首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Raborn J  Wang W  Luo BH 《Biochemistry》2011,50(12):2084-2091
The ability of αIIbβ3 to bind ligands and undergo outside-in signaling is regulated by three divalent cation binding sites in the β I domain. Specifically, the metal ion-dependent adhesion site (MIDAS) and the synergistic metal binding site (SyMBS) are thought to be required for ligand binding due to their synergy between Ca(2+) and Mg(2+). The adjacent to MIDAS (ADMIDAS) is an important ligand binding regulatory site that also acts as a critical link between the β I and hybrid domains for signaling. Mutations in this site have provided conflicting results for ligand binding and adhesion in different integrins. We have mutated the β3 SyMBS and ADMIDAS. The SyMBS mutant abolished ligand binding and outside-in signaling, but when an activating glycosylation mutation in the αIIb Calf 2 domain was introduced, the ligand binding affinity and signaling were restored. Thus, the SyMBS is important but not absolutely required for integrin bidirectional signaling. The ADMIDAS mutants showed reduced ligand binding affinity and abolished outside-in signaling, and the activating glycosylation mutation could fully restore integrin signaling of the ADMIDAS mutant. We propose that the ADMIDAS ion stabilizes the low-affinity state when the integrin headpiece is in the closed conformation, whereas it stabilizes the high-affinity state when the headpiece is in the open conformation with the swung-out hybrid domain.  相似文献   

2.
We developed a ligand-mimetic antibody Fab fragment specific for Drosophila alphaPS2betaPS integrins to probe the ligand binding affinities of these invertebrate receptors. TWOW-1 was constructed by inserting a fragment of the extracellular matrix protein Tiggrin into the H-CDR3 of the alphavbeta3 ligand-mimetic antibody WOW-1. The specificity of alphaPS2betaPS binding to TWOW-1 was demonstrated by numerous tests used for other integrin-ligand interactions. Binding was decreased in the presence of EDTA or RGD peptides and by mutation of the TWOW-1 RGD sequence or the betaPS metal ion-dependent adhesion site (MIDAS) motif. TWOW-1 binding was increased by mutations in the alphaPS2 membrane-proximal cytoplasmic GFFNR sequence or by exposure to Mn2+. Although Mn2+ is sometimes assumed to promote maximal integrin activity, TWOW-1 binding in Mn2+ could be increased further by the alphaPS2 GFFNR --> GFANA mutation. A mutation in the betaPS I domain (betaPS-b58; V409D) greatly increased ligand binding affinity, explaining the increased cell spreading mediated by alphaPS2betaPS-b58. Further mutagenesis of this residue suggested that Val-409 normally stabilizes the closed head conformation. Mutations that potentially reduce interaction of the integrin beta subunit plexin-semaphorin-integrin (PSI) and stalk domains have been shown to have activating properties. We found that complete deletion of the betaPS PSI domain enhanced TWOW-1 binding. Moreover the PSI domain is dispensable for at least some other integrin functions because betaPS-DeltaPSI displayed an enhanced ability to mediate cell spreading. These studies establish a means to evaluate mechanisms and consequences of integrin affinity modulation in a tractable model genetic system.  相似文献   

3.
L-plastin (LPL) is a leukocyte actin binding protein previously implicated in the activation of the integrin alpha(M)beta(2) on polymorphonuclear neutrophils. To determine the role for LPL in integrin activation, K562 cell adhesion to vitronectin via alpha(v)beta(3), a well-studied model for activable integrins, was examined. Cell permeant versions of peptides based on the N-terminal sequence of LPL and the LPL headpiece domain both activated alpha(v)beta(3)-mediated adhesion. In contrast to adhesion induced by treatment with phorbol 12-myristate 13-acetate (PMA), LPL peptide-activated adhesion was independent of integrin beta(3) cytoplasmic domain tyrosines and was not inhibited by cytochalasin D. Also in contrast to PMA, LPL peptides synergized with RGD ligand or Mn(2+) for generation of a conformational change in alpha(v)beta(3) associated with the high affinity state of the integrin, as determined by binding of a ligand-induced binding site antibody. Although LPL and ligand showed synergy for ligand-induced binding site expression when actin depolymerization was inhibited by jasplakinolide, LPL peptide-induced adhesion was inhibited. Thus, both actin depolymerization and ligand-induced integrin conformational change are required for LPL peptide-induced adhesion. We hypothesize that the critical steps of increased integrin diffusion and affinity enhancement may be linked via modulation of the function of the actin binding protein L-plastin.  相似文献   

