首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic-induction response and light-fleck utilization were investigated for the current-year seedlings of Quercus serrata, a deciduous tree found in temperate regions of Japan. The tree seedlings were grown under three light regimes: a constant low photosynthetic photon flux density (PFD) regime of 50 mol m–2 s–1, a constant high PFD regime of 500 mol m–2 s–1, and a lightfleck regime with alternated low (lasting 5 s) and high (lasting 35 s) PFD. The photosynthetic-induction response following a sudden increase of PFD from 50 to 500 mol m–2 s–1 exhibited two phases: an initial fast increase complete within 3–5 s, and a second slow increase lasting for 15–20 min. Induction times required to reach 50% and 90% of steady-state assimilation rates were significantly shorter in leaves from the constant low PFD than those from the high PFD regime. During the first 60–100 s, the ratio of observed integrated CO2 uptake to that predicted by assuming that a steady-state assimilation would be achieved instantaneously after the light increase was significantly higher for leaves from the low PFD regime than from the high PFD regime. Lightfleck utilization was examined for various durations of PFD of 500 mol m–2 s–1 on a background PFD of 50 mol m–2 s–1. Lightfleck utilization efficiency was significantly higher in low PFD leaves than in the high PFD leaves for 5-s and 10-s lightflecks, but showed no difference among different light regimes for 100-s lightflecks. The contribution of post-illumination CO2 fixation to total carbon gain decreased markedly with increasing lightfleck durations, but exhibited no significant difference among growth regimes. Photosynthetic performances of induction response and lightfleck utilization in leaves from the lightfleck regime were more similar to those in leaves from the low PFD regime. It may be the total daily PFD rather than PFD dynamics in light regimes that affects the characteristics of transient photosynthesis in Q. serrata seedlings.  相似文献   

2.
Summary The gas exchange characteristics under steadystate and transient light conditions were determined for a redwood forest understory herb Adenocaulon bicolor, that depends on use of sunflecks for a large fraction of its daily carbon gain. Measurements under steady-state conditions indicated that this species has photosynthetic characteristics that are typical for understory plants. The mean light-saturated assimilation rate was 5.26 mol CO2 m-2 s-1; the light saturation and compensation occurred at 243 and 2 mol photons m-2 s-1, respectively. This light compensation point was much less than the photon flux density under diffuse light in the understory so that positive assimilation could be maintained throughout the day. When leaves that had been in diffuse light for at least 2 h were exposed to a sudden increase in PFD to saturating levels, 10–30 min were required for both assimilation and stomatal conductance to reach maximum values. Calculation of intercellular CO2 pressures, however, suggest that for the first 10 min after the light increase, biochemical factors were responsible for most of the increase in assimilation. Thereafter stomatal opening caused a further increase in assimilation that was no more than 25% of the total. When fully induced leaves were returned to low light, induction was rapidly lost even though stomatal conductance decreased only slowly. This rapid loss of induction limited the capacity of A. bicolor to use sunflecks after low light periods that lasted longer than 1–2 min. However, during periods when sunflecks are more frequent there is probably little loss of induction. Under these conditions, sunflecks are used with high efficiency for assimilation.  相似文献   

3.
Summary We studied root net uptake of ammonium (NH 4 + ) and nitrate (NO 3 ) in species of the genus Piper (Piperaceae) under high, intermediate and low photosynthetically active photon flux densities (PFD). Plants were grown hydroponically, and then transferred to temperature controlled (25° C) root cuvettes for nutrient uptake determinations. Uptake solutions provided NH 4 + and NO 3 simultaneously (both) or separately (single). In the first experiment, seven species of Piper, from a broad range of rainforest light habitats ranging from gap to understory, were screened for mineral nitrogen preference (100 M NH 4 + and/or 100 M NO 3 ) at intermediate PFD (100 mol m–2 s–1). Preference for NH 4 + relative to NO 3 , defined as the ratio of NH 4 + (both):NO 3 (both) net uptake, was higher in understory species than in gap species. Ammonium repression of NO 3 uptake, defined as the ratio of NO 3 (single): NO 3 (both) net uptake, was also higher in understory species as compared to gap species. In a second set of experiments, we examined the effect of nitrogen concentration (equimolar, 10 to 1000 M) on NH 4 + preference and NH 4 + repression of NO 3 net uptake at high (500 mol m–2 s–1) and low (50 mol m–2 s–1) PFD in a gap (P. auritum), generalist (P. hispidum) and understory species (P. aequale). All species exhibited negligible NH 4 + repression of NO 3 net uptake at high PFD. At low PFD, NH 4 + preference and repression of NO 3 net uptake occurred in all species (understory > generalist > gap), but only at intermediate nitrogen concentrations, i.e. between 10 and 200 M. Ammonium repression of net NO 3 uptake decreased or increased rapidly (in < 48 h) after transitions from low to high or from high to low PFD respectively. No significant diurnal patterns in NO 3 or NH 4 + net uptake were observed.CIWDPB publication # 1130  相似文献   

