首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
《Cryobiology》2016,72(3):367-373
Cryopreservation of ovarian tissue has been studied for female germline preservation of farm animals and endangered mammalian species. However, there are relatively few reports on cryopreservation of fish ovarian tissue and especially using vitrification approach. Previous studies of our group has shown that the use of a metal container for the cryopreservation of bovine ovarian fragments results in good primordial and primary follicle morphological integrity after vitrification. The aim of this study was to assess the viability and in vitro development of zebrafish follicles after vitrification of fragmented or whole ovaries using the same metal container. In Experiment 1, we tested the follicular viability of five developmental stages following vitrification in four vitrification solutions using fluorescein diacetate and propidium iodide fluorescent probes. These results showed that the highest viability rates were obtained with immature follicles (Stage I) and VS1 (1.5 M methanol + 4.5 M propylene glycol). In Experiment 2, we used VS1 to vitrify different types of ovarian tissue (fragments or whole ovaries) in two different carriers (plastic cryotube or metal container). In this experiment, Stage I follicle survival was assessed following vitrification by vital staining after 24 h in vitro culture. Follicular morphology was analyzed by light microscopy after vitrification. Data showed that the immature follicles morphology was well preserved after cryopreservation. Follicular survival rate was higher (P < 0.05) in vitrified fragments, when compared to whole ovaries. There were no significant differences in follicular survival and growth when the two vitrification devices were compared.  相似文献   

2.
This study compared slow freezing and vitrification of ovarian tissue by evaluation of histological changes, WNT signaling pathway and apoptotic genes expression. Ovarian tissue was obtained from women aging 27–38 years old. Ovarian cortex from each patient was divided into three pieces and randomly grouped as slow freezing, vitrification and control groups for investigation of WNT signaling gene expression and β-CATENIN presence as well as histological studies. The stromal structure of all ovaries were preserved. The number of secondary follicles decreased in vitrified group (P < 0.05). WNT-3, β-CATENIN, FZD-2 and GSK-3β expressions were significantly higher in slow frozen and vitrified groups, compared to control group (P < 0.05). On the contrary, AXIN1 expression in slow frozen samples were significantly lower than that of the vitrified and control group. The expression of apoptotic genes, excluding CASP3, was significantly decreased in slow-frozen samples (P < 0.05). Conversely, BAX:BCL-2 percentage significantly increased in vitrification versus slow freezing and control(P < 0.05). Follicles in slow frozen samples displayed nuclear and cytoplasmic β-CATENIN staining, while control and vitrification groups only showed β-CATENIN protein in the cytoplasm. The presented data show that slow freezing results in a better preservation regardless of the type of follicle. Therefore, it is concluded that slow freezing is still an ideal method for ovary cryopreservation.  相似文献   

3.
《Reproductive biology》2021,21(4):100575
Cryopreservation and transplantation of ovarian tissue are proposed methods for the restoration of endocrine function and reproductive potential. Therefore, this study aimed to evaluate the effects of vitrification and xenotransplantation on follicle viability, activation, stromal cell integrity, vascularization, and micronuclei formation. Bovine fetal ovaries were fragmented and assigned to the following groups: Fresh control (FC), ovarian fragments immediately fixed; Vitrified control (VC), ovarian fragments vitrified; Vitrified xenotransplanted (VX), ovarian fragments vitrified and xenotransplanted; and Fresh xenotransplanted (FX), ovarian fragments xenotransplanted. Ovarian fragments were grafted in female BALB/c mice and recovered after 14 days. Follicular viability was preserved (P > 0.05) in VC group. The rate of developing follicles was greater (P < 0.05) in the FX group compared to other groups. Follicular density was higher (P < 0.05) in the VC group than the FC, VX, and FX groups. A decrease (P < 0.05) of stromal cell density was recorded after vitrification (VC vs. FX). Blood vessel density decreased in VC, VX, and FX groups compared with the FC group, and blood vessel density was correlated with follicular viability (positively; P = 0.07) and developing follicles (negatively; P < 0.001). Both vitrification and xenotransplantation groups (VC, VX, and FX) had a greater (P < 0.05) number of cells with one MN compared to the FC group. In summary, our findings showed that both vitrification and xenotransplantation modified blood vessel, follicular and stromal cell densities, follicular viability and activation, and micronuclei formation in ovarian tissue.  相似文献   

