首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Transforming growth factor-beta1 (TGF-beta1), a key cytokine for control of cell growth, extracellular matrix formation, and inflammation control, is secreted by many cells present in the arteriosclerotic plaque. Lipid accumulation in the vessel wall is regarded as an early step in atherogenesis and depends on uptake of modified low-density lipoprotein (LDL) by macrophages through scavenger receptors and their transformation into foam cells. Prominent members of the scavenger receptor family are the class A type I and II receptors (ScR-A), the class B receptor CD36, and the recently detected lectin-like oxidized LDL receptor-1 (LOX-1), which, unlike the native LDL receptor (LDL-R), are not feedback controlled. CD36 is responsible for >50% of modified LDL uptake into human monocyte-derived macrophages. We therefore studied whether TGF-beta1 influences expression and function of ScR-A, CD36, and LOX-1 in monocytes using RT-PCR and flow cytometry. Total uptake of oxidized LDL by monocytoid cells, reflecting the combined function of all scavenger receptors, was significantly reduced by TGF-beta1. At initially low picomolar concentrations, TGF-beta1 decreased CD36 mRNA and protein surface expression and ScR-A mRNA levels in the human monocytic cell line THP-1 and in freshly isolated and cultivated human monocytes, whereas LOX-1 mRNA was increased. Expression of LDL-R and beta-actin was not affected by TGF-beta1. In conclusion, depression of scavenger receptor function in monocytes by TGF-beta1 in low concentrations reduces foam cell formation. Together with matrix control by TGF-beta1, this may be important for atherogenesis and plaque stabilization.  相似文献   

2.
Cholesteryl ester-loaded macrophages, or foam cells, are a prominent feature of atherosclerotic lesions. Low density lipoprotein (LDL) receptor-mediated endocytosis of native LDL is a relatively poor inducer of macrophage cholesteryl ester accumulation. However, the data herein show that in the presence of a very small amount of sphingomyelinase, LDL receptor-mediated endocytosis of 125I-LDL was enhanced and led to a 2-6-fold increase in 125I-LDL degradation and up to a 10-fold increase in cholesteryl ester accumulation in macrophages. The enhanced lipoprotein uptake and cholesterol esterification was seen after only approximately 12% hydrolysis of LDL phospholipids, was specific for sphingomyelin hydrolysis, and appeared to be related to the formation of fused or aggregated spherical particles up to 100 nm in diameter. Sphingomyelinase-treated LDL was bound by the macrophage LDL receptor. However, when unlabeled acetyl-LDL, a scavenger receptor ligand, was present during or after sphingomyelinase treatment of 125I-LDL, 125I-LDL binding and degradation were enhanced further through the formation of LDL-acetyl-LDL mixed aggregates. Experiments with cytochalasin D suggested that endocytosis, not phagocytosis, was involved in internalization of sphingomyelinase-treated LDL. Nonetheless, the sphingomyelinase effect on LDL uptake was macrophage-specific. These data illustrate that LDL receptor-mediated endocytosis of fused LDL particles can lead to foam cell formation in cultured macrophages. Furthermore, since both LDL and sphingomyelinase are present in atherosclerotic lesions and since some lesion LDL probably is fused or aggregated, there is a possibility that sphingomyelinase-treated LDL is a physiologically important atherogenic lipoprotein.  相似文献   

3.
The NOD-like receptor family, pyrin domain–containing protein 3 (NLRP3) inflammasome plays an important role in the development of atherosclerosis. The activated NLRP3 inflammasome has been reported to promote macrophage foam cell formation, but not all studies have obtained the same result, and how NLRP3 inflammasome is involved in the formation of foam cells remains elusive. We used selective NLRP3 inflammasome inhibitors and NLRP3-deficient THP-1 cells to assess the effect of NLRP3 inflammasome inhibition on macrophage foam cell formation, oxidized low-density lipoprotein (ox-LDL) uptake, esterification, and cholesterol efflux, as well as the expression of associated proteins. Inhibition of the NLRP3 inflammasome attenuated foam cell formation, diminished ox-LDL uptake, and promoted cholesterol efflux from THP-1 macrophages. Moreover, it downregulated CD36, acyl coenzyme A: cholesterol acyltransferase-1 and neutral cholesterol ester hydrolase expression; upregulated ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI) expression; but had no effect on the expression of scavenger receptor class A and ATP-binding cassette transporter G1. Collectively, our findings show that inhibition of the NLRP3 inflammasome decreases foam cell formation of THP-1 macrophages via suppression of ox-LDL uptake and enhancement of cholesterol efflux, which may be due to downregulation of CD36 expression and upregulation of ABCA1 and SR-BI expression, respectively.  相似文献   

