首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Dietary fat saturation has been shown to affect hepatic apoB/E receptor expression and to modify low density lipoprotein (LDL) composition and density in guinea pigs. The current studies were designed to investigate the independent and interactive effects of dietary fat saturation alterations in apoB/E receptor expression and LDL composition on in vivo LDL turnover kinetics, both receptor-mediated and receptor-independent. Guinea pigs were fed semi-purified diets containing 15% fat, either polyunsaturated corn oil (CO), monounsaturated olive oil (OL), or saturated lard, and injected with radioiodinated LDL isolated from animals fed the homologous diet. Blood samples were obtained over 33 h to determine apoLDL fractional catabolic rates (FCR) and flux rates. Compared to animals fed OL- or lard-based diets, intake of the CO-based diet resulted in a 50% decrease in LDL apoB pool size associated with a twofold increase in receptor-mediated FCR (P less than 0.001) and a 28% decrease in flux rate (P less than 0.05). Maximal LDL binding capacity of hepatic apoB/E receptors, determined in vitro, was twofold higher for animals fed the CO-based diet compared to guinea pigs fed the OL- and lard-based diets (P less than 0.01). There was a significant correlation between hepatic apoB/E receptor number and in vivo receptor-mediated LDL FCR (r = 0.987). Significant differences in LDL turnover were related to the source of LDL. When injected into animals fed a nonpurified commercial diet, the smaller, cholesteryl ester-depleted LDL isolated from animals fed the CO-based diet had a twofold higher FCR compared to larger LDLs from guinea pigs fed the OL- and lard-based diets, which had similar turnover rates. When LDL from animals fed the commercial diet was radiolabeled and injected into animals fed the three types of dietary fat, significant differences in LDL turnover were observed in the order CO greater than lard greater than OL, suggesting that intravascular processing and tissue uptake of the smaller LDL from animals fed the commercial diet varies depending on the dietary fat saturation fed to the recipient animals. These studies demonstrate that guinea pigs fed polyunsaturated fat diets lower plasma LDL levels in part by an increase in apoB/E receptor-mediated fractional LDL turnover and a decrease in apoLDL flux. In addition, fat saturation alters LDL composition and size which independently affect LDL turnover rates in vivo.  相似文献   

2.
African green monkeys were fed diets containing either 11% (by weight) fish oil or lard for 2.5 yr. To test the hypothesis that fish oil decreases hepatic secretion of triglyceride (TG) and apoB, livers from these animals were perfused with a fatty acid mixture [85% (w/w) oleate containing [14C]oleate and 15% n-3 containing [3H]eicosapentaenoic acid (EPA)] at a rate of 0.1 mumol fatty acid/min per g liver. Liver perfusate was sampled every 30 min during 4 h of recirculating perfusion. The concentration of triglyceride was similar for livers of animals of both groups and there was no difference between groups in the extent of incorporation of [3H]EPA or [14C]oleate into hepatic TG. While the secretion rate for the mass of TG was less in the fish oil-fed group (8.3 +/- 2.5 vs 18.3 +/- 4.4 mg/h per 100 g liver, P less than 0.05), the apoB secretion rate was similar (0.92 +/- 0.15 vs 1.01 +/- 0.13 mg/h per 100 g liver). Significantly less [3H]EPA was incorporated into secreted TG in the fish oil group (0.4 +/- 0.1 vs 1.0 +/- 0.1% infused dose/h; P less than 0.01). The rate of secretion of [14C]TG was similar for both groups (1.3 +/- 0.3 vs 1.4 +/- 0.1% infused dose/h for fish oil and lard groups, respectively). No significant diet-related differences in [3H]TG or [14C]TG fatty acid specific activity were observed for perfusate TG or hepatic TG. After perfusion, livers from fish oil-fed monkeys contained significantly more [3H]EPA in hepatic phospholipid than livers from lard-fed monkeys (19.5 +/- 1.8 vs 11.4 +/- 1.7% infused dose; P less than 0.01) although hepatic phospholipid mass concentrations were similar. The liver phospholipids of the fish oil group were enriched in n-3 fatty acid mass and were relatively depleted of oleate and linoleate. We conclude that although apoB secretion was unaffected, dietary fish oil significantly decreased hepatic TG secretion through relatively poor utilization of EPA for the synthesis of TG destined for secretion in VLDL; at the same time, increased incorporation of [3H]EPA into hepatic phospholipid accompanied the decreased incorporation into secreted TG and these events may be coupled.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Sterol synthesis by the ocular lens of the rat during postnatal development   总被引:1,自引:0,他引:1  
Great amounts of plasma membranes are formed during early postnatal development of the ocular lens as lens epithelial cells differentiate into fiber cells. Little information is available on the source of the lipids, and particularly cholesterol, required for formation of these plasma membranes. The present study measured the capacity of the lens of the rat to synthesize cholesterol during this dynamic period of growth. Incorporation by lens of (3)H(2)O into total fatty acids was also examined. Absolute rates of cholesterol synthesis per whole lens were estimated in vitro from incorporation of (3)H from (3)H(2)O into digitonide precipitable sterols (DPS) by intact lenses of 6- to 30-day old rats. Rates of cholesterol synthesis were calculated which were adequate to furnish from either 50-100% or 20-40% of the cholesterol required by the lens for growth, depending upon the animal's age and upon whether one considered NADPH to be generated by the pentose phosphate pathway or by oxidative enzymatic processes (NADPH from the pentose pathway is not labeled from (3)H(2)O). Generation of the NADPH necessary for cholesterol synthesis principally by the pentose pathway would support the higher percent contribution of synthesis to the total growth requirement. The pentose pathway was clearly active in the young rat lens, since between 7.5 to 9.0 times more [1-(14)C]glucose than [6-(14)C]glucose was oxidized in vitro to (14)CO(2) by 6- and 22-day old lenses. Incorporation of (3)H(2)O into DPS decreases sharply after 2 weeks of age in spite of a constant rate of cholesterol accumulation by the lens. These results indicate that the ocular lens of the rat can furnish most if not all of its cholesterol requirements by synthesis de novo during the first 2 weeks of life, and imply a contribution from another source at older ages. Whether lipoproteins can supply cholesterol to the lens is still unclear, although neither HDL nor LDL altered the incorporation in vitro of [U-(14)C]glucose into DPS by lens.-Cenedella, R. J. Sterol synthesis by the ocular lens of the rat during postnatal development.  相似文献   