4.
Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.  相似文献   

5.
Despite extensive evidence that integrin conformational changes between bent and extended conformations regulate affinity for ligands, an alternative hypothesis has been proposed in which a "deadbolt" can regulate affinity for ligand in the absence of extension. Here, we tested both the deadbolt and the extension models. According to the deadbolt model, a hairpin loop in the beta3 tail domain could act as a deadbolt to restrain the displacement of the beta3 I domain beta6-alpha7 loop and maintain integrin in the low affinity state. We found that mutating or deleting the beta3 tail domain loop has no effect on ligand binding by either alphaIIbbeta 3 or alphaVbeta3 integrins. In contrast, we found that mutations that lock integrins in the bent conformation with disulfide bonds resist inside-out activation induced by cytoplasmic domain mutation. Furthermore, we demonstrated that extension is required for accessibility to fibronectin but not smaller fragments. The data demonstrate that integrin extension is required for ligand binding during integrin inside-out signaling and that the deadbolt does not regulate integrin activation.  相似文献   

6.
Integrins are alphabeta heterodimeric cell surface receptors that mediate transmembrane signaling by binding extracellular and cytoplasmic ligands. The ectodomain of integrin alphaVbeta3 crystallizes in a bent, genuflexed conformation considered to be inactive (unable to bind physiological ligands in solution) unless it is fully extended by activating stimuli. We generated a stable, soluble complex of the Mn(2+)-bound alphaVbeta3 ectodomain with a fragment of fibronectin (FN) containing type III domains 7 to 10 and the EDB domain (FN7-EDB-10). Transmission electron microscopy and single particle image analysis were used to determine the three-dimensional structure of this complex. Most alphaVbeta3 particles, whether unliganded or FN-bound, displayed compact, triangular shapes. A difference map comparing ligand-free and FN-bound alphaVbeta3 revealed density that could accommodate the RGD-containing FN10 in proximity to the ligand-binding site of beta3, with FN9 just adjacent to the synergy site binding region of alphaV. We conclude that the ectodomain of alphaVbeta3 manifests a bent conformation that is capable of stably binding a physiological ligand in solution.  相似文献   

7.
During cell migration, the physical link between the extracellular substrate and the actin cytoskeleton mediated by receptors of the integrin family is constantly modified. We analyzed the mechanisms that regulate the clustering and incorporation of activated alphavbeta3 integrins into focal adhesions. Manganese (Mn2+) or mutational activation of integrins induced the formation of de novo F-actin-independent integrin clusters. These clusters recruited talin, but not other focal adhesion adapters, and overexpression of the integrin-binding head domain of talin increased clustering. Integrin clustering required immobilized ligand and was prevented by the sequestration of phosphoinositole-4,5-bisphosphate (PI(4,5)P2). Fluorescence recovery after photobleaching analysis of Mn(2+)-induced integrin clusters revealed increased integrin turnover compared with mature focal contacts, whereas stabilization of the open conformation of the integrin ectodomain by mutagenesis reduced integrin turnover in focal contacts. Thus, integrin clustering requires the formation of the ternary complex consisting of activated integrins, immobilized ligands, talin, and PI(4,5)P2. The dynamic remodeling of this ternary complex controls cell motility.  相似文献   

8.
We examined over 50 mutations in the Drosophila βPS integrin subunit that alter integrin function in situ for their ability to bind a soluble monovalent ligand, TWOW-1. Surprisingly, very few of the mutations, which were selected for conditional lethality in the fly, reduce the ligand binding ability of the integrin. The most prevalent class of mutations activates the integrin heterodimer. These findings emphasize the importance of integrin affinity regulation and point out how molecular interactions throughout the integrin molecule are important in keeping the integrin in a low affinity state. Mutations strongly support the controversial deadbolt hypothesis, where the CD loop in the β tail domain acts to restrain the I domain in the inactive, bent conformation. Site-directed mutations in the cytoplasmic domains of βPS and αPS2C reveal different effects on ligand binding from those observed for αIIbβ3 integrins and identify for the first time a cytoplasmic cysteine residue, conserved in three human integrins, as being important in affinity regulation. In the fly, we find that genetic interactions of the βPS mutations with reduction in talin function are consistent with the integrin affinity differences measured in cells. Additionally, these genetic interactions report on increased and decreased integrin functions that do not result in affinity changes in the PS2C integrin measured in cultured cells.  相似文献   