4.
Choi J  Lee JY  Lee E  Yoon BK  Bae D  Choi D 《Cryobiology》2007,54(1):55-62
The cryopreservation of ovarian tissue has been reported to affect the development of preantral follicles. However, the effect of cryopreservation of ovarian tissue on the development of primordial follicles remains to be elucidated. This study was conducted to evaluate the effect of cryopreservation on the development of frozen-thawed mouse primordial follicles. One-day-old mouse ovaries were cryopreserved by either slow-freezing or a vitrification method. The development of primordial follicles was evaluated histologically and also with markers for follicle development such as: GDF-9, inhibin-alpha subunit and ZP3 in fresh and frozen-thawed ovaries cultured for five days. The proportion of apoptotic and necrotic areas was analyzed in fresh and frozen-thawed ovaries at one and five days after culture, in order to examine the viability of ovarian cells that influence primordial follicle development. The development rate of primordial follicles was significantly lower in slow-frozen and vitrified ovaries than the fresh controls after five days of in vitro culture (P<0.05). The mRNA expression for all developmental markers was slightly decreased in the frozen-thawed ovaries; this difference was not significant. The proportion of apoptosis was significantly increased in the slow-frozen and vitrified ovaries compared to the fresh ovaries at one day (P<0.05); however, there was no difference at five days after culture. The proportion of the area of necrosis was significantly higher in slow-frozen and vitrified ovaries compared to the fresh ovaries at one and five days after culture (P<0.05). Our preliminary data suggest that ovarian tissue cryopreservation using slow-freezing and vitrification methods inhibits development of primordial follicles. This may be caused by the death of ovarian cells through apoptosis and necrosis after cryopreservation.  相似文献   

5.
The objective was to cryopreserve porcine primordial follicles by vitrification and to assess the development of these follicles in xenografts. Ovarian tissues containing primordial follicles were collected from neonatal (15-d-old) piglets. They were vitrified in modified tissue culture medium (TCM)-199 containing 15% (v/v) ethylene glycol, 15% (v/v) dimethylsulfoxide, 20% (v/v) fetal calf serum, and 0, 0.25, or 0.5 M sucrose. After 1 wk of storage in liquid nitrogen (LN2), the tissues were warmed, and the morphology of follicles and oocytes was examined histologically. After vitrification in sucrose-free medium, there were 50 ± 2 (mean ± SEM; n = 10) follicles per tissue, in contrast with 108 ± 10 (n = 10) in fresh tissues. Losses were attributed to puncturing oocytes during the vitrification-warming process, as oocytes were apparently normal after treatment of the sucrose-free vitrification solution without plunging into LN2. When tissues were vitrified in sucrose-supplemented medium, loss of oocytes decreased (P < 0.05). However, the number of abnormal oocytes having nuclear shrinkage was increased (P < 0.05) by the addition of 0.5 M sucrose; this occurred in a small number of oocytes treated with sucrose-supplemented vitrification solutions without vitrification. After 2 mo of xenografting of vitrified-warmed tissues in SCID (severe combined immune deficiency) mice, primordial follicles developed to the secondary stage (accompanied by oocyte growth), whereas there was development to the antral stage in xenografts of fresh tissues. In conclusion, primordial follicles from neonatal pigs maintained their developmental ability after vitrification and warming, although their developmental rate was slower than that of the fresh control in xenografts.  相似文献   