4.
To determine the effect of isocaloric substitution of dietary fish oil for lard on the physical and chemical properties of plasma low density lipoproteins (LDL), ten adult male cynomolgus monkeys were fed diets containing 11% (by weight) fish oil or lard in a crossover study consisting of two 15-week periods with a 6-week washout period in between. The atherogenic diets contained 40% of calories as fat with 0.26 mg cholesterol/kcal. Periodic measurements of plasma lipids were made throughout the study and a large blood sample was taken near the end of each 15-week period for LDL isolation and characterization, and for quantification of plasma apolipoproteins. Values for both studies were combined (mean +/- SE; n = 10) by diet. Significantly lower high density lipoprotein (HDL) cholesterol (28 +/- 2 vs. 57 +/- 8 mg/dl), apoA-I (53 +/- 11 vs. 88 +/- 7 mg/dl), and apoE (4.2 +/- 0.9 vs. 8.2 +/- 1.5 mg/dl) concentrations were found when the animals were consuming the fish oil versus the lard diet, respectively, but total plasma cholesterol (408 +/- 35 vs. 416 +/- 14 mg/dl), LDL cholesterol (356 +/- 34 vs. 331 +/- 17 mg/dl), and apoB (227 +/- 35 vs. 205 +/- 23 mg/dl) levels were not affected. LDL size was smaller during fish oil feeding (4.2 +/- 0.1 vs. 4.9 +/- 0.1 g/mumol) and LDL particle concentration was greater (2.3 +/- 0.2 vs. 1.8 +/- 0.1 microM). During fish oil feeding LDL cholesteryl esters (CE) and phospholipids (PL) were enriched in n-3 fatty acids and were relatively poor in 18:1 and 18:2 LDL CE transition temperature was about 11 degrees C lower during fish oil feeding (32 +/- 1 vs. 44 +/- 0.5 degrees C) and was positively correlated with the number of saturated, monoun-saturated, and n-6 polyunsaturated CE molecules per LDL. The results suggested that the range of transition temperatures among individual animal LDL was primarily determined by the number of monounsaturated CE, and the accumulation of n-3 polyunsaturated CE in LDL during fish oil feeding uniformly lowered the transition temperature of the LDL particle. There was a significant decrease in the percentage of LDL phosphatidylcholine (59 +/- 1 vs. 72 +/- 1%) and an increase in lysophosphatidylcholine (13 +/- 1 vs. 5 +/- 1%) and sphingomyelin (22 +/- 1 vs. 17 +/- 1%) during fish oil feeding relative to that of lard.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
To determine whether diets enriched in monounsaturated or n-3 fatty acids cause a reduction in cholesterol absorption relative to those more enriched in saturated fatty acids, we measured cholesterol absorption in 18 African green monkeys fed diets enriched in lard, oleinate (oleic acid-rich safflower oil), or fish oil at two levels of dietary cholesterol (0.05 vs. 0.77 mg/kcal). All animals were initially challenged with the lard, high cholesterol diet to ascertain their responsiveness to dietary cholesterol. Based on the results of this challenge, low versus high responders were equally distributed in assignation to the low (n = 6) and high (n = 12) cholesterol regimens. Within each level of dietary cholesterol animals consumed all three dietary fats in random sequences during three experimental phases each lasting 9-12 months with a monkey chow washout period between each phase, so that each animal served as its own control. During each dietary phase measurements of plasma lipids and cholesterol absorption were performed. The animals fed the higher versus lower level of dietary cholesterol had significantly higher plasma total cholesterol and low density lipoprotein (LDL) cholesterol concentrations and lower percentage cholesterol absorption; high density lipoprotein (HDL) cholesterol levels were not affected by the level of dietary cholesterol. Dietary fish oil resulted in a 20-30% reduction (P less than 0.01) in total plasma and LDL cholesterol and a 30-40% reduction (P less than 0.01) in HDL cholesterol concentrations compared to lard and oleinate regardless of the level of dietary cholesterol. At the high level of cholesterol intake, the oleinate and fish oil diets resulted in significantly lower percentage cholesterol absorption compared to the lard fat diet (35 +/- 2%, 34 +/- 3%, 41 +/- 4%, respectively). At the lower level of dietary cholesterol, percentage cholesterol absorption values were higher than those at the high cholesterol intake (45-52% vs. 34-41%) but were not affected by the type of dietary fat. There was a significant positive correlation between plasma LDL cholesterol concentrations and percentage cholesterol absorption for the oleinate and lard diets at the high level of dietary cholesterol and a significant inverse association between plasma HDL cholesterol and percentage cholesterol absorption. We conclude that the type of dietary fat can influence cholesterol absorption in African green monkeys and that oleinate and fish oil reduce cholesterol absorption relative to lard when a high amount of cholesterol (0.77 mg/kcal) is present in the diet.  相似文献   

