and artificial leavesbecome colonized to the same extent as living oak leaves. nitrogen fixation, acetylene reduction, Enterobacter agglomerans, Clostridium butyricum, Bacillus sp, Douglas fir, Pseudotsuga menziensii, larch, Larix x oak, Quercus petraea.  相似文献   

16.
The underlying toxic mechanisms of the red tide dinoflagellate,Cochlodinium polykrikoides, were studied with respect to thereactive oxygen species-mediated toxic effect. Cochlodiniumpolykrikoides generates superoxide anion (O2) and hydrogenperoxide (H2O2), as measured by the cytochrome c reduction methodand scopoletin–peroxidase method, respectively. The capabilityof C.polykrikoides to generate these oxygen radicals was relatedto the growth phase: the highest rate in the exponential phaseand a gradual decrease in the stationary phase. Other phytoplankton,such as Eutreptiella gymnastica, Heterosigma akashiwo, Prorocentrummicans, Gymnodinium sanguineum and Alexandrium tamarense, alsoproduce H2O2; the rate of H2O2 generation by these species waslower than that of C.polykrikoides. The exposure of liposomalsamples to intact or ruptured individuals of C.polykrikoidesresulted in severe membrane damage, such as liposomal lipidperoxidation. Cochlodinium polykrikoides-induced lipid peroxidationwas significantly reduced by oxygen radical scavengers, superoxidedismutase, benzoquinone, catalase and mannitol. In addition,lipid peroxidation of gill tissue of flatfish exposed to C.polykrikoidesincreased with increasing algal cell density. These resultssuggest that reactive oxygen species generated from C.polykrikoidesare responsible for oxidative damage leading to fish kills.  相似文献   

17.
Water stress usually lowers the nitrogenase activity of soybeanroot nodules. This loss in activity might result from an increasedbarrier to nodular gas exchange, from a general reduction inbiochemical function, or both. To test for the possibility ofan increased barrier to gas diffusion, we measured the apparentlag time for initiation of acetylene reduction by intact soybeanplants, both before and after water stress. Mild nodular waterloss (i.e. 10% of fresh weight or less) seldom altered the apparentlag time, whereas severe water stress (20–40% f. wt loss)frequently produced a small increase in apparent lag time. Severewater stress also produced a large decrease (24%) in the externaldiameter of the nodules and a loss of the white lenticel traces.Water stress usually caused a decrease in the apparent Km foracetylene. The data do not suggest a large change in the diffusiveresistance to acetylene of nodules subjected to water stress.Thus, the observed decrease in nitrogenase activity may resultprimarily from biochemical, rather than physical, changes. However,because of the relatively greater importance of gas-phase diffusionfor oxygen entry, we cannot exclude the possibility of a largechange in a small gas pathway that affects oxygen influx morethan acetylene influx. Diffusion, Glycine max, nitrogen fixation, water stress  相似文献   

18.
White clover (Trifolium repens L.) plants were grown from seedin perlite, inoculated with effective rhizobia and exposed tothe same ‘concentration x days’ of 15N-labellednitrate in four contrasting patterns of doses. Acetylene reductionwas measured at intervals using an open, continuous-flow sytem.Mean dry weight per nodule and rates of acetylene reductionfell rapidly (2–3 d) during periods of exposure to highnitrate concentrations (> 7 mM N) and rose again, equallyrapidly, when nitrate was withdrawn or substantially reduced.The fall in mean dry weight per nodule (50–66 per cent)was almost certainly too large to be accounted for by loss ofsoluble or storage carbohydrate only. No new nodules were formedduring periods of high nitrate availability. When nitrate wassupplied continuously at a moderate concentration (5.7 mM N)nodule numbers stabilised although existing nodules increasedin dry weight by almost four-fold over the 30 d measurementperiod. Treatment had no effect on the percentage nitrogen in planttissues although there were large differences in the proportionsderived from nitrate and N2-fixation. Plants exposed continuouslyor frequently to small doses of nitrate took up more nitrate,and hence relied less heavily on N2-fixation, than those exposedto larger doses less often. Increased reliance on nitrate broughtwith it increased total dry weight and shoot: root ratios. Possiblemechanisms involved in bringing about these differences in nitrogennutrition and growth are discussed. White clover, Trifolium repens, nitrate, N2-fixation, nodule, acetylene reduction, 15N  相似文献   

19.
There is a coupled decrease in respiration and nitrogenase activityof nodules of many legume symbioses induced by exposure to acetylenein the presence of 21% O2. The respiratory costs of nitrogenaseactivity can be determined directly and distinguished from respiratorycosts for growth and maintenance of roots and nodules, usingthe linear regression of respiration on nitrogenase activity.The regression gradient represents the carbon costs for thetransfer of one pair of electrons by nitrogenase in terms ofmoles CO2 released per mole of ethylene produced. The interceptof the regression is the growth and maintenance respirationof nodules or nodulated roots. Exposure to acetylene at decreasedor increased oxygen concentrations in the range from 10% to70% resulted in a wider range of values for CO2 production andnitrogenase activity that fell on the same regression line asvalues obtained during the acetylene-induced decline at 21%oxygen. Oxygen concentrations below 10% increased significantlythe proportion of anaerobic respiration and produced changesin nitrogenase activity not correlated with CO2 production.Provided that these limits are not exceeded, oxygen-inducedchanges in nodule activity in the presence of acetylene canbe used to measure the efficiency of those symbioses which donot exhibit an acetylene-induced decline at a fixed oxygen concentration. Respiratory cost (moles CO2/mole ethylene) remained relativelyconstant with plant age for detached pea nodules (2.8), attachednodulated roots of lucerne (2.5) and detached nodulated rootsof field bean (4.2). However, for lucerne and field beans theproportion of total root respiration coupled to nitrogenasedeclined with time. A survey of 13 legume species gave values from 2 to 5 molesCO2/mole C2H4 Rhizobium strain and host-dependent variationsin efficiency were found. Key words: Nitrogenase, Legume root nodules, Respiration, Oxygen  相似文献   

20.
In "air-grown" Chroomonas sp. cells, low concentrations of DCMU(less than 0.1 µM) could prevent the inhibition of 14CO2fixation by anaerobiosis under light-saturating conditions (morethan 40 W.m–2), with phenazine methosulfate showing asimilar effect. Antimycin A, carbonyl cyanide m-chlorophenylhydrazone(CCCP), and N,N'-dicyclohexylcarbodiimide strongly inhibitedanaerobic photosynthesis at concentrations which did not significantlyinhibit the rate under 2% O2 at high light intensity (200 W.m–2),although 0.2 µM CCCP stimulated the rate under 2% O2 tosome extent. On the other hand, KCN inhibited the rate muchmore strongly under 2% O2 than N2, although it inhibited therate very strongly at concentrations above 5 µM both underN2 and 2% O2. These results suggest that the inhibition of photosynthetic14CO2 fixation by anaerobiosis in this alga result from ATPdeficiency caused by over-reduction of electron carriers ofthe cyclic electron flow and that oxygen can prevent the over-reduction.Cyclic electron flow seems to be necessary to provide additionalATP for CO2 reduction under anaerobic conditions, although itseems to be less necessary under aerobic conditions. (Received July 21, 1983; Accepted January 23, 1984)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号