6.
《Reproductive biology》2020,20(3):371-378
The present study aimed to evaluate the structure, survival and development of isolated caprine (secondary-SEC and early antral-EANT) follicles, after vitrification in the presence of synthetic polymers and in vitro culture. Additionally, transzonal projections (TZPs) and p450 aromatase enzyme were evaluated. After isolation, SEC and EANT follicles were in vitro cultured for six days or vitrified. After one week, SEC and EANT follicles were warmed and also in vitro cultured for six days. Data revealed that the percentage of morphologically normal follicles was similar between fresh and vitrified follicles in both follicular categories and antrum formation rate was similar between fresh and vitrified SEC follicles. Fluorescence by calcein-AM did not show difference between fresh and vitrified (SEC and EANT) follicles, however, the trypan blue test showed low viability for vitrified follicles. The integrity of TZPs was not affected between fresh and vitrified SEC follicles, however, in vitrified EANT follicles, there were signs of TZPs loss. Regarding steroidogenic function, it was observed a positive staining for p450 aromatase enzyme in fresh and vitrified SEC and EANT follicles. It was concluded that SEC follicles seem to be more resistant to vitrification than EANT follicles, as shown by the trypan blue test and TZPs assay. Future studies may confirm this hypothesis, in order to consolidate the use of SEC and EANT follicles as an alternative to ovary cryopreservation.  相似文献   

7.
The objective was to evaluate the effect of various vitrification conditions on the morphology of bovine secondary and primordial follicles, and to use xenografting to confirm their developmental ability. Secondary follicles were placed in vitrification solution containing 15% (v:v) ethylene glycol (EG), 15% (v:v) dimethyl sulfoxide (DMSO), 20% (v:v) fetal calf serum (FCS), and 0, 0.25, or 0.5 M sucrose at room temperature for 1 or 30 min, or at 4 °C for 30 min before being plunged into liquid nitrogen (LN2). Ovarian tissues with primordial follicles were equilibrated in a solution containing 7.5% EG, 7.5% DMSO, and 20% FCS for 5 or 15 min, and then treated with a vitrification solution (15% EG, 15% DMSO, and 20% FCS) containing 0 or 0.5 M sucrose at room temperature for 1 min, and then plunged into LN2. One week later, follicles and tissues were warmed, and morphology assessed histologically. Secondary follicles vitrified in sucrose-free solution had more oocytes with shrinkage of the nucleus and abnormal cytoplasm relative to those vitrified in sucrose-containing solution. When primordial follicles were equilibrated for 5 min and vitrified in sucrose-free solution, the percentage of morphologically normal primordial follicles was higher than in the other groups (P < 0.05). After 4 wk and 6 mo of xenografting of vitrified-warmed secondary and primordial follicles, respectively, in SCID mice, follicles developed to the antral stage and oocytes grew. In conclusion, bovine secondary follicles were successfully cryopreserved in sucrose-containing vitrification solutions and maintained their ability to develop to the antral stage and grow oocytes, whereas primordial follicles vitrified in sucrose-free solution maintained their morphology and developed to the antral stage, with oocyte growth.  相似文献   

8.
保存活体的肺癌组织将为肺癌发病基因筛查和靶向药物筛选等体外实验研究提供更完整的样本信息. 本文对活体肺癌组织的玻璃化保存方法进行研究,首先采用针浸法玻璃化保存单块肺癌组织,对所需低温保护剂的浓度和平衡时间进行了优化;其次采用冻存管对多块肺癌组织样本进行玻璃化保存,对低温保护剂溶液体积以及平衡时间进行了优化;最后对慢速冷冻、不加低温保护剂快速冷冻、玻璃化冷冻3种冷冻方法的冻存效果进行比较并通过低温显微分析其冰晶损伤机理.结果表明,20% EG+20% DMSO+0.5 mol/L海藻糖作为低温保护剂,在平衡溶液和玻璃化溶液分别加载3 min和1 min时,针浸法和0.25 ml冻存管内玻璃化冻存,复苏后组织活力最高,分别约为79.96%与80.44%. 免疫组化显示玻璃化保存肺癌组织经过复苏后,相比慢速冷冻和无保护剂快速冷冻,组织结构损伤较小,组织内细胞TUNEL阳性表达较少. 低温显微结果表明,玻璃化保存组织内部及周围只出现少量细小冰晶,而慢速冷冻、快速冷冻组织皆出现明显冰晶.  相似文献   