6.
This study was undertaken to develop techniques for measuring absolute rates of sterol synthesis in extrahepatic tissues in vitro and to estimate the magnitude of the errors inherent in the use of various 14C-labeled substrates for such measurements. Initial studies showed that significant errors were introduced when rates of synthesis were estimated using [3H]water since about 20 nmol of water were bound to each mg of tissue cholesterol isolated as the digitonide. This source of error could be eliminated by subtracting apparent incorporation rates obtained at 0 degrees C from those obtained at 37 degrees C or by regenerating and drying the free sterol. In a second set of experiments, the H/C incorporation ratio in cholesterol was determined in the liver by measuring the absolute rates of hydrogen and acetyl CoA flux into sterols. The ratio of 0.69 +/- 0.03 was found to be independent of the rate of hepatic cholesterol synthesis, the rate of hepatic acetyl CoA generation, or the source of the acetyl CoA. In a third set of studies, rates of incorporation of [3H]water or 14C-labeled acetate, octanoate, and glucose into digitonin-precipitable sterols were simultaneously measured in nine different extrahepatic tissues. Assuming that the H/C ratio measured in the liver also applied to these tissues, the [3H]water incorporation rates were multipled by the reciprocal of the H/C ratio to give the absolute rates of sterol synthesis in each tissue. When these were compared to the incorporation rates determined with the 14C-labeled substrates the magnitude of the errors in the rates of sterol synthesis obtained with these substrates in each tissue could be assessed. Only [14C]octanoate gave synthesis rates approaching 100% of those obtained with [3H]water and this occurred only in the intestine and kidney; in the other extrahepatic tissues this substrate gave rates of 6--66+ of the absolute rates. Rates of [14C]acetate incorporation in sterols varied from 4 to 62% of the [3H]water incorporation rates while those obtained with [14C]glucose were only 2--88% of the true rates. These studies document the large and highly variable errors inherent in estimating rates of sterol synthesis in extrahepatic tissues using 14C-labeled substrates under in vitro conditions.  相似文献   

