首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A plasma microwave amplifier based on a relativistic electron beam in an electrodynamic system in the form of a coaxial waveguide with a thin tubular plasma in a strong external magnetic field has been considered. Dispersion relations for determining the spectra of plasma and beam waves in the coaxial waveguide, as well as the general dispersion relation describing beam-plasma interaction, have been obtained in the linear approximation. The frequency dependences of the spatial growth rates for different plasma radii and different plasma frequencies, as well as the characteristic frequencies of the plasma amplifier, have been obtained by numerically and analytically solving the dispersion relations. The parameters of the plasma amplifier and generator with the coaxial electrodynamic system have been estimated for their experimental implementation.  相似文献   

2.
Results of experimental studies and numerical simulations of physicochemical characteristics of plasmas generated in different types of atmospheric-pressure discharges (pulsed streamer corona, gliding electric arc, dielectric barrier discharge, glow-discharge electrolysis, diaphragmatic discharge, and dc glow discharge) used to initiate various chemical processes in water solutions are analyzed. Typical reactor designs are considered. Data on the power supply characteristics, plasma electron parameters, gas temperatures, and densities of active particles in different types of discharges excited in different gases and their dependences on the external parameters of discharges are presented. The chemical composition of active particles formed in water is described. Possible mechanisms of production and loss of plasma particles are discussed.  相似文献   

3.
The characteristics of a high-current electron beam-driven microwave amplifier—a dielectric Cherenkov maser—are investigated in the framework of linear theory for the case of a plasma layer present at the surface of the maser slow-wave structure. The dispersion relation for axisymmetric perturbations is obtained for the conventional configuration (a circular dielectric-lined waveguide and a thin annular beam propagating within the vacuum region inside the annular plasma) in the model of a fully magnetized plasma and beam. The results of numerically solving the dispersion relation for different beam and plasma parameters are presented, and an analysis based on these results is given with regard to the features of the beam interaction with the hybrid waves of the system (both hybrid waveguide and hybrid plasma modes). For the hybrid waveguide mode, the dependences of the spatial growth rate on the frequency demonstrate an improvement in the gain at moderate plasma densities, along with narrowing the amplification band and shifting it toward higher frequencies. For the hybrid plasma mode, the interaction with a mildly relativistic (200–250 keV) beam, when the wave phase velocity is close to the speed of light in the dielectric medium, is most interesting and, therefore, has been studied in detail. It is shown that, depending on the beam and plasma parameters, different regimes of the hybrid plasma mode coupling to the hybrid waveguide mode or a usual, higher order plasma mode take place; in particular, a flat gain vs. frequency dependence is possible over a very broad band. The parameters at which the ?3-dB bandwidth calculated for the 30-dB peak gain exceeds an octave are found.  相似文献   

4.
Steady states of a plasma layer with counterstreaming beams of oppositely charged particles moving without collisions in a self-consistent electric field are analyzed. The study is aimed at clarifying the mechanism of generation and reconstruction of pulsar radiation. Such a layer also models the processes occurring in Knudsen plasma diodes with counterstreaming electron and ion beams. The steady-state solutions are exhaustively classified. The existence of several solutions at the same external parameters is established.  相似文献   

5.
Electron beam relaxation in plasma under conditions typical of laboratory plasma devices based on a steady-state beam-plasma discharge was investigated. It is shown that the measured dependences of the beam loss factor in a discharge operating at a moderately low gas pressure disagree with theoretical dependences calculated for a longitudinally uniform plasma. Analytic dependences obtained in the framework of quasilinear theory with allowance for longitudinal plasma inhomogeneity agree with experimental data. Some effects caused by the influence of the main discharge parameters on electron beam relaxation are analyzed.  相似文献   

6.
Self-sustained glow discharge with a hollow cathode was studied at high discharge currents (up to 30 A). Using a grid analyzer placed on the side flange of the hollow cathode, the ion and electron currents flowing in the cathode sheath were measured. At a discharge current of 30 A, pressure of 0.2?C2 Pa, and plasma density of 1011 cm?3, the coefficient of secondary ion-electron emission ?? calculated from the experimental data is found to be 0.1?C0.15. The dependences of the plasma parameters on the area of the small anode placed inside the larger hollow cathode are determined.  相似文献   