9.
Cetinkaya G  Arat S 《Cryobiology》2011,63(3):292-297
Preservation of cell and tissue samples from endangered species is a part of biodiversity conservation strategy. Therefore, setting up proper cell and tissue cryopreservation methods is very important as these tissue samples and cells could be used to reintroduce the lost genes into the breeding pool by nuclear transfer. In this study, we investigated the effect of vitrification and slow freezing on cartilage cell and tissue viability for biobanking. Firstly, primary adult cartilage cells (ACCs) and fetal cartilage cells (FCC) were cryopreserved by vitrification and slow freezing. Cells were vitrified after a two-step equilibration in a solution composed of ethylene glycol (EG), Ficoll and sucrose. For slow freezing three different cooling rates (0.5, 1 and 2 °C/min) were tested in straws. Secondly, the tissues taken from articular cartilage were cryopreserved by vitrification and slow freezing (1 °C/min). The results revealed no significant difference between the viability ratios, proliferative activity and GAG synthesis of cartilage cells which were cryopreserved by using vitrification or slow freezing methods. Despite the significant decrease in the viability ratio of freeze–thawed cartilage tissues, cryopreservation did not prevent the establishment of primary cell cultures from cartilage tissues. The results revealed that the vitrification method could be recommended to cryopreserve cartilage tissue and cells from bovine to be used as alternative cell donor sources in nuclear transfer studies for biobanking as a part of biodiversity conservation strategy. Moreover, cartilage cell suspensions were successfully cryopreserved in straws by using a controlled-rate freezing machine in the present study.  相似文献   

10.
The Open Pulled Straw (OPS) method of vitrification has been used successfully for cryopreserving embryos of most domestic animal species. However, there is no report of a successful delivery of offspring after transfer of vitrified embryos in carnivores, even though vitrification has been a successful freezing method for species like swine whose embryos are known to be susceptible to chilling injury. Morulae and blastocysts of farmed European polecat (Mustela putorius) were vitrified and warmed before in vitro culture in modified synthetic oviductal fluid (SOF) for a period from a few hours up to 3 days before being transferred to recipients. Survival rate after vitrification, warming and in vitro culture was 51% (50/98). A total of 50 embryos were transferred surgically into the uteri of four anesthetized recipients. Two recipients delivered a total of eight offspring (2 and 6 each) for an overall survival rate of 16% (eight live cubs/50 transferred embryos). According to our knowledge, these offspring are the first carnivores produced by transfer of in vivo embryos after vitrification by OPS. Based on the present results, we suggest that OPS vitrification can be used as an alternative cryopreservation method for mustelid embryos with pup results comparable to conventional slow freezing.  相似文献   