4.
Plant phenotype stability during ex vitro growth, one of the main requirements of plant micropropagation, was tested on tobacco. Plants cultivated in vitro in the presence of 3 % sucrose under photon flux density (PFD) of 200 mol m–2 s–1 (3 % HL plants) showed the best growth and photosynthetic parameters in the course of 7-day acclimation. However, significant change in phenotype of these plants appeared under a decrease in PFD to 50 mol m–2 s–1 during further ex vitro growth (in the period of 7th – 17th day). Much higher internodia elongation was found in 3 % HL plants in comparison with plants grown in vitro on sucrose media under PFD of 50 mol m–2 s–1 (3 % LL) or without sucrose either under PFD of 50 mol m–2 s–1 or 200 mol m–2 s–1 (0 % LL, 0 % HL). It can be presumed that 3 % HL plants show permanent demand for high PFD. Neither ABA or chlorophyll contents nor de novo thylakoid membrane synthesis were related to the morphogenic effect of low PFD. Changeable contents of hexoses in leaves of 3 % HL and 3 % LL plants were in no direct correlation to the elongated growth.  相似文献   

5.
The light utilization efficiency and relative photon requirement of photosynthesis in pulsed and continuous light from light emitting diodes (LEDs) has been measured. First, we chacterized the photon requirement of photosynthesis from light of LEDs that differ in spectral quality. A photon requirement of 10.3±0.4 was measured using light from a 658 nm peak wavelength (22 nm half band width) LED over the range of 0–50 mol photons m–2 s–1 in 2 kPa O2 in leaves of tomato (Lycopersicon esculentum Mill., cv. VF36). Because the conversion of electrical power to photons increased with wavelength, LED lamps with peak photon output of 668 nm were most efficient for converting electricity to photosynthetically fixed carbon. The effect of pulsed irradiation on photosynthesis was then measured. When all of the light to make the equivalent of 50 mol photons m–2 s–1 was provided during 1.5 s pulses of 5000 mol photons m–2 s–1 followed by 148.5 s dark periods, photosynthesis was the same as in continuous 50 mol photons m–2 s–1. When the pulse light and dark periods were lengthened to 200 s and 19.8 ms, respectively, photosynthesis was reduced, although the averaged photon flux density was unchanged. Under these conditions, the light pulses delivered 1017 photons m–2, which we calculate to be equivalent to the capacitance of PS I or PS II. Data support the theory that photons in pulses of 100 s or shorter are absorbed and stored in the reaction centers to be used in electron transport during the dark period. When light/dark pulses were lengthened to 2 ms light and 198 ms dark, net photosynthesis was reduced to half of that measured in continuous light. Pigments of the xanthophyll cycle were not affected by any of these pulsed light treatments even though zeaxanthin formation occurred when leaves were forced to dissipate an equal amount of continuous light.Abbreviations CWF cool white fluorescent - EPS xanthophyll epoxidation state - LED light emitting diode - LUE light utilization efficiency - PFD photon flux density - PR photon requirement (for CO2 fixation) - PS II primary donor in Photosystem II - RPR relative photon requirement  相似文献   

6.
Effects of light and temperature, on the growth of three freshwater green algae isolated from an eutrophic lake and identified as Selenastrum minutum, Coelastrum microporum f. astroidea and Cosmarium subprotumidumwere studied in batch cultures under non-nutrient limited conditions. Experiments were performed to determine the growth rate over a wide range of light intensities (30–456 mol m–2 s–1) and temperature (15–35°C), using a 15/9 (light/dark) photoperiod cycle. The maximum growth rates and the optimum light intensities at a temperature of 35°C were 1.73 d–1 and 420 mol m–2 s–1for Selenastrum minutum, 1.64 d–1 and 400 mol m–2 s–1 for Coelastrum microporum and 1.00 d–1 and 400 mol m–2 s1 for Cosmarium subprotumidum. The results were fitted with the mathematical models of Steele (1965), Platt & Jassby (1976) and Peeters & Eilers (1978). Steele's function and equation of Platt & Jassby don't describe correctly the relationship between the growth and light intensity. In the opposite, the equation of Peeters & Eilers provides the best fit for the three species.  相似文献   

