首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
作为最有潜力的第三代生物材料,新型可降解镁合金具有良好的生物相容性,与人体骨骼相近的力学性能,可避免二次手 术带来的不良影响等诸多优点,已成为当今研究的热点之一。然而镁合金在医学中的应用也受到其降解速度过快和随之引起机 械完整性丧失的影响。随着对镁合金研究的深入,在控制降解方面的研究已有显著成效。目前关于镁合金的研究主要集中在改善 其生物相容性、耐腐蚀性和机械性能等方面。本文将从镁合金降解产物对机体的影响,降解速度的控制和在医学中应用对其在当 今科研领域的研究进行综述。  相似文献   

2.
Ruiz MT  Carareto CM 《Heredity》2003,91(6):570-576
The P transposable element copy numbers and the KP/full-sized P element ratios were determined in eight Brazilian strains of Drosophila melanogaster. Strains from tropical regions showed lower overall P element copy numbers than did strains from temperate regions. Variable numbers of full-sized and defective elements were detected, but the full-sized P and KP elements were the predominant classes of elements in all strains. The full-sized P and KP element ratios were calculated and compared with latitude. The northernmost and southernmost Brazilian strains showed fewer full-sized elements than KP elements per genome, and the strains from less extreme latitudes had many more full-sized P than KP elements. However, no clinal variation was observed. Strains from different localities, previously classified as having P cytotype, displayed a higher or a lower proportion of KP elements than of full-sized P elements, as well as an equal number of the two element types, showing that the same phenotype may be produced by different underlying genomic components of the P-M system.  相似文献   

3.
本文分析,计算了中华姬鼠和中华鼩(?)的氮、磷、钾、钠、钙、镁、钡、铝、铁、铜和锌的含量及原子比率。发现除氮外,其它元素含量均有种间差异。此外,估算了10个元素的现存量。  相似文献   

4.
Theoretical population genetic studies of transposable elements focus almost exclusively on random mating species, whereas many plants reproduce through partial or substantial self-fertilization. Here I develop computer simulation and analytic approximations of simplified element dynamics (transposition balanced by selective elimination) in partially self-fertilizing populations, using Ty1-copia elements for biological inspiration. Under the most plausible models and parameter values, element numbers decrease with self-fertilization when element insertions are deleterious, but may increase when ectopic exchange regulates element number. Conclusions for models of ectopic exchange depend in part on parameters for which little firm empirical evidence is available. Small changes in selfing rate can lead to abrupt changes in element number when homozygous and heterozygous elements have markedly different fitness effects. Equilibrium element numbers can be sensitive to population size, especially at high selfing rates. Elements are frequently lost in small highly selfing populations under the deleterious insertion model. In contrast, small highly selfing populations can accumulate very large numbers of elements under ectopic exchange. Empirical data on element number and localization in plants with different mating systems suggests that deleterious insertion, rather than ectopic exchange, may regulate element number. Limitations to available empirical data, especially the lack of comparison between closely related species differing in mating system, mean that this conclusion is tentative.  相似文献   

5.
Bioactive calcium phosphate coatings were prepared on AZ91D magnesium alloy in phosphating solution in order to im- prove the corrosion resistance of the magnesium alloy in Simulated Body Fluid (SBF). The surface morphologies and compo- sitions of the calcium phosphate coatings deposited in the phosphating bath with different compositions were investigated by Scanning Electron Microscopy (SEM) with Energy Dispersive Spectrometer (EDS) and X-ray Diffraction (XRD). Results showed that the calcium phosphate coating was mainly composed of dicalcium phosphate dihydrate (CaHPO4o2H20, DCPD), with Ca/P ratio of approximately 1 : 1. The corrosion resistance was evaluated by acid drop, electrochemical polarization, elec- trochemical impedance spectroscopy and immersion tests. The dense and uniform calcium phosphate coating obtained from the optimal phosphating bath can greatly decrease the corrosion rate and hydrogen evolution rate of AZ91D magnesium alloy in SBE  相似文献   

6.
The aims of the present study were to develop a mathematical model of the skeletal muscle based on the frequency transfer function, referred to as frequency response model, and to presume the relationship between the model elements and skeletal muscle contractile properties. Twitch force in elbow flexion was elicited by applying a single electrical stimulation to the motor point of biceps brachii muscles, and then analyzed visually by the Bode gain and phase diagram of the force signal. The frequency response model was represented by a frequency transfer function consisting of five basic control elements (proportional element, dead time element, and three first-order lag elements). The model element constants were estimated by best-fitting to the Bode gain and phase diagram of the twitch force signal. The proportional constant and the dead time in the frequency response model correlated significantly with the peak torque and the latency in the actual twitch force, respectively. In addition, the time constants of the three first-order lag elements in the model correlated strongly with the contraction time and the half relaxation time in the actual twitch force. The results suggested a possibility that the individual elements in the frequency response model would reflect the biochemical and biomechanical properties in the excitation–contraction coupling process of skeletal muscle.  相似文献   