11.
Vitrification is a novel cryopreservation method for mammalian blastocysts. This study was designed to compare different vitrification methods and slow freezing for their effects on survival rate and DNA integrity in mouse and human blastocysts. In Experiment 1, embryo survival and DNA integrity were compared between mouse blastocysts with collapsed and non‐collapsed blastoceles. In Experiment 2, embryo survival and DNA integrity were compared between vitrified and slow‐frozen mouse blastocysts. In Experiment 3, embryo survival and DNA integrity were compared between vitrified and slow‐frozen human blastocysts. Fresh blastocysts were used as controls in all experiments. Higher (P < 0.05) blastocyst survival rates were obtained in mouse blastocysts vitrified with collapsed versus intact blastoceles, although DNA‐integrity indices in the surviving blastocysts were the same among vitrified and fresh blastocysts. More mouse blastocysts (P < 0.05) survived after vitrification (100%) as compared to slow freezing (82.5%). DNA‐integrity indices examined in the surviving blastocysts were also higher (P < 0.001) in fresh (93.6%) and vitrified/warmed (93.7%) blastocysts than in slow‐frozen/thawed (75.8%) ones. More human blastocysts survived with a higher DNA‐integrity index after vitrification/warming than after slow freezing/thawing. These results indicate that higher survival rates can be obtained by vitrification of blastocele‐collapsed blastocysts, and that vitrification causes less cell apoptosis in both mouse and human blastocysts compared to slow freezing. Vitrification of blastocysts after blastocele collapse by single laser pulse supports a higher survival rate and less DNA apoptosis, suggesting that laser blastocele collapse is a safe procedure for blastocyst vitrification. Mol. Reprod. Dev. 79: 229–236, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Caprine preantral follicles within ovarian fragments were exposed to or vitrified in the presence of sucrose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), or various combinations thereof. The fragments were cryopreserved by using either a conventional (CV) or a solid-surface vitrification (SSV) protocol, and the cryoprotectants were removed by equilibrating vitrified ovarian fragments in “warming solution” consisting of minimum essential medium and heat-inactivated fetal calf serum (MEM+) followed by washes in MEM+ with or without sucrose. Histological analysis of follicle integrity showed that the percentages of normal follicles in ovarian fragments vitrified in sucrose mixed with EG and/or DMSO (CV method) or mixed with EG or DMSO (SSV method) followed by washes in MEM+ plus sucrose were similar to those of controls (ovarian fragments fixed without previous vitrification). Unlike for MEM+ (supplemented or unsupplemented by sucrose) and DMSO followed by washes in the absence of sucrose, the percentages of normal follicles found after exposure to cryoprotectant did not significantly differ from that found after vitrification, indicating that follicular degeneration was attributable to a toxic effect of cryoprotectants and not to the vitrification procedure. The viability of preantral follicles after the CV and SSV procedures was investigated by using calcein-AM and the ethidium-homodimer as “live” and “dead” markers, respectively. In both tested vitrification procedures, the highest percentages of viable follicles were observed when a mixture of sucrose and EG (70.3% for CV and 72.4% for SSV) was used. Preantral follicles were also vitrified (either by CV or SSV) in sucrose and EG and then cultured for 24 h, after which their viability was compared with that of cultured fresh and uncultured vitrified follicles. The viability of these follicles was maintained after SSV, but not after CV. Thus, the viability of caprine preantral follicles can be best preserved after SSV in a mixture of sucrose and EG, followed by washes in medium containing sucrose.CAPES/Brazil supported this work. Regiane Rodrigues dos Santos is a recipient of a grant from CAPES/Brazil.  相似文献   

13.
The objectives of this study were to identify an improved in vitro cell-free embryo culture system and to compare post-warming development of in vitro produced (IVP) bovine embryos following vitrification versus slow freezing. In Experiment 1, non-selected presumptive zygotes were randomly allocated to four medium treatments without co-culture: (1) SOF + 5% FCS for 9 days; (2) KSOM + 0.1% BSA for 4 days and then KSOM + 1% BSA to Day 9; (3) SOF + 5% FCS for 4 days and then KSOM + 1% BSA to Day 9; and (4) KSOM + 0.1% BSA for 4 days and then SOF + 5% FCS to Day 9. Treatment 4 (sequential KSOM-SOF culture system) improved (P > 0.05) morulae (47%), early blastocysts (26%), Day-7 blastocysts (36%), cell numbers, as well as total hatching rate (79%) compared to KSOM alone (Treatment 2). Embryos cultured in KSOM + BSA alone developed slowly and most of them hatched late on Day 9, compared to other treatments. In Experiment 2, the sequential KSOM-SOF culture system was used and Day-7 blastocysts were subjected to following cryopreservation comparison: (1) vitrification (VS3a, 6.5 M glycerol); or (2) slow freezing (1.36 M glycerol). Warmed embryos were cultured in SOF with 7.5% FCS. Higher embryo development and hatching rates (P < 0.05) were obtained by vitrification at 6h (71%), 24h (64%), and 48h (60%) post-warming compared to slow freezing (48, 40, and 31%, respectively). Following transfer of vitrified embryos to synchronized recipients, a 30% pregnancy rate was obtained. In conclusion, replacing KSOM with SOF after 4 days of culture produced better quality blastocysts. Vitrification using VS3a may be used more effectively to cryopreserve in vitro produced embryos than the conventional slow freezing method.  相似文献   