7.
The photosynthetic response of juveniles of Decussocarpus rospigliosii, an emergent primary forest species and shade tolerant in its juvenile stages and Alchornea triplinervia, a gap-colonizing species of tropical cloud forest in Venezuela was studied. Daily courses of microenvironmental variables and gas exchange under contrasting light conditions (gap and understory) were carried out in their natural environment and transplanted to different light regimes (shade and sun) in the field. The photosynthetic response and some anatomical characteristics of plants from different treatments were analyzed in the laboratory. Photosynthetic rates were low for both species, and were negative during some diurnal periods, related to the low photosynthetically active radiation levels obtained at both gap (6% of total radiation) and understory (2%). A. triplinervia shows higher rates (1.5–3.0 molm-2 -1) than D. rospigliosii (0.7–1.1 molm-2s-1). Both species showed increased photosynthetic rates when grown in gaps. A. triplinervia did not adjust its maximum photosynthetic rates to the prevailing light conditions. In contrast, D. rospigliosii responded to increased light levels. Both species showed low light compensation points when grown under total shade. There was a partial stomatal closure generally during midday in D. rospigliosii. A. triplinervia presented lower leaf conductances, transpiration rates and lesser stomatal control. Some leaf anatomical characteristics, in both species, were affected by variations in the light regime (i.e. increased leaf thickness, leaf specific weight and stomatal density). These results suggest that both species have the ability to respond to variations in their natural light environments, therefore maintaining a favorable carbon balance during the day.  相似文献   

8.
Photosynthetic productivity (Ps) of the estuarine dinoflagellate Prorocentrum mariae-lebouriae (Parke and Ballantine) comb. nov., was measured with an open differential infra-red gas analysis system especially designed to measure CO2 uptake at a constant CO2 concentration. Ps was determined in six different fluorescent lamp spectral qualities (SQ) (daylight, blue, green, orange, orange-red and red) with bandwiths ranging from 50 to 75 nm and at photon flux densities (PFD) from 1.7 to 170 mol of quanta s–1 m–2 to characterize the spectral response of daylight SQ grown P. mariae-lebouriae cultures. Ps was significantly higher for blue irradiation than for any other SQ. Compared to blue (100%) the following mean values were found: daylight 88%, green 79%, orange 29%, orange-red 56%, and red 87%. Differences were greatest at low PFD. Most measurements were performed at 20°C, but Ps was found to vary as a direct function of the culture temperature. A 10°C increase in temperature caused a 50% increase in Ps from 10° to 30°C with saturating PFD. Since the analytical system measured very small CO2 differentials, down to 0.5 l l–1, we were able to detect small and fast CO2 transients at the beginning and end of an irradiation. These transients, known as CO2-burst and CO2-gulp, increased in magnitude with increased PFD.  相似文献   

9.
The effects of a 60 min exposure to photosynthetic photon flux densities ranging from 300 to 2200 mol m–2s–1 on the photosynthetic light response curve and on PS II heterogeneity as reflected in chlorophyll a fluorescence were investigated using the unicellular green alga Chlamydomonas reinhardtii. It was established that exposure to high light acts at three different regulatory or inhibitory levels; 1) regulation occurs from 300 to 780 mol m–2s–1 where total amount of PS II centers and the shape of the light response curve is not significantly changed, 2) a first photoinhibitory range above 780 up to 1600 mol m–2s–1 where a progressive inhibition of the quantum yield and the rate of bending (convexity) of the light response curve can be related to the loss of QB-reducing centers and 3) a second photoinhibitory range above 1600 mol m–2s–1 where the rate of light saturated photosynthesis also decreases and convexity reaches zero. This was related to a particularly large decrease in PS II centers and a large increase in spill-over in energy to PS I.Abbreviations Chl chlorophyll - DCMU 3,(3,4-dichlorophenyl)-1,1-dimethylurea - FM maximal fluorescence yield - Fpl intermediate fluorescence yield plateau level - F0 non-variable fluorescence yield - Fv total variable fluorescence yield (FM-F0) - initial slope to the light response curve, used as an estimate of initial quantum yield - convexity (rate of bending) of the light response curve of photosynthesis - LHC light-harvesting complex - Pmax maximum rate of photosynthesis - PQ plastoquinone - Q photosynthetically active photon flux density (400–700 nm, mol m–2s–1) - PS photosystem - QA and QB primary and secondary quinone electron acceptor of PS II  相似文献   