7.
Recent brain research reveals a major role of trace elements in various diseases such as multiple sclerosis, Alzheimer's and Wilson's disease. The majority of published tissue concentrations dates back decades, and was assessed with various methods. Little is known about hemispherical differences, the correlation of trace elements or age-dependent changes in the human brain. Thus, the aim of this study was to examine trace element concentrations in different human brain regions after whole brain formalin fixation.549 samples of 13 brain regions were investigated in 11 deceased subjects without known history of brain pathology. Regional wet-to-dry mass ratios and concentrations of iron, copper, magnesium, manganese, calcium and zinc were determined using inductively coupled plasma mass spectrometry.Cortical gray matter revealed higher water content (wet-to-dry mass ratios 5.84–6.40) than white matter regions (wet-to-dry mass ratios 2.95–3.05). Element concentrations displayed specific regional differences. Good linear correlation of concentrations between elements was found for iron/copper as well as for manganese/magnesium (Spearman's rank correlation coefficient 0.74 and 0.65, respectively). Significant inter-hemispherical differences were found for copper in occipital white matter, for magnesium and calcium in putamen and for iron and copper in temporal white matter. An age dependent increase was seen in cortical gray matter for calcium, for magnesium in all regions except in cortical gray matter, for copper in substantia nigra and for zinc in occipital cortex.The presented trace element concentrations can serve as a fundamental basis for further brain research. Wet-to-dry mass ratios allow a comparison with reference data from other studies.  相似文献   

8.
In this article, we propose a new joint modeling approach for the analysis of longitudinal data with informative observation times and a dependent terminal event. We specify a semiparametric mixed effects model for the longitudinal process, a proportional rate frailty model for the observation process, and a proportional hazards frailty model for the terminal event. The association among the three related processes is modeled via two latent variables. Estimating equation approaches are developed for parameter estimation, and the asymptotic properties of the proposed estimators are established. The finite sample performance of the proposed estimators is examined through simulation studies, and an application to a medical cost study of chronic heart failure patients is illustrated.  相似文献   

9.
A mathematical model for the biodegradation of magnesium is developed in this study to inspect the corrosion behaviour of biodegradable implants. The aim of this study was to provide a suitable framework for the assessment of the corrosion rate of magnesium which includes the process of formation/dissolution of the protective film. The model is intended to aid the design of implants with suitable geometries. The level-set method is used to follow the changing geometry of the implants during the corrosion process. A system of partial differential equations is formulated based on the physical and chemical processes that occur at the implant-medium boundary in order to simulate the effect of the formation of a protective film on the degradation rate. The experimental data from the literature on the corrosion of a high-purity magnesium sample immersed in simulated body fluid is used to calibrate the model. The model is then used to predict the degradation behaviour of a porous orthopaedic implant. The model successfully reproduces the precipitation of the corrosion products on the magnesium surface and the effect on the degradation rate. It can be used to simulate the implant degradation and the formation of the corrosion products on the surface of biodegradable magnesium implants with complex geometries.  相似文献   

10.
A new viscoelastic model was developed for the mathematical characterisation of mechanically induced and intrinsic contractional responses of the vascular smooth muscle. To this end, the elastic and viscous analogue elements were supplemented with a new active element generating stress proportional to its momentary elongation. The four-element model consisting of an active element, a parallel viscous element and both series and parallel elastic elements predicted biphasic or damped oscillatory stress relaxation and creep responses which were similar to that found experimentally earlier. Above a certain exciting frequency the model exhibited dissipative and below energy producing behaviour, as indicated by the sign change of the hysteresis loop area. In the case of sinusoidal modulation of the stress generation parameter the model showed parametric resonance, which was regarded as a simulation of intrinsic oscillation of the smooth muscle.  相似文献   

11.
To elucidate the manner of element accumulation in the arteries with aging, the authors investigated the element contents in the calcified and surrounding sites of the thoracic aortas by inductively coupled plasma-atomic emission spectrometry. The subjects consisted of three men and five women, ranging in age from 45 to 99 yr. The calcified, calcification-surrounding, and control (which appeared normal) sites were removed from the thoracic aortas and the element contents were determined. It was found that the contents of calcium, phosphorus, magnesium, zinc, and aluminum were higher in the calcified site than in the control site, whereas the contents of sulfur, iron, and lead were lower in the calcified site than in the control site. The contents of the elements in the surrounding site were intermediate between those of the calcified and control sites, except for the magnesium and lead contents, which were the lowest. The mass ratios of magnesium to calcium and phosphorus were lower in the calcified site compared with the surrounding and control sites, and as calcium and phosphorus increased in the aorta, the mass ratios lowered gradually in the aorta.  相似文献   