14.
The aim of this study was to compare the efficiency of different media for the in vitro culturing of fresh and vitrified bovine ovarian tissues. Fragments of the ovarian cortex were subjected to vitrification and histological and viability analyses or were immediately cultured in vitro using the alfa minimum essential medium, McCoy’s 5A medium (McCoy), or medium 199 (M199). Samples of different culture media were collected on days 1 (D1) and 5 (D5) for quantification of reactive oxygen species and for hormonal assays. In non-vitrified (i.e., fresh) ovarian tissue cultures, the percentage of morphologically normal follicles was significantly greater than that recorded for the other media (e.g., M199). In the case of previously vitrified tissues, the McCoy medium was significantly superior to the other media in preserving follicular morphology up until the last culture day (i.e., D5), thus maintaining a similar percentage from D1 to D5. Reactive oxygen species levels were higher in D1 vitrified cultured tissues, but there were no differences in the levels among the three media after 5 days. The hormonal assays showed that in the case of previously vitrified tissues, at D5, progesterone levels increased on culture in the M199 medium and estradiol levels increased on culture in the McCoy medium. In conclusion, our results indicate that the use of M199 would be recommended for fresh tissue cultures and of McCoy for vitrified tissue cultures.  相似文献   

15.
The objective was to compare the efficiency of various vitrification techniques and solutions for preserving morphology and viability of preantral caprine follicles enclosed in ovarian tissue. Fragments of ovarian cortex were cryopreserved by conventional vitrification (CV) in French straws, vitrification in macrotubes (MTV), or solid-surface vitrification (SSV). Six solutions containing 6 M ethylene glycol, with or without sucrose (SUC; 0.25 or 0.50 M) and/or 10% fetal calf serum (FCS) were tested (Experiment I). After 1 wk, samples were warmed and preantral follicles were examined histologically. To evaluate follicular viability (Experiment II), ovarian fragments were vitrified with the three techniques listed above, in a solution containing 0.25 M SUC and 10% FCS. After warming, follicles were assessed by the trypan blue dye exclusion test. In Experiment III, preantral follicles enclosed in ovarian tissue were vitrified using the protocol which yielded the highest percentage of viable preantral follicles (SSV with 0.25 M SUC and 10% SFB). After warming, the preantral follicles enclosed in ovarian tissue were cultured in vitro and then, were analyzed by histology and fluorescence microscopy (calcein-AM and ethidium homodimer-1). Every vitrification protocol significantly reduced the percentages of morphologically normal follicles relative to the control (88.0%); however, the addition of 0.25 M SUC and 10% FCS to the vitrification solution improved preservation of follicular morphology (67.4, 67.4, and 72.0% for CV, MTV, and SSV, respectively). Although follicular viability after SSV (80.7%) did not differ from that in fresh (non-vitrified) ovarian tissues (88.0%), after in vitro culture, percentages of viable follicles were significantly reduced (70.0%). Percentages of morphologically normal follicles after in vitro culture of vitrified ovarian tissue were similar (76.0%) to those in ovarian cortex fragments cultured without previous vitrification (83.2%). In conclusion, SSV using a solution containing 0.25 M SUC and 10% FCS, was the most efficient method for vitrifying caprine ovarian tissue.  相似文献   

