首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soybean protease C1 (EC 3.4.21.25), the subtilisin-like serine protease that initiates the proteolysis of seed storage proteins in germinating soybean [Glycine max (L.) Merrill], was localized to the protein storage vacuoles of parenchyma cells in the cotyledons by immunoelectron microscopy. This was demonstrated not only in germination and early seedling growth as expected, but also in two stages of protein storage vacuole development during seed maturation. Thus, the plant places the proteolytic enzyme in the same compartment as the storage proteins, but is still able to accumulate those protein reserves. Since soybean protease C1 activity requires acidic conditions for activity, the hypothesis that the pH condition in the protein storage vacuole would support protease C1 activity in germination, but not in seed maturation, was tested. As hypothesized, acridine orange accumulation in the protein storage vacuole of storage parenchyma cells was detected by fluorescence confocal microscopy in seedlings before the onset of mobilization of reserve proteins as noted by SDS-PAGE. Accumulation of the dye was reversed by inclusion of the weak base methylamine to dissipate the pH gradient across the vacuolar membrane. Also as hypothesized, acridine orange did not accumulate in the protein storage vacuole of those parenchyma cells during seed maturation. These results were obtained using cells separated by pectolyase treatment and also using cotyledon slices.  相似文献   

2.
SH-EP is a vacuolar cysteine proteinase from germinated seeds of Vigna mungo. The enzyme has a C-terminal propeptide of 1 kDa that contains an endoplasmic reticulum (ER) retention signal, KDEL. The KDEL-tail has been suggested to function to store SH-EP as a transient zymogen in the lumen of the ER, and the C-terminal propeptide was thought to be removed within the ER or immediately after exit from the ER. In the present study, a protease that may be involved in the post-translational processing of the C-terminal propeptide of SH-EP was isolated from the microsomes of cotyledons of V. muno seedlings. cDNA sequence for the protease indicated that the enzyme is a member of the papain superfamily. Immunocytochemistry and subcellular fractionation of cotyledon cells suggested that the protease was localized in both the ER and protein storage vacuoles as enzymatically active mature form. In addition, protein fractionations of the cotyledonary microsome and Sf9 cells expressing the recombinant protease indicated that the enzyme associates with the microsomal membrane on the luminal side. The protease was named membrane-associated cysteine protease, MCP. The possibility that a papain-type enzyme, MCP, exists as mature enzyme in both ER and protein storage vacuoles will be discussed.  相似文献   

3.
Tobacco plants have been developed which constitutively express high levels of the biotin-binding proteins, avidin and streptavidin. These plants were phenotypically normal and produced fertile pollen and seeds. The transgene was expressed and its product located in the vacuoles of most cell types in the plants. Targeting was achieved by use of N-terminal vacuolar targeting sequences derived from potato proteinase inhibitors which are known to target constitutively to vacuoles in potato tubers and, under wound-induction, in tomato leaves. Avidin was located in protein body-like structures within the vacuole and transgene protein levels remained relatively constant throughout the lifetime of the leaf. We describe two chimeric constructs with similar levels of expression. One comprised a potato proteinase inhibitor I signal peptide cDNA sequence attached to an avidin cDNA and the second a potato proteinase inhibitor II signal peptide genomic sequence (including an intron) attached to a core streptavidin synthetic sequence. We were unable to regenerate plants when transformation used constructs lacking the targeting sequences. The highest levels observed (up to 1.5% of total leaf protein) confirm the vacuole as the organelle of choice for stable storage of plant-toxic transgene products. The efficient targeting of these proteins did not result in any measured changes in plant biotinmetabolism.  相似文献   

4.
Various targeting motifs have been identified for plant proteins delivered to the vacuole. For barley (Hordeum vulgare) lectin, a typical Gramineae lectin and defense-related protein, the vacuolar information is contained in a carboxyl-terminal propeptide. In contrast, the vacuolar targeting information of sporamin, a storage protein from the tuberous roots of the sweet potato (Ipomoea batatas), is encoded in an amino-terminal propeptide. Both proteins were expressed simultaneously in transgenic tobacco plants to enable analysis of their posttranslational processing and subcellular localization by pulse-chase labeling and electron-microscopic immunocytochemical methods. The pulse-chase experiments demonstrated that processing and delivery to the vacuole are not impaired by the simultaneous expression of barley lectin and sporamin. Both proteins were targeted quantitatively to the vacuole, indicating that the carboxyl-terminal and amino-terminal propeptides are equally recognized by the vacuolar protein-sorting machinery. Double-labeling experiments showed that barley lectin and sporamin accumulate in the same vacuole of transgenic tobacco (Nicotiana tabacum) leaf and root cells.  相似文献   