10.
The effects of eight microelements (I, BO3 3–, MoO4 2–, Co2+, Cu2+, Mn2+, Fe2+, Zn2+) on the biosynthesis of camptothecin and the growth of suspension cultures of Camptotheca acuminata were studied. The increase of I to 25 M l–1, Cu2+ to 1 M l–1, Co2+ to 2 M l–1 and MoO4 2– to 10 M l–1 in Murashige and Skoog (MS) medium resulted in 1.66, 2.84, 2.53 and 2.04 times higher of camptothecin yield than that in standard MS medium respectively. Combined treatment of I (25 M l–1), Cu2+ (1 M l–1), Co2+ (2 M l–1) and MoO4 2– (10 M l–1) lead to improve cell dry weight, camptothecin content, and camptothecin yield to 30.56 g l–1, 0.0299%, and 9.15 mg l–1, respectively, which were 20.2, 208.9 and 273.8% increment respectively when compared with those of control.  相似文献   

11.
A. Laisk  O. Kiirats  V. Oja  U. Gerst  E. Weis  U. Heber 《Planta》1992,186(3):434-441
Exchange of CO2 and O2 and chlorophyll fluorescence were measured in the presence of 360 1 · 1–1 CO2 in nitrogen in Helianthus annuss L. leaves which had been preconditioned in the dark or at a photon flux density (PFD) of 24 mol · m–2 · s–1 either in 21 or 0% O2. An initial light-dependent O2 outburst of 6 mol · m–2 was measured after aerobic dark incubation. It was attributed to the reduction of electron carriers, predominantly plastoquinone. The maximum initial rate of O2 evolution at PFD 8000 mol · m–2 · s–1 was 170 mol · m–2 · s–2 or about four times the steady CO2-and light-saturated rate of photosynthesis. Fluorescence measurements showed that the rate was still acceptor-limited. Fast O2 evolution ceased after electron carriers were reduced in the dark-adapted leaf, but continued for a short time at the lower rate of 62 mol · m–2 · s–1 in the light-adapted leaf. The data are interpreted to show that enzymes involved in 3-phosphoglycerate reduction are dark-inhibited, but were fully active in low light. In a dark-adapted leaf, respiratory CO2 evolution continued under nitrogen; it was partially inhibited by illumination. Prolonged exposure of a leaf to anaerobic conditions caused reducing equivalents to accumulate. This was shown by a slowly increasing chlorophyll fluorescence yield which indicated the reduction of the PSII acceptor QA in the dark. When the leaf was illuminated, no O2 evolution was detected from short light pulses, although transient O2 production was appreciable during longer light pulses. This indicates that an electron donor (pool size about 2–3 e/PSII reaction center) became reduced in the dark and the first photons were used to oxidise this donor instead of water.Abbreviations Chl chlorophyll - CRC carbon reduction cycle - GAPDH NADP-glyceraldehyde-phosphate dehydrogenase - PFD photon flux density - PGA 3-phosphoglycerate - RuBP ribulose bisphosphate - TCA tricarboxylic acid cycle To whom correspondence should be addressedThis work received support by the Estonian Academy of Sciences, the Gottfried-Wilhelm-Leibniz Program of the Deutsche For-schungsgemeinschaft and the Sonderforschungsbereich 251 of the University of Würzburg.  相似文献   