16.
The aim of the present study was to perform a qualitative and quantitative analysis of the effect of different sucrose concentrations combined with ethylene glycol in the preservation of vitrified porcine preantral follicles. Fragments of ovarian cortex were vitrified in cryotubes containing 200 μl of the vitrification solution (30% Ethylene Glycol; 20% Fetal Bovine Serum; 0 M–0.25 M – 0.75 M or 1 M sucrose) and stored in liquid nitrogen for a week. Histological analysis showed that after vitrification the number of normal follicles decreased compared to the fresh tissue (control). The percentage of normal primordial follicles was sucrose dose dependent. The percentage of normal primary follicles was similar in 0 M or 0.25 M sucrose, while higher concentrations (0.75 M and 1 M) increased significantly the percentage of abnormal follicles (p < 0.05). Morphometric analysis showed a statistically significant reduction in the total area of primordial follicles with 0.75 M sucrose and a significant increase in the cytoplasmic area of primordial follicles with 0 M sucrose (p < 0.05). The qualitative and the quantitative analysis appear to be a complementary tool when choosing a vitrification protocol. For our cryopreservation system - vitrification of ovarian cortex slices in cryotubes-the best vitrification medium was TCM 199-Hepes with 30% de ethylene glycol, 20% of Fetal Bovine Serum and 0 or 0.25 M sucrose. The present study shows that the use of high sucrose concentrations in the vitrification solution has a deleterious effect on the preservation of porcine preantral follicles contained in ovarian tissue. Consequently, its use at 0.75 M or 1 M wouldn't be recommended.  相似文献   

17.
Semen cryopreservation is an increasingly demanded technique in canids, particularly in order to preserve and spread high genetic value material. Sperm vitrification may represent an interesting alternative to costly and time consuming conventional freezing. The objective of this study was to evaluate the effect of sperm vitrification on sperm morphometry and ultrastructure compared to conventional freezing. Pools of nine beagle dogs were both frozen and vitrified. Computerized morphological parameters (length, wide, area and perimeter) and sperm ultrastructure, using scanning and transmission microscopy, were analysed in both fresh and in thawed/warmed samples. There were no differences (p > 0.05) between post-thaw and fresh morphometric variables of the sperm heads. However, cluster analysis revealed that sperm-heads turned out to be smaller after thawing (p < 0.05) in two of the four subpopulations. Vitrification-warming process led to an overall increase in sperm-head size. Furthermore, the sperm head size increased after warming in two subpopulations (p < 0.05). In conclusion, the variations in the sperm head area depended on the cryopreservation procedure (conventional freezing or vitrification). Conventional freezing tended to decrease the head dimensions, at least in some subpopulations, and vitrification led to an overall increase in the sperm head size. Decondensation of chromatin and plasma membrane blebbing in the head region was observed by transmission electron microscopy in several vitrified sperm, which might explain the increase of head dimensions detected by CASA-Morph system.  相似文献   

18.
Grafting of cryopreserved testicular tissue is a promising tool for fertility and testicular function preservation in endangered species, mutant animals, or cancer patients for future use. In this study, we aimed to improve the whole neonatal mouse testicular tissue cryopreservation protocols by comparing cryosurvival, spermatogenesis, and androgen production of grafted testicular tissue after cryopreservation with three different vitrification protocols and an automated computed controlled-rate freezing. Whole neonatal mouse testes were vitrified with various vitrification solutions (V1) 40% EG + 18% Ficoll + 0.35 M Sucrose, (V2) DAP 213 (2 M DMSO + 1 M Acetamid + 3 M PG), or (V3) 15% EG + 15% PG + 0.5 M Sucrose (total solute concentration V1:74.34%, V2:44.0%, and V3:49.22% wt/vol). Alternatively, neonatal testicular tissue was also frozen in 0.7 M DMSO +5% fetal bovine serum using controlled-rate freezing and compared to fresh grafted testicular tissue, sham grafted controls, and the vitrification protocol groups. Fresh (n = 4) and frozen-thawed (n = 4) testes tissues were grafted onto the flank of castrated male NCr Nude recipient mouse. The grafts were harvested after three months. Fresh or frozen-thawed grafts with controlled-rate freezing had the highest rate of tissue survival compared to other vitrified protocols after harvesting (p < 0.05). Both controlled-rate freezing and V1 protocol groups displayed the most advanced stages of spermatogenesis with elongated spermatids and spermatozoa in 17.6 ± 1.3% and 16.3 ± 1.9% of seminiferous tubules based on histopathological evaluation, respectively. Hosts of the testicular graft from controlled-rate freezing had higher levels of serum testosterone compared to all other vitrified-thawed graft groups (p < 0.05). This study shows that completed spermatogenesis from whole neonatal mouse testes were obtained when frozen with controlled-rate freezing and V1 vitrification solution and that testicular cryopreservation efficacy vary with the protocol and vitrification technique.  相似文献   