7.
Whole body sterol balance, hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity, hepatic low-density lipoprotein (LDL) receptor levels and net tissue cholesterol concentrations were determined in guinea pigs fed either a corn oil- or lard-based purified diet for 6-7 weeks. In comparison to the saturated lard diet, the polyunsaturated corn oil diet resulted in a 34% reduction in plasma total cholesterol levels (P less than 0.02) and a 40% lower triacylglycerol level (P less than 0.02). Feeding the corn oil diet altered very-low-density lipoprotein (VLDL) and LDL composition; the percent cholesterol ester in both particles was decreased and the relative percentages of VLDL triacylglycerol and LDL phospholipid increased. The ratio of surface to core components of LDL from corn oil-fed guinea pigs was significantly higher compared to LDL from animals fed lard. Dietary fat quality had no effect on fecal neutral or acidic steroid excretion, net tissue accumulation of cholesterol, whole body cholesterol synthesis or gallbladder bile composition. Consistent with these results was the finding that fat quality did not alter either expressed (non-phosphorylated) or total hepatic HMG-CoA reductase activities. The hepatic concentrations of free and esterified cholesterol were significantly increased in corn oil-fed animals, as were cholesterol concentrations in intestine, adipose tissue, muscle and total carcass. Analysis of receptor-mediated LDL binding to isolated hepatic membranes demonstrated that the polyunsaturated corn-oil based diet caused a 1.9-fold increase in receptor levels (P less than 0.02). The data indicate that the hypocholesterolemic effects of dietary polyunsaturated fat in the guinea pig are not attributable to changes in endogenous cholesterol synthesis or catabolism but rather may result from a redistribution of plasma cholesterol to body tissue due to an increase in tissue LDL receptors.  相似文献   

8.
1. Male rats were fed for 14 days on diets containing (by wt.) 53% of starch, or on diets in which 20% of the starch was replaced by sucrose, corn oil or lard. 2. The hepatic activities of the microsomal glycerol phosphate acyltransferase, dihydroxyacetone phosphate acyltransferase, phosphatidate cytidylyltransferase, diacylglycerol acyltransferase and choline phosphotransferase, and of the soluble phosphatidate phosphohydrolase, were measured. 3. The soluble phosphatidate phosphohydrolase activity was higher in those rats fed on lard than in those fed on the starch diet. Choline phosphotransferase activity was higher in the rats fed on corn oil than in those fed on the starch diet. 4. The rate of hepatic glycerolipid synthesis was measured in vivo 1 min after injection of [1,3-3H]glycerol and [1-14C]palmitate into the portal veins. 5. The relative rate of phosphatidylcholine synthesis in vivo was increased after feeding with corn oil and the higher specific activity of choline phosphotransferase may contribute to this result. The equivalent rate of triacylglycerol synthesis was increased by feeding with lard rather than corn oil, and the increased activity of phosphatidate phosphohydrolase may partly explain this. The latter changes probably contribute to the increased concentration of triacylglycerol which other authors have observed in the livers and sera of animals fed on saturated and monounsaturated fats.  相似文献   

9.
Nuclear receptors are involved in regulating the expression of cholesterol 7alpha-hydroxylase (CYP7A1), however, their roles in the up-regulation of CYP7A1 by cholestyramine (CSR) are still unclear. In the present study, male Wistar rats were divided into four groups and fed [high sucrose + 10% lard diet] (H), [H + 3% CSR diet] (H + CSR), [H + 0.5% cholesterol + 0.25% sodium cholate diet] (C), or [C + 3% CSR diet] (C + CSR) for 2 weeks. Cholestyramine decreased serum and liver cholesterol levels significantly in rats fed C-based diets, but had no effect on these parameters in rats fed H-based diets. Cholestyramine raised hepatic levels of CYP7A1 mRNA and activity in both groups. The gene expression of hepatic ATP-binding cassettes A1 and G5, regulated by liver X receptor (LXR), were unchanged and down-regulated by cholestyramine, respectively. The mRNA levels of the hepatic ATP-binding cassette B11 and short heterodimer partner (SHP), regulated by farnesoid X receptor (FXR), were not changed by cholestyramine. C-based diets, which contained cholesterol and cholic acid, increased SHP mRNA levels compared to H-based diets. Consequently, in rats fed the C+CSR diet, hepatic FXR was activated by dietary bile acids, but the hepatic CYP7A1 mRNA level was increased 16-fold compared to that in rats fed an H diet. These results suggest that cholestyramine up-regulates the expression of CYP7A1 independently via LXR- or FXR-mediated pathways in rats.  相似文献   