12.
Strawberry (Fragaria ananassaDuch. cv. Fengxiang) plantlets were cultured under two in vitroenvironments for rooting, and then acclimatized under two ex vitroirradiance conditions. At the end of rooting stage plant height, fresh weight and specific leaf area of T1-plants grown under high sucrose concentration (3 sucrose), low photosynthetic photon flux density (30 mol m–2 s–1) and normal CO2 concentration (350–400 l l–1) were significantly higher than those of T2-plantlets grown under low sucrose concentration (0.5), high photosynthetic photon flux density (90 mol m–2 s–1) and elevated CO2 concentration (700–800 l l–1). But T2-plantlets had higher net photosynthetic rate (Pn), effective photochemical quantum yield of PSII (PSII), effective photosynthetic electron transport rate (ETR), photochemical quenching (qP) and ratio of chlorophyll fluorescence yield decrease (Rfd). After transfer, higher irradiance obviously promoted the growth of plantlets and was beneficial for the development of photosynthetic functions during acclimatization. T2-plantlets had higher fresh weight, leaf area, PSII and ETR under higher ex vitroirradiance condition.  相似文献   

13.
Effect of quality, quantity and minimum duration of light on the process of recovery was investigated in the photoinhibited cells of the green alga Chlamydomonas reinhardtii. Complete and rapid reactivation of photosynthesis took place in diffuse white light of 25 mol m–2 s–1. The recovery was partial (< 10%) in the dark. Far red (725 nm), red (660 nm) and blue light (480 nm) in the range of 10 to 75 mol m–2 s–1 did not enhance the process of reactivation. Photoinhibited cells incubated in dark for 15 min when exposed for 5 min to diffuse light (25 mol m–2 s–1) showed complete reactivation. Even exposure of 15 min dark incubated photoinhibited cells to photoinhibitory light (2500 mol m–2 s–1) for 5 s fully regained the photosynthesis. The study indicated a very precise and triggering effect of light in the process of reactivation. The dark respiratory inhibitor KCN and uncouplers FCCP and CCCP increased the susceptibility of C. reinhardtii to photoinhibition and also prevented photoinhibited cells to reactivate fully even after longer period of incubation under suitable reactivating conditions. Of the various possibilities envisaged to assign the role of dark respiration in recovery process, supply of ATP by mitochondrial respiration appeared sound and pertinent.Abbreviations CCCP- carbonyl cyanide m-chlorophenylhydrazone - D1- 32 kDa protein of PS II reaction center - FCCP- carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone - KCN- potassium cyanide - PBQ- phenyl-p-benzoquinone - PFD- photon flux density - SHAM- salicylhydroxamic acid NBRI Research Publication No. 431.  相似文献   

14.
Biochemical and biophysical parameters, including D1-protein turnover, chlorophyll fluorescence, oxygen evolution activity and zeaxanthin formation were measured in the marine seagrassZostera capricorni (Aschers) in response to limiting (100 mol·m–2·–1), saturating (350 mol·m–2·s–1) or photoinhibitory (1100 mol·m–2·s–1) irradiances. Synthesis of D1 was maximal at 350 mol·m–2·s–1 which was also the irradiance at which the rate of photosynthetic O2 evolution was maximal. Degradation of D1 was saturated at 350 mol·m–2·s–1. The rate of D1 synthesis at 1100 mol·m–2·s–1 was very similar to that at 350 mol·m–2·s–1 for the first 90 min but then declined. At limiting or saturating irradiance little change was observed in the ratio of variable to maximal fluorescence (Fv/Fm) measured after dark adaptation of the leaves, while significant photoinhibition occurred at 1100 mol·m–2·s–1. The proportion of zeaxanthin in the total xanthophyll pool increased with increasing irradiance, indicative of the presence of a photoprotective xanthophyll cycle in this seagrass. These results are consistent with a high level of regulatory D1 turnover inZostera under non-photoinhibitory irradiance conditions, as has been found previously for terrestrial plants.We would like to thank Professor Peter Böger (Department of Plant Biochemistry, University of Konstanz, Germany) for the kind gift of D1 antibodies. This work was partly supported by a University of Queensland Enabling Grant to CC.  相似文献   