5.
Moriyasu Y  Tazawa M 《Plant physiology》1988,88(4):1092-1096
When an exogenous protein, bovine serum albumin, was introduced into the vacuole of a Chara australis internodal cell, it was degraded with time. This degradation proceeded only in the vacuole as far as could be observed by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Degradation was inhibited by protease inhibitors such as antipain and leupeptin. Endogenous proteins introduced into the vacuole were also degraded there. Furthermore, intravacuolar cytoplasmic drops, which were often formed by cell ligation, seemed to be degraded in the vacuole. However, bovine serum albumin degradation did not proceed when mixed with isolated vacuolar sap. These results show that the vacuole in the Chara internodal cell has the capacity to degrade cellular proteins, but that cytoplasmic support is needed for this degrading activity to be maintained.  相似文献   

6.
We have investigated the vacuolar delivery of alpha-mannosidase, a marker enzyme of the vacuolar membrane in the yeast Saccharomyces cerevisiae, and found that the enzyme has several unique characteristics in its biosynthesis and vacuolar delivery. alpha-Mannosidase has no typical signal sequence (Yoshihisa, T., and Anraku, Y. (1989) Biochem. Biophys. Res. Commun. 163, 908-915) but is located on the inner surface of the vacuolar membrane. The enzyme is synthesized as a 107-kDa polypeptide and converted to a 73-kDa polypeptide. Although the conversion depends on a vacuolar processing protease, proteinase A, it is much slower (t1/2 = 10 h) than the proteinase A-dependent processing of other vacuolar proteins. None of Asn-X-Thr/Ser sites on the 107-kDa alpha-mannosidase or on two alpha-mannosidase-invertase fusion proteins that are localized inside the vacuole receives N-linked oligosaccharide, whereas those sites on a carboxypeptidase Y-alpha-mannosidase fusion protein are N-glycosylated. The newly synthesized alpha-mannosidase is normally delivered to the vacuole and converted to the 73-kDa polypeptide even when the secretory pathway is blocked by a subset of sec mutations. These characteristics are different from those of other vacuolar proteins targeted to the vacuole via the secretory pathway. We conclude that alpha-mannosidase is delivered to the vacuole in a novel pathway separate from the secretory pathway.  相似文献   

7.
8.
Fujinami sarcoma virus (FSV) and PRCII are avian sarcoma viruses which share cellularly derived v-fps transforming sequences. The FSV P140gag-fps gene product is phosphorylated on three distinct tyrosine residues in transformed cells or in an in vitro kinase reaction. Three variants of FSV, and the related virus PRCII which lacks about half of the v-fps sequence found in FSV, encode gene products which are all phosphorylated at tyrosine residues contained within identical tryptic peptides. This indicates a stringent conservation of amino acid sequence at the tyrosine phosphorylation sites which presumably reflects the importance of these sites for the biologic activity of the transforming proteins. Under suitable conditions the proteolytic enzymes p15 and V8 protease each introduce one cut into FSV P140, p15 in the N-terminal gag-encoded region and V8 protease in the middle of the fps-encoded region. Using these enzymes we have mapped the major site of tyrosine phosphorylation to the C-terminal end of the fps region of FSV P140gag-fps. A second tyrosine phosphorylation site is found in the fps region of FSV P140 isolated from transformed cells, and a minor tyrosine phosphorylation site is found in the N-terminal gag-encoded region. Our results suggest that the C-terminal fps-encoded region is required for expression of the tyrosine-specific protein kinase activity.  相似文献   

9.
Y Koide  H Hirano  K Matsuoka    K Nakamura 《Plant physiology》1997,114(3):863-870
An asparagine-proline-isoleucine-arginine-leucine (NPIRL) and its related sequences in the N-terminal propeptides (NTPP) of several plant vacuolar proteins, including that of sporamin from sweet potato (SPO) function as vacuole-targeting determinants in a manner that is distinct from the vacuole-targeting determinant in the CTPPs of other plant vacuolar proteins. When the mutant precursor to sporamin, SPO-NTPP (in which NTPP was moved to the C terminus of the mature part), was expressed in tobacco (Nicotiana tabacum) cells, the pro-form was efficiently targeted to the vacuole and the NTPP was cleaved off. Unlike the results obtained with the wild-type precursor, substitution of the NPIRL sequence in the C-terminally located NTPP to asparagine-proline-glycine-arginine-leucine in the SPO-isoleucine-28-to-glycine mutant resulted in missorting of less than 20% of the pro-form to the medium. Unlike the vacuolar transport of SPO-NTPP, the vacuolar transport of SPO-isoleucine-28-to-glycine was strongly inhibited by 33 microM wortmannin, which is similar to the C-terminal propeptide-mediated vacuolar transport. These results suggest that the vacuole-targeting function of the NPIRL sequence is not strictly dependent on its location at the N terminus of a protein and that the C-terminally located mutant NTPP acquired some physicochemical properties of the C-terminal vacuole-targeting sequence.  相似文献   