9.
We examined the effect of conformational change at the beta(7) I-like/hybrid domain interface on regulating the transition between rolling and firm adhesion by integrin alpha(4)beta(7). An N-glycosylation site was introduced into the I-like/hybrid domain interface to act as a wedge and to stabilize the open conformation of this interface and hence the open conformation of the alpha(4) beta(7) headpiece. Wild-type alpha(4)beta(7) mediates rolling adhesion in Ca(2+) and Ca(2+)/Mg(2+) but firm adhesion in Mg(2+) and Mn(2+). Stabilizing the open headpiece resulted in firm adhesion in all divalent cations. The interaction between metal binding sites in the I-like domain and the interface with the hybrid domain was examined in double mutants. Changes at these two sites can either counterbalance one another or be additive, emphasizing mutuality and the importance of multiple interfaces in integrin regulation. A double mutant with counterbalancing deactivating ligand-induced metal ion binding site (LIMBS) and activating wedge mutations could still be activated by Mn(2+), confirming the importance of the adjacent to metal ion-dependent adhesion site (ADMIDAS) in integrin activation by Mn(2+). Overall, the results demonstrate the importance of headpiece allostery in the conversion of rolling to firm adhesion.  相似文献   

10.
Two isolated recombinant fragments from human integrin alpha(5)beta(1) encompassing the FG-GAP repeats III to VII of alpha(5) and the insertion-type domain from beta(1), respectively, are structurally well defined in solution, based on CD evidence. Divalent cation binding induces a conformational adaptation that is achieved by Ca(2+) or Mg(2+) (or Mn(2+)) with alpha(5) and only by Mg(2+) (or Mn(2+)) with beta(1). Mn(2+) bound to beta(1) is highly hydrated ( approximately 3 water molecules), based on water NMR relaxation, in agreement with a metal ion-dependent adhesion site-type metal coordination. Each fragment saturated with Mg(2+) (or Mn(2+)) binds a recombinant fibronectin ligand in an RGD-dependent manner. A conformational rearrangement is induced on the fibronectin ligand upon binding to the alpha(5), but not to the beta(1) fragment, based on CD. Ligand binding results in metal ion displacement from beta(1). Both alpha(5) and beta(1) fragments form a stable heterodimer (alpha(5)beta(1) mini-integrin) that retains ligand recognition to form a 1:1:1 ternary complex, in the presence of Mg(2+), and induces a specific conformational adaptation of the fibronectin ligand. A two-site model for RGD binding to both alpha and beta integrin components is inferred from our data using low molecular weight RGD mimetics.  相似文献   

11.
Although integrin alpha subunit I domains exist in multiple conformations, it is controversial whether integrin beta subunit I-like domains undergo structurally analogous movements of the alpha7-helix that are linked to affinity for ligand. Disulfide bonds were introduced into the beta(3) integrin I-like domain to lock its beta6-alpha7 loop and alpha7-helix in two distinct conformations. Soluble ligand binding, ligand mimetic mAb binding and cell adhesion studies showed that disulfide-bonded receptor alpha(IIb)beta(3)(T329C/A347C) was locked in a low affinity state, and dithiothreitol treatment restored the capability of being activated to high affinity binding; by contrast, disulfide-bonded alpha(IIb)beta(3)(V332C/M335C) was locked in a high affinity state. The results suggest that activation of the beta subunit I-like domain is analogous to that of the alpha subunit I domain, i.e. that axial movement in the C-terminal direction of the alpha7-helix is linked to rearrangement of the I-like domain metal ion-dependent adhesion site into a high affinity conformation.  相似文献   