4.
5.
6.
Activation of acyl-CoA:cholesterol actyltransferase (ACAT) in macrophages by lipoproteins is a key event in atheroma foam cell formation. To help elucidate the mechanisms whereby lipoproteins stimulate ACAT, the early cellular events of lipoprotein-induced ACAT stimulation were studied in mouse peritoneal macrophages. As a function of increasing lipoprotein-cholesterol influx to the cell during the first few hours of incubation, ACAT activity was markedly stimulated by beta-very low density lipoprotein (beta-VLDL) and acetyl-low density lipoprotein (acetyl-LDL) only after lipoprotein-cholesterol influx reached a threshold level of approximately 25% above the basal cell cholesterol content. In contrast, LDL stimulated ACAT only minimally at this level of lipoprotein-cholesterol influx. In further experiments, the source of ACAT cholesterol substrate during the initial stimulation of ACAT was shown to be a mixture of cellular (approximately 75%) and lipoprotein-cholesterol (approximately 25%) in proportions that approximated the proportions of originally cellular and lipoprotein-cholesterol in the cell. Thus, lipoprotein-cholesterol rapidly mixed with most or all of cellular cholesterol before ACAT esterification. Additional studies showed that LDL caused significant efflux of cellular cholesterol, thus providing at least a partial explanation for the relatively weak ACAT stimulatory potential of LDL. To support this idea, LDL that was modified to decrease its ability to induce net cellular cholesterol efflux stimulated ACAT 2-fold greater than control LDL when matched for lysosomal LDL-cholesterol influx. Moreover, when the effective efflux potentials of beta-VLDL and acetyl-LDL were increased, ACAT stimulation was markedly decreased despite unchanged lipoprotein-cholesterol influx. Thus, macrophage ACAT is stimulated not directly by the influx of newly hydrolyzed lipoprotein-cholesterol but rather by net expansion of cellular cholesterol pools to a particular threshold level. This scheme has potentially important implications regarding the cellular and molecular mechanisms of foam cell formation.  相似文献   