10.
Strains of Caulobacter crescentus elaborate an S-layer, a two-dimensional protein latticework which covers the cell surface. The S-layer protein (RsaA) is secreted by a type I mechanism (relying on a C-terminal signal) and is unusual among type I secreted proteins because high levels of protein are produced continuously. In efforts to adapt the S-layer for display of foreign peptides and proteins, we noted a proteolytic activity that affected S-layer monomers with foreign inserts. The cleavage was precise, resulting in fragments with an unambiguous N-terminal sequence. We developed an assay to screen for loss of this activity (i.e., presentation of foreign peptides without degradation), using transposon and traditional mutagenesis. A metalloprotease gene designated sap (S-layer-associated protease) was identified which could complement the protease-negative mutants. The N-terminal half of Sap possessed significant similarity to other type I secreted proteases (e.g., alkaline protease of Pseudomonas aeruginosa), including the characteristic RTX repeat sequences, but the C-terminal half which normally includes the type I secretion signal exhibited no such similarity. Instead, there was a region of significant similarity to the N-terminal region of RsaA. We hypothesize that Sap evolved by combining the catalytic portion of a type I secreted protease with an S-layer-like protein, perhaps to associate with nascent S-layer monomers to "scan" for modifications.  相似文献   

11.
Johnson ED  Miller EA  Anderson MA 《Planta》2007,225(5):1265-1276
Reproductive and storage tissues of many plants produce large amounts of serine proteinase inhibitors (PIs). The ornamental tobacco, Nicotiana alata, produces a series of 6 kDa chymotrypsin and trypsin inhibitors that accumulate to up to 30% of soluble protein in the stigma. These inhibitors are derived by proteolytic processing of two closely related multidomain precursor proteins. Using immunogold electron microscopy, we find that the stigmatic PIs accumulate in both the central vacuole and in the extracellular mucilage. Labelling with antibodies specific for the C-terminal vacuolar targeting peptide (VTS) of each precursor confirms earlier biochemical data showing that the VTS is removed during passage through the secretory pathway. We have isolated and characterised the extracellular population of PIs, which are largely identical to PIs isolated from whole stigmas and are functional inhibitors of serine proteases. Subcellular fractionation of immature stigmas reveals that a sub-population of the PI precursor protein is proteolytically processed within the endoplasmic reticulum. This proteolysis results in the removal of the vacuolar sorting information, causing secretion of this PI population. We propose a novel mechanism whereby a single gene product may be simultaneously trafficked to two separate compartments mediated by proteolysis early in the secretory pathway.  相似文献   

12.
Proteins are co-translationally transferred into the endo-plasmic reticulum (ER) and then either retained or transported to different intracellular compartments or to the extracellular space. Various molecular signals necessary for retention in the ER or targeting to different compartments have been identified. In particular, the HDEL and KDEL signals used for retention of proteins in yeast and animal ER have also been described at the C-terminal end of soluble ER processing enzymes in plants. The fusion of a KDEL extension to vacuolar proteins is sufficient for their retention in the ER of transgenic plant cells. However, recent results obtained using the same strategy indicate that HDEL does not contain sufficient information for full retention of phaseolin expressed in tobacco. In the present study, an HDEL C-terminal extension was fused to the vacuolar or extracellular (Δpro) forms of sporamin. The resulting SpoHDEL or ΔproHDEL, as well as Spo and Δpro, were expressed at high levels in transgenic tobacco cells ( Nicotiana tabacum cv BY2). The intracellular location of these different forms of recombinant sporamin was studied by subcellular fractionation. The results clearly indicate that addition of an HDEL extension to either Spo or Δpro induces accumulation of these sporamin forms in a compartment that co-purifies with the ER markers NADH cytochrome C reductase, binding protein (BiP) and calnexin. In addition, a significant SpoHDEL or ΔproHDEL fraction that escapes the ER retention machinery is transported to the vacuole. From these results, it may be proposed that, in addition to its function as an ER retention signal, HDEL could also act in quality control by targeting chaperones or chaperone-bound proteins that escape the ER to the plant lysosomal compartment for degradation.  相似文献   