12.
Tissue and organ deposition and blood parameters were evaluated as indices of mineral and trace element absorption in rats. The absorption of elements was quantified in relation to nitrogen retention, i.e., considering the weight gain and new tissue synthesis. A rapeseed meal diet was supplied with three levels of calcium, two levels of zinc, and two levels of copper in a factorial design. In general, an increase in dietary mineral content increased the relative absorption, which in turn, increased the tissue deposition progressively. Striated muscle, however, did not respond to either an increased calcium or zinc supply. Furthermore, an increased calcium absorption caused a depression of the fractional phosphorus and magnesium content of femur bones. The copper content of the kidneys and the heart muscle was directly proportional to the amount of absorbed zinc and iron, respectively. The iron content of tissues was, in general, inversely proportional to zinc absorption and showed a tendency to be directly proportional to copper absorption. The zinc level in tissues was, in a similar way, inversely correlated to measured calcium absorption. In conclusion, interactions between elements do not only affect the intestinal element absorption, but also the distribution of already absorbed elements in tissues and organs.  相似文献   

13.
In the current study, a sol-gel-synthesized tricalcium magnesium silicate powder was coated on Ti-6Al-4V alloys using plasma spray method. Composition of feed powder was evaluated by X-ray diffraction technique before and after the coating process. Scanning electron microscopy and atomic force microscopy were used to study the morphology of coated substrates. The corrosion behaviors of bare and coated Ti-6Al-4V alloys were examined using potentiodynamic polarization test and electrochemical impedance spectroscopy in stimulated body fluids. Moreover, bare and coated Ti-6Al-4V alloys were characterized in vitro by culturing osteoblast and mesenchymal stem cells for several days. Results demonstrated a meaningful improvement in the corrosion resistance of Ti-6Al-4V alloys coated with tricalcium magnesium silicate compared with the bare counterparts, by showing a decrease in corrosion current density from 1.84 μA/cm2 to 0.31 μA/cm2. Furthermore, the coating substantially improved the bioactivity of Ti-6Al-4Valloys. Our study on corrosion behavior and biological response of Ti-6Al-4V alloy coated by tricalcium magnesium silicate proved that the coating has considerably enhanced safety and applicability of Ti-6Al-4V alloys, suggesting its potential use in permanent implants and artificial joints.  相似文献   

14.
Evaluation of marker-assisted selection through computer simulation   总被引:20,自引:0,他引:20  
Computer simulation was used to evaluate responses to marker-assisted selection (MAS) and to compare MAS responses with those typical of phenotypic recurrent selection (PRS) in an allogamous annual crop species such as maize (Zea mays L.). Relative to PRS, MAS produced rapid responses early in the selection process; however, the rate of these responses diminished greatly within three to five cycles. The gains from MAS ranged from 44.7 to 99.5% of the maximum potential, depending on the genetic model considered. Linkage distance between markers and quantitative trait loci (QTLs) was the factor which most limited the responses from MAS. When averaged across all models considered, flanking QTLs within two marker loci produced 38% more gain than did selection based on single markers if markers were loosely-linked to a QTL (20% recombination). Flanking markers were much less advantageous when markers were closely-linked to a QTL (5% recombination), producing an advantage over single markers of only 11%. Markers were most effective in fully exploiting the genetic potential when fewer QTLs controlled the trait. Large QTL numbers exacerbated the problem of marker-QTL recombination by requiring more generations for fixation. In annual crop species, MAS may offer a primary advantage of enabling two selection cycles per year versus the 2 years per cycle required by most PRS schemes for the evaluation of testcross progeny. MAS thus appears to allow very rapid gains for the first 2–3 years of recurrent selection, after which time conventional methods might replace MAS to achieve further responses.Publication number 19, 330 of the Minnesota Agricultural Experiment Station  相似文献   

15.
A model of the evolution of a transposable element family in a Mendelian host population is proposed that incorporates heritable phenotypic mutations in the elements. The temporal behavior of the numbers of mutant and wild-type elements is studied, and the expected extinction time of the transposable element family is examined. Our results indicate that, if the mutant can be transposed equally well in the presence of the wild type, then it can be expected to be found in preponderance, whereas elements, such as retroviruses, where the transposing genome and its phenotypic expression are coupled, may be characterized by a low mutant frequency.  相似文献   