10.
The in vivo syntheses of two liver microsomal cytochromes P-450 PB3a, P-450 UT50 [(1987) Eur. J. Biochem., submitted] (Mr 50,000, 52,000) have been estimated by measuring the specific activity 2 h after i.p. administration of delta-[3H]aminolevulinic acid to male Sprague Dawley rats. The animals were fed either a standard rat chow (5% lard, 22% casein) or unbalanced diets (high lipid, 30% lard or low protein, 6% casein) with or without 50 ppm Phenoclor DP6. The high-lipid diet supported a more rapid body weight gain but had little impact on cytochrome P-450 content, expressed either per whole liver or per mg microsomal protein, and on the incorporation of the precursor into cytochrome P-450. The latter was determined by measuring the radioactivity incorporated into the cytochrome P-450 fraction, partially purified by affinity chromatography, as well as into two cytochrome P-450 isozymes (Mr 50,000 or 52,000) purified by DEAE-52 cellulose ion-exchange chromatography. The low-protein diet, on the other hand, severely depressed body weight gain and cytochrome P-450 content as well as incorporation of radioactivity, the lower-Mr cytochrome (Mr 50,000) being particularly affected. However, when a potent inducer, Phenoclor DP6, was added to the low-protein diet, cytochrome synthesis was restored indicating that the effect was reversible.  相似文献   

11.
Nine normal women, 22 to 37 years old, consumed controlled quantities of natural foods to test their responses to dietary cholesterol and saturated fat. All diets contained, as percentage of calories, 14% protein, 31% fat, and 55% carbohydrate. The main sources of polyunsaturated and saturated fats were corn oil and lard, respectively, and egg yolk was used for cholesterol supplementation. All subjects participated in four diet protocols of 15 days duration, and each diet period was separated by 3 weeks without diet control. The first diet (corn) was based on corn oil, had a polyunsaturated to saturated fat ratio (P/S) of 2.14, and contained 130 mg of cholesterol. The second diet (corn+) was identical to the first but contained a total of 875 mg of cholesterol. The third diet (lard) was based on lard, had a P/S ratio of 0.64, and contained 130 mg of cholesterol. The fourth diet (lard+) was identical to the third, but contained 875 mg of cholesterol per day. Changes of the plasma lipid, lipoprotein and apoprotein parameters relative to the corn diet were as follows: the corn+ diet significantly increased total plasma cholesterol, HDL-cholesterol, LDL-cholesterol, and apoB levels; the lard diet significantly increased total cholesterol, HDL-cholesterol, and apoB; and the lard+ diet significantly increased the total cholesterol, HDL-cholesterol, LDL-cholesterol, and apoA-I and apoB levels. There were no significant variations in VLDL-cholesterol, triglyceride, or apoE levels with these diets. The diets affected both the number of lipoprotein particles as well as the composition of LDL and HDL. Compared to the corn diet, cholesterol and saturated fat each increased the number of LDL particles by 17% and 9%, respectively, and the cholesterol per particle by 9%. The combination of saturated fat and cholesterol increased particle number by 18% and particle size by 24%. Switching from lard+ to lard, corn+, or corn diets reduced LDL-cholesterol of the group by 18%, 11%, and 28%, respectively, while a large inter-individual variability was noted. In summary, dietary fat and cholesterol affect lipid and lipoprotein levels as well as the particle number and chemical composition of both LDL and HDL. There is, however, considerable inter-individual heterogeneity in response to diet.  相似文献   

12.
The isoprenoid pathway provides several important products for retina function. In this study the sterol and dolichol pathways were investigated in retinas from Rana pipiens in order to assess the contribution of de novo synthesis. Levels of 5.9 +/- 2.0 (n = 13) nmol/retina for squalene, 134 +/- 27 (n = 16) nmol/retina for cholesterol, and 0.14 +/- 0.04 (n = 11) nmol/retina for dolichyl phosphate (Dol-P) were determined by high performance liquid chromatography analysis. When whole retinas were incubated with 3H2O, radioactivity was incorporated into compounds which chromatographed on reversed-phase and silica high performance liquid chromatography at the elution positions of squalene, cholesterol, lathosterol, and methyl sterols. From these results, the upper limit for the absolute rate of the sterol pathway was estimated to be 3.4 pmol/h. When retinas were incubated with [3H]acetate, the major labeled product was squalene. The relatively low level of incorporation into cholesterol was apparently due to a substantial pool of squalene which accumulated de novo incorporated [3H]acetate. Dol-P was also labeled with [3H]acetate, and by comparing the ratio of 3H incorporation into Dol-P/squalene with the absolute rate of the sterol pathway, the absolute rate of Dol-P synthesis was determined to be 0.022 pmol/h. Our calculations indicate that the retina does not synthesize sufficient quantities of cholesterol de novo to account for that which is utilized in the biogenesis of rod outer segment membranes.  相似文献   