7.
In vitro, metabolism of modified forms of low density lipoprotein (LDL) by macrophages via the acetyl-LDL receptor pathway promotes the massive cellular accumulation of lipid. It has been postulated that in vivo this contributes to foam cell formation in the atherosclerotic lesion. Recent studies have shown that arterial wall cells in vitro can secrete a number of cytokines, several of which have been reported to modulate macrophage cell function. Thus, cytokines have the potential to modulate the acetyl-LDL receptor pathway and to influence the rate of foam cell generation. To study the regulation of this pathway by cytokines, the effect of cytokines on the degradation of acetyl-LDL protein by mouse peritoneal macrophages was examined. Initially, supernatant from stimulated lymphocytes was used as a source of cytokines. Macrophages preincubated with supernatants obtained after the stimulation of T-cell helper type 1 (Th1) clone HDK-1 or BALB/c spleen cells degraded acetyl-LDL at a slower rate, whereas supernatant from stimulated T-cell helper type 2 (Th2) clone D-10 had no effect. Comparison of the lymphokine profiles showed that spleen and HDK-1 cells secreted several lymphokines in common including significant levels of interferon-gamma. Interferon-gamma was then directly shown to be inhibitory; an anti-interferon-gamma monoclonal antibody blocked the HDK-1-mediated inhibition by 70% and the addition of recombinant interferon-gamma (IFN-gamma) to macrophages inhibited the specific degradation of acetyl-LDL in a dose- and time-dependent manner with a maximum suppression to approximately 40% of control. The inhibition was not accompanied by an increase in the amount of cell-associated acetyl-LDL and was not due to cell death nor could it be accounted for by the presence of endotoxin. To study the mechanism of the inhibition, the effects of IFN-gamma on the itinerary of acetyl-LDL and its receptor were examined. IFN-gamma decreased specific acetyl-LDL binding only to a small degree, and the rate of lysosome-mediated degradation was not affected. The principal alteration was in the rate of transport to the lysosome which was markedly slowed. Since the receptors eventually returned to the surface to maintain a steady state, and there was not an increase in cell-associated lipoprotein, there must be other changes in the itinerary that were not identified with the techniques used. Thus, the receptor cycle is being regulated at a discrete point. IFN-gamma also suppressed the LDL receptor pathway in macrophages, but this pathway was not affected by IFN-gamma in mouse fibroblasts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
We studied the mechanism of uptake and metabolism of exogenous phospholipids in mouse peritoneal macrophages using vesicles composed of various phospholipids and cholesterol. Macrophages in culture were found to actively incorporate and metabolize phosphatidylcholine/cholesterol vesicles containing small amounts of acidic phospholipids such as phosphatidylserine, phosphatidylinositol, or phosphatidic acid and to store the fatty acyl chains and cholesterol in triacylglycerol and cholesteryl ester form in their cytosol. These cells exhibited massive amounts of oil red O-positive lipid droplets, a typical feature of foam cells. The metabolism of exogenous phospholipid vesicles was completely inhibited by chloroquine and cytochalasin B, suggesting that vesicle uptake occurs by endocytosis. A similar type of metabolism was observed in guinea pig peritoneal macrophages, macrophage cell line J774.1, but not in Swiss 3T3 fibroblasts. Competition studies using various ligands for the scavenger receptor showed that acetylated low density lipoprotein (acetyl-LDL), dextran sulfate, or fucoidan was able to compete for up to 60% of the binding of phosphatidylserine-containing vesicles, and that copper-oxidized LDL (oxidized LDL) competed for more than 90% of the vesicle binding. On the other hand, phosphatidylserine-containing vesicles was able to compete for more than 90% of the binding of acetyl-LDL. These results indicate that acidic phospholipids are recognized by the scavenger receptors on the surface of macrophages and that more than one scavenger receptor exists on mouse peritoneal macrophages, i.e. one capable of recognizing acetyl-LDL, oxidized LDL, and an array of acidic phospholipids on membranes, and the other recognizing both acidic phospholipids and oxidized LDL but not acetyl-LDL.  相似文献   

9.
Oxidatively modified low-density lipoprotein (LDL) has been found in vivo, and oxidized LDL (oxLDL) could bind to scavenger receptors, leading to foam cell formation. Macrophages bear a number of different scavenger receptors for oxLDL, and macrophages of different origins may have a different scavenger receptor repertoire. In addition, LDL oxidized to different degrees may differ in the ability to bind macrophage scavenger receptors. In this study, we characterized the patterns of the binding and uptake of differently oxidized LDL in mouse peritoneal macrophages (MPM) and human THP-1 macrophages, and the influence of negative charge and oxidation-specific epitopes in oxLDL on these processes. Thresholds of increased binding and uptake in MPM were found when LDL was oxidized to the degrees with a relative electrophoretic mobility (REM) of 2.6 (minor threshold) and 3.0 (major threshold), corresponding to 49 and 57%, respectively, of the loss of free amino groups in these oxLDL. There was no threshold for the binding of oxLDL to THP-1 macrophages, while for uptake, a major threshold with REM of 3.0 (57% free amino groups lost) was found. The presence of the F(ab')(2) fragments of the monoclonal antibody OB/04, which was raised against copper-oxidized LDL, led to the reduction of the binding and uptake, respectively, of Eu(3+)-oxLDL (REM:3.6) in MPM by 31 and 29%, and by 19 and 22% in THP-1 macrophages. It is concluded that LDL oxidized to different degrees binds differently to macrophages, and the patterns of binding and uptake are different for MPM and human THP-1 macrophages. Both, the negative charge and the oxidation-specific epitopes of oxLDL are involved in these processes.  相似文献   