15.
Laurencia brongniartii is usually found at depths below 4 m, but can be found in shallow subtidal areas in crevices and on the walls of a coral reef in Amami Oshima Island, Kagoshima Prefecture, Japan, where irradiances were significantly lower than those at similar depths in open water. In preparation for the possible cultivation of this species for its antibiotic compounds, the effects of temperature and irradiance on photosynthesis and growth were measured. Photosynthesis and growth rates of L. brongniartii explants were highest at 26 and 28 °C, which closely corresponded to temperatures found during August to late December when it was most abundant. The estimated maximum photosynthesis rate (P max) was 4.41 mol photon m–2 s–1 at 26 °C and 4.07 mol photon m–2 s–1 at 28 °C. Saturating irradiance occurred at 95 mol photon m–2 s–1 at 26 °C and 65 mol photon m–2 s–1 at 28 °C. In contrast, growth experiments at 41.7 mol photon m–2 s–1 caused bleaching of explants and the maximum growth rate observed during the study was 3.02 ± 0.75% day–1 at 28 °C and 25 mol photon m–2 s–1. The difference in the saturating irradiance for photosynthesis and the irradiance that caused bleaching in growth experiments suggests that long-term exposure to high irradiance was detrimental and should be addressed before the initiation of large scale cultivation.  相似文献   

16.
The light-dependent rate of photosystem-II (PSII) damage and repair was measured in photoautotrophic cultures of Dunaliella salina Teod. grown at different irradiances in the range 50–3000 mol photons · m–2· s–1. Rates of cell growth increased in the range of 50–800 mol photons·m–2·s–1, remained constant at a maximum in the range of 800–1,500 mol photons·m–2 ·s–1, and declined due to photoinhibition in the range of 1500–3000 mol photons·m–2·s–1. Western blot analyses, upon addition of lincomycin to the cultures, revealed first-order kinetics for the loss of the PSII reaction-center protein (D1) from the 32-kDa position, occurring as a result of photodamage. The rate constant of this 32-kDa protein loss was a linear function of cell growth irradiance. In the presence of lincomycin, loss of the other PSII reaction-center protein (D2) from the 34-kDa position was also observed, occurring with kinetics similar to those of the 32-kDa form of D1. Increasing rates of photodamage as a function of irradiance were accompanied by an increase in the steady-state level of a higher-molecular-weight protein complex ( 160-kDa) that cross-reacted with D1 antibodies. The steady-state level of the 160-kDa complex in thylakoids was also a linear function of cell growth irradiance. These observations suggest that photodamage to D1 converts stoichiometric amounts of D1 and D2 (i.e., the D1/D2 heterodimer) into a 160-kDa complex. This complex may help to stabilize the reaction-center proteins until degradation and replacement of D1 can occur. The results indicated an intrinsic half-time of about 60 min for the repair of individual PSII units, supporting the idea that degradation of D1 after photodamage is the rate-limiting step in the PSII repair process.Abbreviations Chl chlorophyll - PSI photosystem I - PSII photosystem II - D1 the 32-kDa reaction-center protein of PSII, encoded by the chloroplast psbA gene - D2 the 34-kDa reactioncenter protein of PSII, encoded by the chloroplast psbD gene - QA primary electron-accepting plastoquinone of PSII The work was supported by grant 94-37100-7529 from the US Department of Agriculture, National Research Initiative Competitive Grants Program.  相似文献   

17.
M. R. Davis 《Plant and Soil》1990,126(2):237-246
Concentrations of ions were measured in soil solutions from beech (Nothofagus) forests in remote areas of New Zealand and in solutions from beech (Fagus sylvatica) and Norway spruce (Picea abies) forests in North-East Bavaria, West Germany, to compare the chemistry of soil solutions which are unaffected by acid deposition (New Zealand) with those that are affected (West Germany). In New Zealand, soil solution SO4 2– concentrations ranged between <2 and 58 mol L–1, and NO3 concentrations ranged between <1 and 3 mol L–1. In West Germany, SO4 2– concentrations ranged between 80 and 700 mol L–1, and NO3 concentrations at three of six sites ranged between 39 and 3750 mol L–1, but was not detected at the remaining three sites. At all sites in New Zealand, and at sites where the soil base status was moderately high in West Germany, pH levels increased, and total Al (Alt) and inorganic monomeric Al (Ali) levels decreased rapidly with increasing soil depth. In contrast, at sites on soils of low base status in West Germany, pH levels increased only slightly, and Al levels did not decline with increasing soil depth.Under a high-elevation Norway spruce stand showing severe Mg deficiency and dieback symptoms in West Germany, soil solution Mg2+ levels ranged between 20 and 60 mol L, and were only half those under a healthy stand. Alt and Ali levels were substantially higher the healthy stand than under the unhealthy stand, indicating that Al toxicity was not the main cause of spruce decline.  相似文献   