13.
The present investigation compared plasma cholesterol levels and lipoprotein profiles, and absolute rates of sterol synthesis and low density lipoprotein (LDL) uptake in various organs of immature (4 weeks old) and mature (15 weeks) rats. The plasma cholesterol level and its distribution among the major lipoprotein density fractions were similar in both groups. Using [3H]water as a substrate for measuring sterol synthesis in vivo, the content of newly synthesized cholesterol (3H-labeled digitonin-precipitable sterols; [3H]DPS) was several fold higher in all tissues of the young, compared to the old, rats when normalized per g of tissue. In contrast, whole-body [3H]DPS content was identical at 29.5 and 29.3 mumol/hr in young and old rats, respectively, despite a 4.4-fold difference in body weight (102 vs. 453 g). The importance of different organs to total-body sterol synthesis remained similar with increasing age although the skin (11 vs. 24% of total) rather than the small bowel (15 vs. 8%) became the second most important organ after the liver (49 vs. 45%) in the older animals. When LDL uptake was determined in these same organs, using constant infusion technique, the rates of clearance were higher only in the adrenal glands, adipose tissue, and skin of the young animals; whereas these rates were essentially the same in the liver and gastrointestinal tract, the two organs that are quantitatively most important for LDL catabolism. Even when these clearance rates were normalized to the whole organ or to 100 g of body weight, the differences in LDL uptake in the two age groups were minor compared to the major decrease in rates of cholesterol synthesis that were observed with aging. Finally, calculation of absolute rates of tissue cholesterol acquisition from both sources indicated that, in most organs, the majority of tissue cholesterol was derived from local synthesis rather than from LDL uptake in both age groups and that, with increasing age, total cholesterol acquisition decreased several-fold primarily as a consequence of the diminished rate of sterol synthesis. These studies demonstrate that with growth and aging in the rat there is a dramatic decrease in the rate of tissue cholesterol synthesis while the uptake of LDL-cholesterol remains essentially unchanged.  相似文献   

14.
We investigated the effect of the A-IV-2 allele, which encodes a Q360H substitution in apolipoprotein (apo) A-IV, and dietary fat on cholesterol absorption in humans. In three separate studies we compared fractional intestinal cholesterol absorption between groups of subjects heterozygous for the A-IV-2 allele (1/2) and homozygous for the common allele (1/1) receiving high cholesterol ( approximately 800 mg/day) diets with different fatty acid compositions. All subjects had the apoE 3/3 genotype. There was no difference in cholesterol absorption between the two genotype groups receiving a high saturated fat diet (33% of total energy as fat; 18% saturated, 3% polyunsaturated, 12% monounsaturated) or a low fat diet (22% of total energy as fat; 7% saturated, 7% polyunsaturated, 8% monounsaturated) diet. However, on a high polyunsaturated fat diet (32% of total energy as fat; 7% saturated, 13% polyunsaturated, 12% monounsaturated) mean fractional cholesterol absorption was 56. 7% +/- 1.9 in 1/1 subjects versus 47.5% +/- 2.1 in 1/2 subjects (P = 0.004). A post hoc analysis of the effect of the apoA-IV T347S polymorphism across all diets revealed a Q360H x T347S interaction on cholesterol absorption, and suggested that the A-IV-2 allele lowers cholesterol only in subjects with the 347 T/T genotype.We conclude that a complex interaction between apoA-IV genotype and dietary fatty acid composition modulates fractional intestinal cholesterol absorption in humans.  相似文献   