19.
The objective was to evaluate supplementation of fetal calf serum (FCS) and phenazine ethosulfate (PES), a metabolic regulator that inhibits fatty acid synthesis, in culture media during in vitro production (IVP) of bovine embryos. Taking oocyte fertilization (n = 4,320) as Day 0, four concentrations of FCS (0, 2.5, 5, and 10%) and three periods of exposure to PES (without addition—Control; after 60 h—PES Day 2.5 of embryo culture; and after 96 h—PES Day 4) were evaluated. Increasing FCS concentration in the culture media enhanced lipid accumulation (P < 0.05), increased apoptosis in fresh (2.5%: 19.1 ± 1.8 vs 10%: 28.4 ± 2.3, P < 0.05; mean ± SEM) and vitrified (2.5%: 42.8 ± 2.7 vs 10%: 69.2 ± 3.4, P < 0.05) blastocysts, and reduced blastocoele re-expansion after vitrification (2.5%: 81.6 ± 2.5 vs 10%: 67.3 ± 3.5, P < 0.05). The addition of PES in culture media, either from Days 2.5 or 4, reduced lipid accumulation (P < 0.05) and increased blastocoele re-expansion after vitrification (Control: 72.0 ± 3.0 vs PES Day 2.5: 79.9 ± 2.8 or PES Day 4: 86.2 ± 2.4, P < 0.05). However, just the use of PES from D4 reduced apoptosis in vitrified blastocysts (Control: 52.0 ± 3.0 vs PES Day 4: 39.2 ± 2.4, P < 0.05). Independent of FCS withdrawal or PES addition to culture media, the in vivo control group had lesser lipid accumulation, a lower apoptosis rate, and greater cryotolerance (P < 0.05). The increased lipid content was moderately correlated with apoptosis in vitrified blastocysts (r = 0.64, P = 0.01). In contrast, the increased apoptosis in fresh blastocysts was strongly correlated with apoptosis in vitrified blastocysts (r = 0.94, P < 0.0001). Therefore, using only 2.5% FCS and the addition of PES from Day 4, increased the survival of IVP embryos after vitrification. Moreover, embryo quality, represented by the fresh apoptosis rate, was better than lipid content for predicting embryo survival after vitrification.  相似文献   

20.
Vitrification is considered a viable method for cryopreservation of ovarian tissue and selection of methods that minimize follicular damage is important. The objective of the present study was to evaluate the effects of two vitrification methods on ovarian tissue morphology, preantral follicles survival rate during in vitro culture, and relative expression of genes associated with oocyte maturation and cumulus expansion. Ovaries from 12-day-old mice were vitrified in media containing ethylene glycol, dimethyl sulphoxide, and sucrose. Before plunging in liquid nitrogen, ovaries were first loaded into an acupuncture needle (needle immersion vitrification [NIV]) or placed on a cold steel surface for 10 to 20 seconds (solid surface vitrification [SSV]). The integrity of the ovarian tissue was well-preserved after vitrification and was similar controls. Follicle viability in the SSV group was lower (P < 0.05) than in the control group after 6 days of culture and the NIV group after 10 day of culture. Follicle viability after 12 day of culture was 92.8%, 82.1%, and 58.4% in control, NIV, and SSV groups, respectively. Bmp15, Gdf9, BmprII, Alk6, Alk5, Has2, and Ptgs2 gene expression patterns were similar among groups. However, the level of gene expression in the vitrification groups during Days 6 to 10 were higher compared with the control group. In conclusion, ovarian tissue morphologic integrity was well-preserved, regardless of the vitrification method. Vitrification using the needle immersion method resulted in greater follicular survival after 12 day of culture than the SSV method. Gene expression patterns during culture did not seem to explain the reduced survival rate observed in the solid surface group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号