10.
11.
12.
Interleukin 1 (IL-1) is a major cytokine of macrophages secreted by several stimulants such as lipopolysaccharide (LPS). Macrophages are known to possess the scavenger receptor for acetylated low density lipoprotein (acetyl-LDL) and maleylated albumin. In the present study we determined effects of these ligands on LPS-induced IL-1 production by rat peritoneal macrophages. These ligands themselves did not induce IL-1 production. However, upon short incubation with acetyl-LDL, LPS-induced IL-1 production was significantly suppressed. The extent of the suppression was proportional to cellular cholesteryl esters. Thus, intracellular accumulation of cholesteryl esters might be responsible for suppression of LPS-induced IL-1 production.  相似文献   

13.
The anti-atherogenic cytokine, TGF-β, plays a key role during macrophage foam cell formation by modulating the expression of key genes involved in the control of cholesterol homeostasis. Unfortunately, the molecular mechanisms underlying these actions of TGF-β remain poorly understood. In this study we examine the effect of TGF-β on macrophage cholesterol homeostasis and delineate the role of Smads-2 and -3 during this process. Western blot analysis showed that TGF-β induces a rapid phosphorylation-dependent activation of Smad-2 and -3 in THP-1 and primary human monocyte-derived macrophages. Small interfering RNA-mediated knockdown of Smad-2/3 expression showed that the TGF-β-mediated regulation of key genes implicated in the uptake of modified low density lipoproteins and the efflux of cholesterol from foam cells was Smad-dependent. Additionally, through the use of virally delivered Smad-2 and/or Smad-3 short hairpin RNA, we demonstrate that TGF-β inhibits the uptake of modified LDL by macrophages through a Smad-dependent mechanism and that the TGF-β-mediated regulation of CD36, lipoprotein lipase and scavenger receptor-A gene expression was dependent on Smad-2. These studies reveal a crucial role for Smad signaling, particularly Smad-2, in the inhibition of foam cell formation by TGF-β through the regulation of expression of key genes involved in the control of macrophage cholesterol homeostasis.  相似文献   

14.
Human monocytic cell line THP-1 incubated with as little as 10 ng/ml of phorbol myristate acetate bound and metabolized 1-2 micrograms of Ac-LDL over a 5-h period. In the absence of phorbol treatment, no specific metabolism of Ac-LDL occurred. Optimal levels of receptor were reached after 72 h of exposure. Induction of receptor was dependent on protein and RNA synthesis and was partially reversed upon removal of the phorbol. Induction of receptor required activation of the protein kinase C pathway. Metabolism of Ac-LDL by THP-1 cells at 37 degrees C was saturated at 25 micrograms/ml. Binding at 4 degrees C was saturable with an average Kd of 8.0 x 10(-9) M. Cell population studies by fluorescent activated cell sorting indicated that approximately 87% of the THP-1 population was expressing scavenger receptor activity 96 h after phorbol treatment as compared to 99% for murine macrophage cell line P388D1. Uptake of Ac-LDL by THP-1 resulted in an 11-fold increase in the rate of cholesterol esterification which was saturable at 50 micrograms/ml. Incubation of cells for 48 h with 50 micrograms/ml of Ac-LDL resulted in a 60% increase in free cholesterol and a 10-fold increase in the cholesteryl ester content of the cells. Lipid accumulation in THP-1 cells after Ac-LDL uptake was readily visible by Oil Red-O staining. Solubilization of THP-1 cells, before and after phorbol treatment, followed by ligand blotting with Ac-LDL detected the presence of a 250-kDa protein only in cells treated with phorbol. The protein comigrated with the scavenger receptor derived from mouse macrophage cell line P388D1.  相似文献   