12.
We have used the highly selective alpha(4)beta(1) inhibitor 2S-[(1-benzenesulfonyl-pyrrolidine-2S-carbonyl)-amino]-4-[4-methyl-2S-(methyl-[2-[4-(3-o-tolyl-ureido)-phenyl]-acetyl]-amino)-pentanoylamino]-butyric acid (BIO7662) as a model ligand to study alpha(4)beta(1) integrin-ligand interactions on Jurkat cells. Binding of [(35)S]BIO7662 to Jurkat cells was dependent on the presence of divalent cations and could be blocked by treatment with an excess of unlabeled inhibitor or with EDTA. K(D) values for the binding of BIO7662 to Mn(2+)-activated alpha(4)beta(1) and to the nonactivated state of the integrin that exists in 1 mm Mg(2+), 1 mm Ca(2+) were <10 pm, indicating that it has a high affinity for both activated and nonactivated integrin. No binding was observed on alpha(4)beta(1) negative cells. Through an analysis of the metal ion dependences of ligand binding, several unexpected findings about alpha(4)beta(1) function were made. First, we observed that Ca(2+) binding to alpha(4)beta(1) was stimulated by the addition of BIO7662. From solution binding studies on purified alpha(4)beta(1), two types of Ca(2+)-binding sites were identified, one dependent upon and the other independent of BIO7662 binding. Second, we observed that the metal ion dependence of ligand binding was affected by the affinity of the ligand for alpha(4)beta(1). ED(50) values for the metal ion dependence of the binding of BIO7762 and the binding of a lower affinity ligand, BIO1211, differed by 2-fold for Mn(2+), 30-fold for Mg(2+), and >1000-fold for Ca(2+). Low Ca(2+) (ED(50) = 5-10 microm) stimulated the binding of BIO7662 to alpha(4)beta(1). The effects of microm Ca(2+) closely resembled the effects of Mn(2+) on alpha(4)beta(1) function. Third, we observed that the rate of BIO7662 binding was dependent on the metal ion concentration and that the ED(50) for the metal ion dependence of BIO7662 binding was affected by the concentration of the BIO7662. These studies point to an even more complex interplay between metal ion and ligand binding than previously appreciated and provide evidence for a three-component coupled equilibrium model for metal ion-dependent binding of ligands to alpha(4)beta(1).  相似文献   

13.
The affinity of integrin-ligand interaction is regulated extracellularly by divalent cations and intracellularly by inside-out signaling. We report here that the extracellular, membrane-proximal alpha/beta stalk interactions not only regulate cation-induced integrin activation but also play critical roles in propagating inside-out signaling. Two closely related integrins, alphaIIbbeta3 and alphaVbeta3, share high structural homology and bind to similar ligands in an RGD-dependent manner. Despite these structural and functional similarities, they exhibit distinct responses to Mn(2+). Although alphaVbeta3 showed robust ligand binding in the presence of Mn(2+), alphaIIbbeta3 showed a limited increase but failed to achieve full activation. Swapping alpha stalk regions between alphaIIb and alphaV revealed that the alpha stalk, but not the ligand-binding head region, was responsible for the difference. A series of alphaIIb/alphaV domain-swapping chimeras were constructed to identify the responsible domain. Surprisingly, the minimum component required to render alphaIIbbeta3 susceptible to Mn(2+) activation was the alphaV calf-2 domain, which does not contain any divalent cation-binding sites. The calf-2 domain makes interface with beta epidermal growth factor 4 and beta tail domain in three-dimensional structure. The effect of calf-2 domain swapping was partially reproduced by mutating the specific amino acid residues in the calf-2/epidermal growth factor 4-beta tail domain interface. When this interface was constrained by an artificially introduced disulfide bridge, the Mn(2+)-induced alphaVbeta3-fibrinogen interaction was significantly impaired. Notably, a similar disulfide bridge completely abrogated fibrinogen binding to alphaIIbbeta3 when alphaIIbbeta3 was activated by cytoplasmic tail truncation to mimic inside-out signaling. Thus, disruption/formation of the membrane-proximal alpha/beta stalk interface may act as an on/off switch that triggers integrin-mediated bidirectional signaling.  相似文献   