15.
Inclusion of 1.1% elemental tellurium in the diet of postweanling rats produces a peripheral neuropathy due to a highly synchronous primary demyelination of sciatic nerve; this demyelination is followed closely by remyelination. Sciatic nerves from animals fed tellurium for various times were removed and incubated ex vivo for 1 h with [14C]acetate, and radioactivity incorporated into individual lipid classes was determined. In nerves from rats exposed to tellurium, there was a profound and selective block in the conversion of radioactive acetate to cholesterol. Another radioactive precursor, [3H]water, gave similar results. We suggest that tellurium feeding inhibits squalene epoxidase activity and that the consequent lack of cholesterol destabilizes myelin, thereby causing destruction of the larger internodes. Ex vivo incubation experiments were also carried out with liver slices. As with nerve, tellurium feeding caused accumulation in squalene of label from radioactive acetate, whereas labeling of cholesterol was greatly inhibited. Unexpectedly, however, incorporation of label from [3H]water into both squalene and cholesterol was increased. Relevant is the demonstration that liver was the primary site of bulk accumulation of squalene, which accounted for 10% of liver dry weight at 5 days. Thus, accumulation of squalene (and other mechanisms, possibly including up-regulation of cholesterol biosynthetic pathways) drives squalene epoxidase activity at normal levels in liver even in the presence of inhibitors of this enzyme. This is reflected by continuing incorporation of [3H]water into cholesterol; incorporation of this precursor takes place at many of the postsqualene biosynthetic steps for sterol formation. [14C]Acetate entering the sterol pathway before squalene in liver is greatly diluted in specific activity when it reaches the large squalene pool, and thus increased squalene epoxidase activity does not transfer significant 14C label to sterols. In contrast to the situation with liver, synthesis of sterols is markedly depressed in sciatic nerve, and squalene does not accumulate to high levels.  相似文献   

16.
The effects of dietary cholesterol and hypothyroidism on the mRNA levels of rat apolipoproteins A-I, A-IV, and E were measured in extracts of rat liver and rat intestine by hybridization to specific cDNA. Four groups, each comprised of six rats, were fed diets consisting of normal laboratory rat chow and either no supplements (control); 5% lard, 1% cholesterol, and 0.3% taurocholic acid (CF); 5% lard, 1% cholesterol, 0.3% taurocholic acid, and 0.1% propylthiouracil (CF-PTU); or 0.1% propylthiouracil (PTU) for 32 days. At the conclusion of the diets, serum cholesterol, triiodothyronine, and thyroxine levels were measured. The average serum cholesterol concentrations for the four groups were 50.4 +/- 3.7, 75.6 +/- 15.3, 135.3 +/- 41.5, and 73.3 +/- 16.4 mg/dl, respectively. The presence of propylthiouracil in the diets significantly lowered triiodothyronine and thyroxine levels in the serum. The mRNA levels for apolipoproteins A-I and A-IV in rat liver decreased significantly after the feeding of the CF-PTU diet (31 +/- 4% and 32 +/- 3% of normal, respectively) and the PTU diet (34 +/- 8% and 43 +/- 12% of normal, respectively), but showed little change after the CF diet (88 +/- 16% and 108 +/- 15% of normal, respectively). The effects of dietary propylthiouracil on the hepatic mRNA levels for apolipoproteins A-I and A-IV imply a role for thyroid hormones in regulating the mRNA levels for these apolipoproteins in rat liver. ApoE mRNA levels in the rat liver decreased slightly after the CF-PTU diet (74 +/- 12% of normal) and after the PTU diet (73 +/- 10% of normal).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Studies to determine the effects of pre-natal interventions on maternal and fetal cholesterol homeostasis were carried out in the guinea pig. Guinea pig dams were fed either non-purified guinea pig diet or diet supplemented with either 1.1% of the bile acid binding resin cholestyramine or 0.25% cholesterol. Whole body rates of endogenous cholesterol synthesis were determined by quantitation of [3H]water incorporation into digitonin precipitable sterols in non-pregnant animals and at 40 and 60 days of gestation in the dam and fetus. Maternal hepatic cholesterol synthesis was reduced 87% by dietary cholesterol and was increased 3.5-fold with cholestyramine feeding. Fetal hepatic and peripheral tissue cholesterol synthesis rates peaked at 40 days gestation when peripheral tissue cholesterol synthesis was 5.7-fold higher and hepatic synthesis 6.2-fold greater than the near adult levels observed at 60 days. Cholesterol synthesis in the fetus was relatively insensitive to dietary manipulations; however, maternal cholestyramine treatment did result in a 1.4-fold increase in fetal carcass cholesterol synthesis at 60 days gestation. These data demonstrate that maternal cholesterogenic systems maintain responsiveness to dietary regulation during pregnancy; whereas fetal cholesterol homeostasis is relatively insensitive to dietary cholesterol throughout gestation yet may respond to induction by maternal cholestyramine treatment during the late gestation period.  相似文献   