15.
Macrophage-derived foam cells in atherosclerotic lesions are generally thought to play a major role in the pathology of the disease. Because macrophages play a central role in the inflammatory response, and the atherosclerotic lesion has features associated with chronic inflammatory settings, we investigated foam cell inflammatory potential. THP-1-derived macrophages were treated with oxidized low density lipoprotein (OxLDL) for 3 days to lipid load the macrophages and establish a foam cell-like phenotype. The cells were then activated by treatment with lipopolysaccharide (LPS), and RNA was harvested at 0, 1, and 6 h after LPS addition. RNA from treated and control cells was hybridized to microarrays containing approximately 16,000 human cDNAs. Genes that exhibited a 4-fold or greater increase or decrease at either 1 or 6 h after LPS treatment were counted as LPS-responsive genes. Employing these criteria, 127 LPS-responsive genes were identified. Prior treatment of THP-1 macrophages with OxLDL affected the expression of 57 of these 127 genes. Among these 57 genes was a group of chemokine, cytokine, and signal transduction genes with pronounced expression changes. OxLDL pretreatment resulted in a significant perturbation of LPS-induced NF kappa B activation. Furthermore, some of the OxLDL effects appear to be mediated by the nuclear receptors retinoid X receptor and peroxisomal proliferator-activated receptor gamma because pretreatment of THP-1 macrophages with ligands for these receptors, followed by LPS treatment, recapitulates the OxLDL plus LPS results for several of the most significantly modulated genes.  相似文献   

16.
The mechanism for the regulation of 12-hydroxyeicosatetraenoic acid (12-HETE) production by cholesterol-rich macrophages was investigated. beta-VLDL and acetyl-LDL, lipoproteins which result in cholesterol accumulation in macrophages, stimulated 12-HETE secretion. Lipoproteins which do not induce cholesterol accumulation, such as low- and high-density lipoproteins, did not. Cell-free homogenates from cholesterol-rich macrophages had significantly more 12-lipoxygenase activity than homogenates from unmodified cells. Preincubating homogenates prepared from unmodified macrophages with acetyl-LDL, LDL or multilamellar liposomes containing total lipids from acetyl-LDL but not apoproteins significantly increased 12-lipoxygenase activity. This stimulatory effect was caused by the phospholipid moiety of the lipoprotein. 12-HETE synthesis was not increased in macrophages enriched 6-fold in unesterified cholesterol. Acetyl-LDL stimulated 12-HETE synthesis in macrophages in which cholesteryl ester accumulation was prevented by inhibiting acylcoenzyme A:cholesterol acyltransferase activity. When binding of acetyl-LDL to its receptor was decreased by increasing concentrations of dextran sulfate, or when lysosomal metabolism of the lipoprotein was prevented by chloroquine, 12-HETE production significantly decreased. Moreover, the combination of inhibiting acetyl-LDL binding and degradation completely blocked the stimulation of 12-HETE synthesis by acetyl-LDL. The data indicate that acetyl-LDL must enter the macrophage and be partially degraded to regulate 12-HETE synthesis. The regulation is independent of cholesterol accumulation but is related to the entering lipoprotein phospholipid.  相似文献   

17.
Statins have been shown to interact with several monocyte/macrophage functions. We tested the effect of pravastatin on transforming growth factor-beta1 (TGF-beta1) production and its possible involvement in scavenger receptors class A (SRA) expression in human THP-1 cells. TGF-beta1s biological activity in THP-1 cell conditioned medium, evaluated by luciferase activity of transfected cell with a TGF-beta responsive promoter, was increased in a dose-dependent manner after incubation with pravastatin (1-20 microM). Pravastatin (1-20 microM) induced a dose-dependent increase in TGF-beta1 mRNA expression and protein production in THP-1 cells. PMA-induced SRA gene and protein expression was suppressed by pravastatin with a mean 3-fold decrease at 10 microM. This last effect was reversed by a mouse monoclonal anti-TGF-beta1 neutralizing antibody. PD98059, a specific inhibitor of MAP kinase cascade, completely reversed pravastatin-induced SRA down-regulation. p44 and p42 isoforms showed a dose-dependent phosphorylation after treatment with pravastatin (1-20 microM) which was inhibited by a mouse monoclonal anti-TGF-beta1 antibody. Our results demonstrate that pravastatin significantly up-regulates TGF-beta1 expression which may be in involved in down-regulation of SRA expression in THP-1 cell cultures. A new pathway for pravastatin effects in atherogenesis can be suggested.  相似文献   