18.
This study examines the influence of current velocity in the toxiceffect of copper in diatom-dominated biofilms grown in artificial channels.Effects on community structure, algal biomass and photosynthesis (carbonincorporation) caused by 15 g L–1 of copperwere tested at contrasting (1 and 15 cm s–1)velocities. Moreover, a possible threshold on the effect of copper on algalbiomass and photosynthesis related to current velocity was examined by usingprogressively increasing current velocity (1 to 50 cms–1) at 15 g L–1 Cu.Chlorophyll-a decreased ca. 50% as a result of addition of15 g L–1 Cu. Chlorophyll decrease occurredearlier at 15 cm s–1 than at 1 cms–1 when adding 15 g L–1Cu. Copper also caused a remarkable decrease in carbon incorporation(from 30 to ca. 50%), which was produced earlier at 15 cms–1 (three days) than at 1 cms–1 (seven days). Some taxa were affected by thecombination of copper and current velocity. Both Achnanthesminutissima and Stigeoclonium tenue becomedominant at 15 cm s–1 in the presence of copper.Significant inhibition of algal growth in 15 g L–1Cu occurred at low (1 cm s–1) and highvelocities (50 cm s–1), but not at intermediatevelocity (20 cm s–1). The experiments indicatethat current velocity triggers the effect that copper has on diatom-dominatedbiofilms, and that the effect is more remarkable at low and high than atintermediate current velocities.  相似文献   

19.
Single leaf photosynthetic characteristics of Alnus glutinosa, A. incana, A. rubra, Elaeagnus angustifolia, and E. umbellata seedlings conditioned to ambient sunlight in a glasshouse were assessed. Light saturation occurred between 930 and 1400 mol m-2s-1 PAR for all species. Maximum rates of net photosynthesis (Pn) measured at 25°C ranged from 12.8 to 17.3 mol CO2m-2s-1 and rates of dark respiration ranged from 0.74 to 0.95 mol CO2m-2s-1. These values of leaf photosynthetic variables are typical of early to midsuccessional species. The rate of Pn measured at optimal temperature (20°C) and 530mol m-2s-1 PAR was significantly (p<0.01) correlated with leaf nitrogen concentration (r=0.69) and negatively correlated with the mean area of a leaf (r=–0.64). We suggest that the high leaf nitrogen concentration and rate of Pn observed for Elaeagnus umbellata and to a lesser degree for E. angustifolia are genetic adaptations related to their crown architecture.Abbreviations Pn net photosynthesis  相似文献   

20.
We have isolated Chl a-Chl c-carotenoid binding proteins from the dinoflagellates Prorocentrum minimum and Heterocapsa pygmaea grown under high (500 mol m–2 s–1, HL) and low (35 mol m–2 s–1, LL) light conditions. We compared various isolation procedures of membrane bound light harvesting complexes (LHCs) and assayed the functionality of the solubilized proteins by determining the energy transfer efficiency from the accessory pigments to Chl a by means of fluorescence excitation spectra. The identity of the newly isolated protein-complexes were confirmed by immunological cross-reactions with antibodies raised against the previously described membrane bound Chl a-c proteins (Boczar et al. (1980) FEBS Lett 120: 243–247). Spectroscopic analysis demonstrated the relatedness of these proteins with the recently described Chl-a-c 2-peridinin (ACP) binding protein (Hiller et al. (1993) Photochem Photobiol 57: 125–131; Iglesias Prieto et al. (1993) Phil Trans R Soc London B 338: 381–392). The water-soluble peridinin-Chl a binding-protein (PCP) was not detectable in P. minimum. Two functional forms of ACP with different pigmentation were isolated. A variant of ACP which was isolated from high-light grown cells, that specifically binds increased amounts of diadinoxanthin was compared to the previously described ACPs that bind proportionately more peridinin.Abbreviations ACP Chl a-Chl c-peridinin binding protein - AEBSF 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride - DDM dodecyl -d maltoside - Deriphat 160 N-lauryl-beta-iminopropionic acid - HEPES (N-2-hydroxyethylpiparizine-N-2-ethanesulphonic acid) - HL high light (500 mol m–2 s–1) - LL low light (35 mol m–2 s–1) - 730 fluorescence yield (emission at 730 nm) - PCP peridinin-Chl a-binding protein - PMSF phenyl-methyl-sulfonyl-fluoride - PS I Photosystem I - PS II Photosystem II  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号