7.
The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.  相似文献   

8.
The influence of kinetic effects on the generation of line X radiation during the spherical implosion of a laser corona plasma with two ion species is studied under the conditions prevailing in experiments with thin-wall spherical targets in the Iskra-5 laser facility of the All-Russia Research Institute of Experimental Physics (Sarov, Russia). Kinetic processes occurring in a multicharged plasma are investigated using a specially devised code for solving one-dimensional Landau equations for a nondegenerate multicomponent plasma by the Monte Carlo method (the KIN-MC code). The code was developed using the quasineutral plasma approximation under the assumption that the electron distribution function is locally equilibrium. The model equations are presented, the scheme of numerical solution is described, and the calculated results are discussed.  相似文献   

9.
A new comparatively simple quasi-one-dimensional physicomathematical model of plasma acceleration in an ablative pulsed plasma thruster with a capacitive energy storage is proposed. In spite of its simplicity, the model adequately reflects the main physical processes occurring in the thruster channel in the course of plasma blob acceleration: the blob dynamics, plasma radiation, absorption of radiation by the Teflon channel walls, ablation of the wall material, and plasma ionization. The results of computer simulations agree well with the experimental results.  相似文献   

10.
Recent developments in scientific computing now allow to consider realistic applications of numerical modelling to medicine. In this work, a numerical method is presented for the simulation of phase change occurring in cryosurgery applications. The ultimate goal of these simulations is to accurately predict the freezing front position and the thermal history inside the ice ball which is essential to determine if cancerous cells have been completely destroyed. A semi-phase field formulation including blood flow considerations is employed for the simulations. Numerical results are enhanced by the introduction of an anisotropic remeshing strategy. The numerical procedure is validated by comparing the predictions of the model with experimental results.  相似文献   

11.
Binding of proflavine to calf thymus DNA is investigated by differential scanning calorimetry and spectrophotometry. It is shown that proflavine interacts with DNA by three binding modes. At high DNA—ligand concentration ratios (P/D), proflavine prefers to intercalate into GC-sites but can also insert into other sites. At low P/D ratios, proflavine interacts with DNA by the external binding mode. The parameters of proflavine-DNA complexation have been calculated from spectrophotometric concentration dependences. Thermodynamic parameters of DNA melting have been calculated from differential scanning calorimetry data.  相似文献   

12.
A review is given of theoretical and experimental investigations and numerical simulations of the generation of intense electromagnetic fields in accelerators based on collective methods of charged particle acceleration at rates two or three orders of magnitude higher than those in classical resonance accelerators. The conditions are studied under which the excitation of accelerating fields by relativistic electron bunches or intense laser radiation in a plasma is most efficient. Such factors as parametric and modulational processes, the generation of a quasistatic magnetic field, and the acceleration of plasma electrons and ions are investigated in order to determine the optimum conditions for the most efficient acceleration of the driven charged-particle bunches.  相似文献   

13.
Results are presented from experimental studies of heat transfer in liquid-like plasma-dust structures. The experiments were performed with aluminum oxide grains ~3–5 μm in size in an RF discharge plasma. The heat capacity of the dust grains in plasma is measured. The thermal conductivity and thermal diffusivity of liquid-like plasma-dust structures are deduced under the assumption that the observed temperature gradients and the propagation of a thermal perturbation in a dusty plasma are related to heat conduction within the dust component. The measured temperature dependences of the thermal conductivity and thermal diffusivity are in qualitative agreement with the results of numerical simulations performed in the model of a simple single-atom liquid. It is shown that quantitative discrepancy between the experimental and numerical results is related to the energy loss of dust grains in their collisions with the neutral particles of the ambient gas.  相似文献   

14.
The possibility of controlling the directional pattern of a multislot waveguide antenna with the help of a gas-discharge tube placed inside the waveguide was studied experimentally. Since the dielectric parameters of the waveguide depend on the plasma density in the discharge column, they can be controlled by varying the discharge current. The high efficiency of such plasma control was demonstrated experimentally: as the discharge current was varied from 0 to 200 mA, the antenna directional pattern turned by ~17°.  相似文献   