18.
Effect of lard and corn oil intake on serum lipids in young men   总被引:2,自引:0,他引:2  
An experimental diet with lard (30 g/day for 7 days) and corn oil (30 g/day for 7 days) on high carbohydrate (basal diet) was given to four healthy Japanese young men and the effect of diets containing different fat on serum lipids was examined. Serum total cholesterol was increased significantly from a basal diet of 106 +/- 23 to 141 +/- 26 mg/dl on lard diet, and then decreased significantly (p less than 0.05) to 111 +/- 22 mg/dl on corn oil diet. Serum triglycerides increased significantly (p less than 0.01) from 66 +/- 38 to 173 +/- 32 mg/dl on basal diet. Serum HDL-cholesterol was decreased significantly (p less than 0.01) from 41.9 +/- 1.6 to 31.2 +/- 3.8 mg/dl on lard diet and increased significantly (p less than 0.05) to 41.9 +/- 4.6 mg/dl on corn oil diet. Serum HDL-cholesterol fraction was decreased significantly (p less than 0.01) from 41.6 +/- 4.9 to 28.1 +/- 3.2% on basal diets, but increased significantly (p less than 0.05) to 44.3 +/- 3.1% on lard diet, and then decreased to 36.3 +/- 2.5% on corn oil diet. Serum HDL phospholipid fraction decreased significantly (p less than 0.05) from 62.5 +/- 6.7 to 50.7 +/- 1.8% on basal diet and increased significantly (p less than 0.05) to 60.4 +/- 1.0% on lard and corn oil diet. Serum phospholipids did not change by experimental diets. It is concluded that lard and corn oil have different and specific roles in lipid metabolism.  相似文献   

19.
We previously demonstrated that hyperglycemic-obese (obob) mice fed a 1% corn oil diet accumulated 10 times as much hepatic cholesterol as did their non-obese (+/?) littermates fed this diet because of difficulty in removal of cholesterol from the liver rather than from increased synthesis. Furthermore, feeding the bile acid analog Delta(22)-5beta-taurocholenic acid completely prevented the accumulation of hepatic cholesterol in obob mice fed the 1% corn oil diet. The hypothesis to be tested in the current study is that these aspects of cholesterol metabolism in the obob mouse do not occur in the hyperinsulinemic and insulin-resistant gold thioglucose obese mouse. Gold thioglucose obese (gtgo) and non-obese (ngtgo) mice were fed diets containing either 1% corn oil or 40% lard each with or without added taurocholenic acid for 6 weeks and then given a 250 mg meal of [U-(14)C]-glucose with incorporation of label into hepatic cholesterol and fatty acid measured 2 hours later. Consistent with earlier results in the obob model, incorporation of labeled glucose was significantly increased in obese compared with non-obese mice fed 1% corn oil and significantly reduced either by feeding 40% lard or by adding taurocholenic acid to the diet. In addition, taurocholenic acid greatly increased incorporation of labeled glucose into hepatic cholesterol in obese or non-obese mice fed either diet. In contrast to obob mice, the percentage of fat in the liver of gtgo mice was increased only 50% compared with ngtgo mice. The comparable increase in obob mice was 480%. Hepatic cholesterol did not increase significantly in the liver of gtgo mice fed 1% corn oil when compared with the ngtgo controls. The comparable increase in obob mice fed 1% corn oil was 350%. Also in marked contrast to obob mice, feeding taurocholenic acid increased hepatic cholesterol compared with non-obese controls fed either diet. The results are discussed in the light of the presence of circulating leptin in gtgo but not in obob mice.  相似文献   

20.
Rats of either sex were fed for 18 and 34 weeks respectively diets containing 40% (by weight) lipids with polyunsaturated fatty acids representing 1.34% or 13.2% of total calories. Platelet reactivity to thrombin, platelet fatty acid composition and incorporation of [14C]acetate into platelet lipids were investigated. Diets rich in saturated fatty acids markedly increased platelet sensitivity to thrombin. The concentration of 20:3 and 22:3 of the (n - 9) series and of 20:3 and 22:5 of the (n - 6) series were increased at the expense of 18:2 and 22:4 of the (n - 6) family in platelet lipids. 20:4 (n - 6) was unchanged. The fatty acid changes were more pronounced in male rats and after 34 weeks. [14C]Acetate incorporation into total platelet lipids and particularly into choline phosphoglycerides and ceramides was lower in animals fed saturated fats. This diet reduced the synthesis of 16:0 and of 22:4(n - 6) in platelet total fatty acids, while that of 22:3(n - 9) was markedly enhanced. This study showed that long-term feeding of high-saturated-low-polyunsaturated fat diets in rats induced marked changes in platelet lipid synthesis and composition, in both sexes. The lipid synthesis modification appears to be more pronounced in males than in females. The changes in the fatty acids 20:3(n - 9), 22:3(n - 9) and 22:4(n - 6) appeared to be closely related to platelet behaviour. The balance between the content and synthesis of these last fatty acids might be of significance for the effect of diet on thrombogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号