16.
Magnesium-based alloys are frequently reported as potential biodegradable orthopedic implant materials. Controlling the degradation rate and mechanical integrity of magnesium alloys in the physiological environment is the key to their applications. In this study, calcium phosphate (Ca-P) coating was prepared on AZ60 magnesium alloy using phosphating technology. AZ60 samples were immersed in a phosphating solution at 37 ± 2 °C for 30 min, and the solution pH was adjusted to 2.6 to 2.8 by adding NaOH solution. Then, the samples were dried in an attemperator at 60 °C. The degradation behavior was studied in vivo using Ca-P coated and uncoated magnesium alloys. Samples of these two different materials were implanted into rabbit femora, and the corrosion resistances were evaluated after 1, 2, and 3 months. The Ca-P coated samples corroded slower than the uncoated samples with prolonged time. Significant differences (p < 0.05) in mass losses and corrosion rates between uncoated samples and Ca-P coated samples were observed by micro-computed tomography. The results indicate that the Ca-P coating could slow down the degradation of magnesium alloy in vivo.  相似文献   

17.
Nicotine (NCT) buccal tablets consisting of sodium alginate (SA) and nicotine–magnesium aluminum silicate (NCT–MAS) complexes acting as drug carriers were prepared using the direct compression method. The effects of the preparation pH levels of the NCT–MAS complexes and the complex/SA ratios on NCT release, permeation across mucosa, and mucoadhesive properties of the tablets were investigated. The NCT–MAS complex-loaded SA tablets had good physical properties and zero-order release kinetics of NCT, which indicate a swelling/erosion-controlled release mechanism. Measurement of unidirectional NCT release and permeation across porcine esophageal mucosa using a modified USP dissolution apparatus 2 showed that NCT delivery was controlled by the swollen gel matrix of the tablets. This matrix, which controlled drug diffusion, resulted from the molecular interactions of SA and MAS. Tablets containing the NCT–MAS complexes prepared at pH 9 showed remarkably higher NCT permeation rates than those containing the complexes prepared at acidic and neutral pH levels. Larger amounts of SA in the tablets decreased NCT release and permeation rates. Additionally, the presence of SA could enhance the mucoadhesive properties of the tablets. These findings suggest that SA plays the important role not only in controlling release and permeation of NCT but also for enhancing the mucoadhesive properties of the NCT–MAS complex-loaded SA tablets, and these tablets demonstrate a promising buccal delivery system for NCT.  相似文献   

18.
Corrosion in bioprocessing applications is described for a 25-year-old bioprocessing pilot plant facility. Various available stainless steel alloys differ greatly in properties owing to the impact of specific alloying elements and their concentrations. The alloy property evaluated was corrosion resistance as a function of composition under typical bioprocessing conditions such as sterilization, fermentation, and cleaning. Several non-uniform forms of corrosion relevant to bioprocessing applications (e.g., pitting, crevice corrosion, intergranular attack) were investigated for their typical causes and effects, as well as alloy susceptibility. Next, the corrosion resistance of various alloys to specific bioprocessing-relevant sources of corrosion (e.g., medium components, acids/bases used for pH adjustment, organic acid by-products) was evaluated, along with the impact of temperature on corrosion progression. Best practices to minimize corrosion included considerations for fabrication (e.g., welding, heat treatments) and operational (e.g., sterilization, media component selection, cleaning) approaches. Assessments and repair strategies for observed corrosion events were developed and implemented, resulting in improved vessel and overall facility longevity.  相似文献   

19.
Foliar elements were analysed in Scots pine, Sitka spruce and Norway spruce over a 6 year period before and during continuous exposure to SO2 and O3 in an open-air fumigation experiment. Sulphur dioxide treatment elevated foliar sulphur concentration in all species, and there were increases in foliar nitrogen in the two spruce species but not in pine. The concentrations of cations were frequently increased by SO2 treatment, but there was no correlation between the sulphur concentration of needles and their total cation charge. SO2-related elevations of foliar magnesium were correlated with the concentration of this element in soil solution, but the mechanism by which other cations were enhanced remains unclear. The only consistent effects on nutrient ratios were for SO2 treatments to increase sulphur/cation ratios.  相似文献   

20.
 A relatively recent development in prostheses manufacture is the use of superplastic forming technology formerly associated with industrial applications such as aerospace components. This paper considers the finite element incremental flow formulation for the simulation of the forming of thin and moderately thick titanium alloy sheet dental and medical prostheses and, in particular, the determination of the pressure–time cycle. Issues concerning material characteristics are discussed, and the process is illustrated by a number of examples. The application of finite element simulation in this context is ongoing, nevertheless interim conclusions are drawn and future directions for research are identified. Received: 8 March 2002 / Accepted: 4 July 2002 The financial support of the Engineering and Physical Science Research Council, UK (grant numbers GR/M71244 and GR/M71282) is gratefully acknowledged. The authors would also like to thank NASA Langley Research Center for use of the NASA General Purpose Solver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号