18.
The macrophage plays a major role in the induction and resolution phases of inflammation; however, how lipid mediator-derived signals may modulate macrophage function in the resolution of inflammation driven by microbes (e.g., in inflammatory bowel disease) is not well understood. We examined the effects of aspirin-triggered lipoxin (ATL), a stable analog of lipoxin A(4), on the antimicrobial responses of human peripheral blood mononuclear cell-derived macrophages and the monocytic THP-1 cell line. Additionally, we assessed the expression and localization of the lipoxin receptor, formyl peptide receptor 2 (FPR2), in colonic mucosal biopsies from patients with Crohn's disease to determine whether the capacity for lipoxin signaling is altered in inflammatory bowel disease. We found that THP-1 cells treated with ATL (100 nM) displayed increased phagocytosis of inert fluorescent beads and Escherichia coli in a scavenger receptor- and PI3K-dependent, opsonization-independent manner. This ATL-induced increase in phagocytosis was also observed in primary human macrophages, where it was associated with an inhibition of E. coli-induced IL-1β and IL-8 production. Finally, we found that FPR2 gene expression was increased approximately sixfold in the colon of patients with Crohn's disease, a finding reproduced in vitro by the treatment of THP-1 cells with interferon-γ or lipopolysaccharide. These results suggest that lipoxin signaling is upregulated in inflammatory environments, and, in addition to their known role in tissue resolution following injury, lipoxins can enhance macrophage clearance of invading microbes.  相似文献   

19.
Oxidized LDL (oxLDL) performs critical roles in atherosclerosis by inducing macrophage foam cell formation and promoting inflammation. There have been reports showing that oxLDL modulates macrophage cytoskeletal functions for oxLDL uptake and trapping, however, the precise mechanism has not been clearly elucidated. Our study examined the effect of oxLDL on non-muscle myosin heavy chain IIA (MHC-IIA) in macrophages. We demonstrated that oxLDL induces phosphorylation of MHC-IIA (Ser1917) in peritoneal macrophages from wild-type mice and THP-1, a human monocytic cell line, but not in macrophages deficient for CD36, a scavenger receptor for oxLDL. Protein kinase C (PKC) inhibitor-treated macrophages did not undergo the oxLDL-induced MHC-IIA phosphorylation. Our immunoprecipitation revealed that oxLDL increased physical association between PKC and MHC-IIA, supporting the role of PKC in this process. We conclude that oxLDL via CD36 induces PKC-mediated MHC-IIA (Ser1917) phosphorylation and this may affect oxLDL-induced functions of macrophages involved in atherosclerosis. [BMB Reports 2015; 48(1): 48-53]  相似文献   

20.
We investigated the effect of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on the expression of scavenger receptors in human monocytic cell line (THP-1 cells) treated for 24 h with 12-O-tetradecanoylphorbol-13-acetate (TPA) which induces their differentiation into macrophages. The capacity to degrade 125I-labeled acetyl low density lipoprotein (LDL) was developed in accordance with macrophage differentiation. The treatment with 10 nM 1,25(OH)2D3 for 72 h inhibited the degradation of acetyl LDL by THP-1 macrophages in a dose-dependent manner, suggesting that 1,25(OH)2D3 inhibits scavenging function in macrophages. In order to clarify the mechanism of its inhibitory effect on degradation of acetyl LDL, we performed the ligand binding assay using 125I-labeled acetyl LDL. Scatchard analysis revealed that 1,25(OH)2D3 decreased the number of scavenger receptors without changing the affinity for acetyl LDL. We next examined the effect of 1,25(OH)2D3 on the expression of scavenger receptor mRNA. The mRNA of type I scavenger receptor was first detected in THP-1 cells 4 days after the treatment with TPA, the mRNA level increased up to 6 days, and then decreased. The treatment with 1,25(OH)2D3 for 72 h dramatically decreased the mRNA levels after the acquisition of macrophage phenotypes as evidenced by nonspecific esterase staining. However, 1,25(OH)2D3 did not affect the activity of non-specific esterase nor the induction of interleukin-1β mRNA by lipopolysaccharide in THP-1 macrophages. These findings suggest that 1,25(OH)2D3 exclusively decreases the expression of scavenger receptors in TPA-induced THP-1 macrophages without affecting the basic cellular functions as macrophages. © 1995 Wiley-Liss Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号