13.
The Ajuga reptans L. galactan:galactan galactosyltransferase (ArGGT) is a vacuolar enzyme that synthesizes long-chain raffinose family oligosaccharides (RFOs), the major storage carbohydrates of this plant. ArGGT is structurally and functionally related to acid plant alpha-galactosidases (alpha-Gals) of the glycosylhydrolase family 27, present in the apoplast or the vacuole. Sequence comparison of acid alpha-Gals with ArGGT revealed that they all contain an N-terminal signal sequence and a highly similar core sequence. Additionally, ArGGT and some acid alpha-Gals contain C-terminal extensions with low sequence similarities to each other. Here, we show that the C-terminal pentapeptide, SLQMS, is a non-sequence-specific vacuolar sorting determinant. Analogously, we demonstrate that the C-terminal extensions of selected acid alpha-Gals from Arabidopsis, barley, and rice, are also non-sequence-specific vacuolar sorting determinants, suggesting the presence of at least one vacuolar form of acid alpha-Gal in every plant species.  相似文献   

14.
Two types of vacuolar sorting signals (VSSs), an asparagine-proline-isoleucine-arginine-leucine (NPIRL)-related VSS in the N-terminal propeptides (NTPPs) and a C-terminal VSS in the C-terminal propeptides (CTPPs), function differently in plant cells. A precursor to a 20-kDa protein of potato tuber (PT20) contains two NPIRL-related sequences, NPINL in a short NTPP and NPLDV close to the C terminus of the precursor. We made mutant forms of sweet potato sporamin (SPO), nPT20-SPO, in which the N-terminal pre-pro part was exchanged with that of the precursor to PT20, and SPO-PT20c, in which the C-terminal 13 amino acids of the precursor to PT20 was attached to the C terminus of delta pro-SPO which lacked NTPP. Both nPT20-SPO and SPO-PT20c were efficiently transported to the vacuoles in tobacco cells. Unlike nPT20-SPO, the vacuolar transport of SPO-PT20c was inhibited by wortmannin and by the C-terminal addition of Gly or Gly-Gly suggesting its similarity to the vacuolar transport of sporamin mediated by CTPP of barley lectin. Further analysis of the C-terminal sequence of PT20 indicated that the most C-terminal SFKQVQ sequence functions as the C-terminal VSS. These results suggest that the precursor to PT20 contains both NPIRL-like VSS in its NTPP and C-terminal VSS at the C terminus.  相似文献   

15.
Seed storage proteins accumulate either in the endoplasmic reticulum (ER) or in vacuoles, and it would appear that polymerization events play a fundamental role in regulating the choice between the two destinies of these proteins. We previously showed that a fusion between the Phaseolus vulgaris vacuolar storage protein phaseolin and the N‐terminal half of the Zea mays prolamin γ‐zein forms interchain disulfide bonds that facilitate the formation of ER‐located protein bodies. Wild‐type phaseolin does not contain cysteine residues, and assembles into soluble trimers that transiently polymerize before sorting to the vacuole. These transient interactions are abolished when the C‐terminal vacuolar sorting signal AFVY is deleted, indicating that they play a role in vacuolar sorting. We reasoned that if the phaseolin interactions directly involve the C terminus of the polypeptide, a cysteine residue introduced into this region could stabilize these transient interactions. Biochemical studies of two mutated phaseolin proteins in which a single cysteine residue was inserted at the C terminus, in the presence (PHSL*) or absence (Δ418*) of the vacuolar signal AFVY, revealed that these mutated proteins form disulphide bonds. PHSL* had reduced protein solubility and a vacuolar trafficking delay with respect to wild‐type protein. Moreover, Δ418* was in part redirected to the vacuole. Our experiments strongly support the idea that vacuolar delivery of phaseolin is promoted very early in the sorting process, when polypeptides are still contained within the ER, by homotypic interactions.  相似文献   

16.
Although much is known about the molecular mechanisms involved in transporting soluble proteins to the central vacuole, the mechanisms governing the trafficking of membrane proteins remain largely unknown. In this study, we investigated the mechanism involved in targeting the membrane protein, AtβFructosidase 4 (AtβFruct4), to the central vacuole in protoplasts. AtβFruct4 as a green fluorescent protein (GFP) fusion protein was transported as a membrane protein during transit from the endoplasmic reticulum (ER) through the Golgi apparatus and the prevacuolar compartment (PVC). The N-terminal cytosolic domain of AtβFruct4 was sufficient for transport from the ER to the central vacuole and contained sequence motifs required for trafficking. The sequence motifs, LL and PI, were found to be critical for ER exit, while the EEE and LCPYTRL sequence motifs played roles in trafficking primarily from the trans Golgi network (TGN) to the PVC and from the PVC to the central vacuole, respectively. In addition, actin filaments and AtRabF2a, a Rab GTPase, played critical roles in vacuolar trafficking at the TGN and PVC, respectively. On the basis of these results, we propose that the vacuolar trafficking of AtβFruct4 depends on multiple sequence motifs located at the N-terminal cytoplasmic domain that function as exit and/or sorting signals in different stages during the trafficking process.  相似文献   