14.
The Drosophila alphaPS2 integrin subunit is found in two isoforms. alphaPS2C contains 25 residues not found in alphaPS2m8, encoded by the alternative eighth exon. Previously, it was shown that cells expressing alphaPS2C spread more effectively than alphaPS2m8 cells on fragments of the ECM protein Tiggrin, and that alphaPS2C-containing integrins are relatively insensitive to depletion of Ca(2+). Using a ligand mimetic probe for Tiggrin affinity (TWOW-1), we show that the affinity of alphaPS2CbetaPS for this ligand is much higher than that of alphaPS2m8betaPS. However, the two isoforms become more similar in the presence of activating levels of Mn(2+). Modeling indicates that the exon 8-encoded residues replace the third beta strand of the third blade of the alpha subunit beta-propeller structure, and generate an exaggerated loop between this and the fourth strand. alphaPS2 subunits with the extra loop structure but with an m8-like third strand, or subunits with a C-like strand but an m8-like short loop, both fail to show alphaPS2C-like affinity for TWOW-1. Surprisingly, a single C > m8-like change at the third strand-loop transition point is sufficient to make alphaPS2C require Ca(2+) for function, despite the absence of any known cation binding site in this region. These data indicate that alternative splicing in integrin alpha subunit extracellular domains may affect ligand affinity via relatively subtle alterations in integrin conformation. These results may have relevance for vertebrate alpha6 and alpha7, which are alternatively spliced at the same site.  相似文献   

15.
In the present work, we studied the interactions of recombinant alpha1 and alpha2 integrin I domains with cations Tb(3+), Mn(2+), Mg(2+) and Ca(2+). We observed that alpha1 and alpha2 I domains bind these cations with significantly different characteristics. The binding of Mg(2+) by the alpha1 I domain was accompanied by significant changes of tryptophan fluorescence which could be interpreted as a conformational change. Comparison of the alpha1 integrin I domain structure obtained by comparative modeling with a known structure of the alpha2 integrin I domain shows distinct differences in the metal ion binding sites which could explain the differences in cation binding.  相似文献   

16.
A central feature of integrin interaction with physiologic ligands is the monodentate binding of a ligand carboxylate to a Mg(2+) ion hexacoordinated at the metal ion-dependent adhesion site (MIDAS) in the integrin A domain. This interaction stabilizes the A domain in the high-affinity state, which is distinguished from the default low-affinity state by tertiary changes in the domain that culminate in cell adhesion. Small molecule ligand-mimetic integrin antagonists act as partial agonists, eliciting similar activating conformational changes in the A domain, which has contributed to paradoxical adhesion and increased patient mortality in large clinical trials. As with other ligand-mimetic integrin antagonists, the function-blocking mAb 107 binds MIDAS of integrin CD11b/CD18 A domain (CD11bA), but in contrast, it favors the inhibitory Ca(2+) ion over the Mg(2+) ion at MIDAS. We determined the crystal structures of the Fab fragment of mAb 107 complexed to the low- and high-affinity states of CD11bA. Favored binding of the Ca(2+) ion at MIDAS is caused by the unusual symmetric bidentate ligation of a Fab-derived ligand Asp to a heptacoordinated MIDAS Ca(2+) ion. Binding of the Fab fragment of mAb 107 to CD11bA did not trigger the activating tertiary changes in the domain or in the full-length integrin. These data show that the denticity of the ligand Asp/Glu can modify the divalent cation selectivity at MIDAS and hence integrin function. Stabilizing the Ca(2+) ion at MIDAS by bidentate ligation to a ligand Asp/Glu may provide one approach for designing pure integrin antagonists.  相似文献   

17.
The integrin lymphocyte function-associated antigen-1 (LFA-1) expressed on T cells serves as a useful model for analysis of leukocyte integrin functional activity. We have assessed the role of divalent cations Mg2+, Ca2+, and Mn2+ in LFA-1 binding to ligand intercellular adhesion molecule-1 (ICAM-1) and induction of the divalent cation-dependent epitope recognized by mAb 24. Manganese strongly promoted both expression of the 24 epitope and T cell binding to ICAM-1 via LFA-1, suggesting that Mn2+ is able to directly alter the conformation of LFA-1 in a manner that favors ligand binding. Since Mn2+ also promotes functional activity of other integrins, parallels in mechanism of ligand binding may span the integrin family. In contrast, induction of 24 epitope expression by Mg2+ required removal of Ca2+ from T cell LFA-1 with EGTA. Furthermore, binding of mAb 24 to T cell LFA-1 in the presence of either Mn2+ or Mg2+ was found to be specifically inhibited by Ca2+, suggestive of a negative regulatory role for Ca2+ in the control of leukocyte integrin function. Analysis of T cell binding to ICAM-1 via LFA-1 in the presence of Mg2+ or Mn2+, confirmed that Ca2+ exerted inhibitory effects upon LFA-1 function. The implication of our findings is that Ca2+ bound with relatively high affinity to LFA-1 may serve to maintain an inactive state. Thus induction of function and 24 epitope expression may occur as a result of displacement of Ca2+ from leukocyte integrins or alternatively, such activators may be able to impose the required conformational change in the presence of bound Ca2+.  相似文献   