15.
The application of laser in ophthalmology and eye surgery is so widespread that hardly can anyone deny its importance. On the other hand, since the human eye is an organ susceptible to external factors such as heat waves, laser radiation rapidly increases the temperature of the eye and therefore the study of temperature distribution inside the eye under laser irradiation is crucial; but the use of experimental and invasive methods for measuring the temperature inside the eye is typically high-risk and hazardous. In this paper, using the three-dimensional finite element method, the distribution of heat transfer inside the eye under transient condition was studied through three different lasers named Nd:Yag, Nd:Yap and ArF. Considering the metabolic heat and blood perfusion rate in various regions of the eye, numerical solution of space–time dependant Pennes bioheat transfer equation has been applied in this study. Lambert–Beer's law has been used to model the absorption of laser energy inside the eye tissues. It should also be mentioned that the effect of the ambient temperature, tear evaporation rate, laser power and the pupil diameter on the temperature distribution have been studied. Also, temperature distribution inside the eye after applying each laser and temperature variations of six optional regions as functions of time have been investigated. The results show that these radiations cause temperature rise in various regions, which will in turn causes serious damages to the eye tissues. Investigating the temperature distribution inside the eye under the laser irradiation can be a useful tool to study and predict the thermal effects of laser radiation on the human eye and evaluate the risk involved in performing laser surgery.  相似文献   

16.
Results are presented from numerical simulations of axisymmetric plasma flows that occur in a coaxial accelerator with a longitudinal magnetic field. The simulations were carried out based on a two-dimensional MHD plasma dynamic model for the general case of a three-component magnetic field. The steady plasma flows are calculated in solving the time-dependent MHD problem by the relaxation method. The results of simulations of steady transonic flows are compared with the solutions that were obtained in the smooth accelerator channel approximation. The main regular features of plasmodynamic processes are revealed. It is found that current sheets arise in the plasma flow in a comparatively strong longitudinal magnetic field.  相似文献   

17.
The screening of the grain charge in a nonequilibrium plasma is studied with allowance for electron and ion fluxes to the grain surface and the bulk processes of production and loss of charged particles in an argon plasma. The objective of the paper is to investigate how the conversion of monatomic Ar+ ions into diatomic Ar2+ ions influences the screening of the dust grain charge in a plasma produced by an external gas ionization source. It is found that the conversion of positive ions leads to the onset of a second ion species in the plasma and, as a consequence, to a three-exponential screening of the grain charge; moreover, in a certain range of plasma parameters, all three screening constants are of the same order of magnitude. Analytical results are compared with the data of numerical simulations carried out based on the drift-diffusion approximation.  相似文献   

18.
Reflection and backscattering of high-power (400 kW) gyrotron radiation creating and heating plasma at the second harmonic of the electronic cyclotron frequency in the L-2M stellarator have been investigated experimentally. The effect of the displacement of the gyroresonance region from the axis of the plasma column under doubling of the plasma density on the processes of reflection and backscattering of microwave radiation has been examined. A near doubling of short-wavelength (k ≈ 30 cm–1) turbulent density fluctuations squared is observed. The change in the energy confinement time under variations of plasma parameters and characteristics of short-wavelength turbulence is discussed. A discrepancy between the measured values of the reflection coefficient from the electron cyclotron resonance heating region and predictions of the one-dimensional model is revealed.  相似文献   

19.

Various photonic integrated components have been implemented by ultra-thin silicon-on-insulator (SOI) waveguides; therefore, it is desirable to couple ultra-thin SOI waveguides to plasmonic waveguides. In this paper, we present an ultra-thin SOI waveguide to a metal-dielectric-metal plasmonic waveguide based on a lens-funnel structure consisting of truncated Luneburg lens and metallic parabolic funnel. The lens is implemented by varying the guiding layer thickness. The effect of different parameters of the coupler’s geometry is studied using the finite-difference time-domain method. The 1.13-μm-long coupler improves the average coupling efficiency in the C-band from 66.4 to 82.1%. The numerical simulations indicate that the coupling efficiency is higher than 69% in the entire O, E, S, C, L, and U bands of optical communication.

  相似文献   

20.
The effect of microwave radiation on a complex plasma produced by an external ionizer is studied using numerical simulations. It is shown that, as the radiation intensity increases, the scattering of the incident radiation by charged metal grains is enhanced and radiation at the second harmonic of the incident radiation appears in the scattered spectrum. This effect is associated with the grain charge oscillations caused by the nonlinear action of the microwave field. It is found that, under the action of strong microwave radiation, the grain charge can increase by one order of magnitude. It is shown that, when the microwave intensity is high enough, the distribution of the electric field near a dust grain is shown to change so radically that the field component normal to the grain surface can even change its sign.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号