17.
Vacuolar sorting of seed storage proteins is a very complex process since several sorting pathways and interactions among proteins of different classes have been reported. In addition, although the C-terminus of several 7S proteins is important for vacuolar delivery, other signals seem also to be involved in this process. In this work, the ability of two sequences of the Amaranthus hypochondriacus 11S globulin (amaranthin) to target reporter proteins to vacuoles was studied. We show that the C-terminal pentapeptide (KISIA) and the GNIFRGF internal sequence fused at the C terminal region of genes encoding secretory versions of green fluorescent protein (GFP) and GFP-beta-glucuronidase (GFP-GUS) were sufficient to redirect these reporter proteins to the vacuole of Arabidopsis cells. According to the three-dimensional structure of 7S and 11S storage globulins, this internal vacuolar sorting sequence corresponds to the alpha helical region involved in trimer formation, and is conserved within these families. In addition, these sequences were able to interact in vitro, in a calcium dependent manner, with the sunflower vacuolar sorting receptor homolog to pea BP-80/AtVSR1/pumpkin PV72. This work shows for the first time the role of a short internal sequence conserved among 7S and 11S proteins in vacuolar sorting.  相似文献   

18.
Plant‐based platforms are extensively used for the expression of recombinant proteins, including monoclonal antibodies. However, to harness the approach effectively and leverage it to its full potential, a better understanding of intracellular processes that affect protein properties is required. In this work, we examined vacuolar (vac) targeting and deposition of the monoclonal antibody (Ab) 14D9 in Nicotiana benthamiana leaves. Two distinct vacuolar targeting signals (KISIA and NIFRGF) were C‐terminal fused to the heavy chain of 14D9 (vac‐Abs) and compared with secreted and ER‐retained variants (sec‐Ab, ER‐Ab, respectively). Accumulation of ER‐ and vac‐Abs was 10‐ to 15‐fold higher than sec‐Ab. N‐glycan profiling revealed the predominant presence of plant typical complex fucosylated and xylosylated GnGnXF structures on sec‐Ab while vac‐Abs carried mainly oligomannosidic (Man 7‐9) next to GnGnXF forms. Paucimannosidic glycans (commonly assigned as typical vacuolar) were not detected. Confocal microscopy analysis using RFP fusions showed that sec‐Ab‐RFP localized in the apoplast while vac‐Abs‐RFP were exclusively detected in the central vacuole. The data suggest that vac‐Abs reached the vacuole by two different pathways: direct transport from the ER bypassing the Golgi (Ab molecules containing Man structures) and trafficking through the Golgi (for Ab molecules containing complex N‐glycans). Importantly, vac‐Abs were correctly assembled and functionally active. Collectively, we show that the central vacuole is an appropriate compartment for the efficient production of Abs with appropriate post‐translational modifications, but also point to a reconsideration of current concepts in plant glycan processing.  相似文献   

19.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

20.
Cis-elements of protein transport to the plant vacuoles   总被引:6,自引:0,他引:6  
Vacuolar proteins are synthesized and translocated into the endoplasmic reticulum and transported to the vacuoles through the secretory pathway. Three different types of vacuolar sorting signals have been identified, carried by N- or C-terminal propeptides or internal sequences. These signals are needed to target proteins to the different types of vacuoles that can coexist in a single plant cell. A conserved motif (NPIXL or NPIR) was identified within N-terminal propeptides, but can also function in a C-terminal propeptide and targets proteins in a receptor-mediated manner to a lytic vacuole. Binding to a family of putative sorting receptors for sequence-specific vacuolar sorting signals has been used as an assay to identify further peptides with other binding motifs. No motif was found in C-terminal sorting sequences, which need an accessible terminus, suggesting that they are recognized from the end by a still unknown receptor. The phosphatidylinositol kinase inhibitor wortmannin differentially affects sorting mediated by these two sorting sequences, suggesting different sorting mechanisms. Less is known about sorting mediated by internal protein sequences, which do not contain the conserved motif identified in N-terminal propeptides and by function by aggregation, leading to transport by coat-less dense vesicles to protein storage vacuoles. Even less is known about the sorting of tonoplast proteins, for which several sorting systems will also be needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号