18.
Integrin undergoes different activation states by changing its quaternary conformation. The integrin beta hybrid domain acts as a lever for the transmission of activation signal. The displacement of the hybrid domain can serve to report different integrin activation states. The monoclonal antibody (mAb) MEM148 is a reporter antibody that recognizes Mg/EGTA-activated but not resting integrin alpha(L) beta2. Herein, we mapped its epitope to the critical residue Pro374 located on the inner face of the beta2 hybrid domain. Integrin alpha(L) beta2 binds to its ligands ICAM-1 and ICAM-3 with different affinities. Integrin is proposed to have at least three affinity states, and the position of the hybrid domain differs in each. We made use of the property of mAb MEM148 to analyze and correlate these affinity states in regard to alpha(L) beta2/intercellular adhesion molecule (ICAM) binding. Our study showed that Mg/EGTA-activated alpha(L)beta2 can adopt a different conformation from that activated by activating mAbs KIM185 or MEM48. Unlike ICAM-1 binding, which required only one activating agent, alpha(L) beta2/ICAM-3 binding required both Mg/EGTA and an activating mAb. This suggests that alpha(L)beta2 with intermediate affinity is sufficient to bind ICAM-1 but not ICAM-3, which requires a high affinity state. Furthermore, we showed that the conformation adopted by alpha(L)beta2 in the presence of Mg/EGTA, depicting an intermediate activation state, could be reverted to its resting conformation.  相似文献   

19.
Some members of the integrin family recognize the RGD sequence which is common to cell adhesive proteins in a divalent cation-dependent manner. In the presence of Ca2+ and Mg2+, the fibronectin receptor of placenta recognizes the RGD sequence of fibronectin, but not that of vitronectin, while the vitronectin receptor of placenta recognizes the RGD sequence of vitronectin, but not that of fibronectin, although both receptors recognize the same RGD sequence. We have found by performing an enzyme-linked immunosorbent assay (ELISA) using receptor-specific monoclonal antibodies and by electrophoretic analysis that in the presence of Mn2+ a vitronectin receptor of placenta binds to an affinity column coupled with the cell-binding domain of fibronectin. By replacing divalent cations from Mn2+ to Ca2+ and Mg2+, the vitronectin receptor was completely eluted from the column. When the synthetic peptides GRGDSP and GRGESP were applied to the column as competitors, the Mn(2+)-dependent binding was inhibited by both peptides. These results suggest that Mn2+ elicits a binding activity of the placenta vitronectin receptor to the RGD site of fibronectin. The modulation of ligand specificity by Mn2+ will provide an important clue in the elucidation of the cause of individual ligand specificity of RGD-recognizing integrins.  相似文献   

20.
Three divalent cation binding sites in the integrin β I domain have been shown to regulate ligand binding and adhesion. However, the degree of ligand binding and adhesion varies among integrins. The αLβ2 and α4β7 integrins show an increase in ligand binding affinity and adhesion when one of their ADMIDAS (adjacent to MIDAS, or the metal ion-dependent adhesion site) residues is mutated. By contrast, the α2β1, α5β1, and αIIbβ3 integrins show a decrease in binding affinity and adhesion when their ADMIDAS is mutated. Our study here indicated that integrin αVβ3 had lower affinity when the ADMIDAS was mutated. By comparing the primary sequences of these integrin subunits, we propose that one residue associated with the MIDAS (β3 Ala(252)) may account for these differences. In the β1 integrin subunit, the corresponding residue is also Ala, whereas in both β2 and β7 integrin subunits, it is Asp. We mutated the β3 residue Ala(252) to Asp and combined this mutant with mutations of one or two ADMIDAS residues. The mutant A252D showed reduced ligand binding affinity and adhesion. The ligand binding affinity and adhesion were increased when this A252D mutant was paired with mutations of one ADMIDAS residue. But when paired with mutations of two ADMIDAS residues the mutant nearly abolished ligand-binding ability, which was restored by the activating glycosylation mutation. Our study suggests that the variation of this residue contributes to the different ligand binding affinities and adhesion abilities among different integrin families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号