首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
Children with cerebral palsy often walk with diminished knee extension during the terminal-swing phase, resulting in a troublesome "crouched" posture at initial contact and a shortened stride. Treatment of this gait abnormality is challenging because the factors that extend the knee during normal walking are not well understood, and because the potential of individual muscles to limit terminal-swing knee extension is unknown. This study analyzed a series of three-dimensional, muscle-driven dynamic simulations to quantify the angular accelerations of the knee induced by muscles and other factors during swing. Simulations were generated that reproduced the measured gait dynamics and muscle excitation patterns of six typically developing children walking at self-selected speeds. The knee was accelerated toward extension in the simulations by velocity-related forces (i.e., Coriolis and centrifugal forces) and by a number of muscles, notably the vasti in mid-swing (passive), the hip extensors in terminal swing, and the stance-limb hip abductors, which accelerated the pelvis upward. Knee extension was slowed in terminal swing by the stance-limb hip flexors, which accelerated the pelvis backward. The hamstrings decelerated the forward motion of the swing-limb shank, but did not contribute substantially to angular motions of the knee. Based on these data, we hypothesize that the diminished knee extension in terminal swing exhibited by children with cerebral palsy may, in part, be caused by weak hip extensors or by impaired hip muscles on the stance limb that result in abnormal accelerations of the pelvis.  相似文献   

2.
Stiff-knee gait is a common walking problem in cerebral palsy characterized by insufficient knee flexion during swing. To identify factors that may limit knee flexion in swing, it is necessary to understand how unimpaired subjects successfully coordinate muscles and passive dynamics (gravity and velocity-related forces) to accelerate the knee into flexion during double support, a critical phase just prior to swing that establishes the conditions for achieving sufficient knee flexion during swing. It is also necessary to understand how contributions to swing initiation change with walking speed, since patients with stiff-knee gait often walk slowly. We analyzed muscle-driven dynamic simulations of eight unimpaired subjects walking at four speeds to quantify the contributions of muscles, gravity, and velocity-related forces (i.e. Coriolis and centrifugal forces) to preswing knee flexion acceleration during double support at each speed. Analysis of the simulations revealed contributions from muscles and passive dynamics varied systematically with walking speed. Preswing knee flexion acceleration was achieved primarily by hip flexor muscles on the preswing leg with assistance from biceps femoris short head. Hip flexors on the preswing leg were primarily responsible for the increase in preswing knee flexion acceleration during double support with faster walking speed. The hip extensors and abductors on the contralateral leg and velocity-related forces opposed preswing knee flexion acceleration during double support.  相似文献   

3.
After spinal surgery, physiotherapeutic exercises are performed to achieve a rapid return to normal life. One important aim of treatment is to regain muscle strength, but it is known that muscle forces increase the spinal loads to potentially hazardous levels. It has not yet been clarified which exercises cause high spinal forces and thus endanger the surgical outcome. The loads on vertebral body replacements were measured in 5 patients during eleven physiotherapeutic exercises, performed in the supine, prone, or lateral position or on all fours (kneeling on the hands and knees). Low resultant forces on the vertebral body replacement were measured for the following exercises: lifting one straight leg in the supine position, abduction of the leg in the lateral position, outstretching one leg in the all-fours position, and hollowing the back in the all-fours position. From the biomechanical point of view, these exercises can be performed shortly after surgery. Implant forces similar or even greater than those for walking were measured during: lifting both legs, lifting the pelvis in the supine position, outstretching one arm with or without simultaneously outstretching the contralateral leg in the all-fours position, and arching the back in the all-fours position. These exercises should not be performed shortly after spine surgery.  相似文献   

4.

The effect of transcutaneous electrical spinal cord stimulation on the kinematic parameters of movement of the ipsilateral and contralateral legs in healthy subjects during treadmill walking at speeds of 1.5 to 1.7 km/h has been studied. The stimulation electrodes were placed 2.5 cm lateral from the right and left sides of the spinal midline at L1 and T11 levels. During the stance phase, stimulation was administered at L1 level at a frequency of 15 Hz; during the swing phase the stimuli was delivered to T11 at a frequency of 30 Hz, followed by alternating stimulation at L1 and T11. The stimulation during the swing phase (T11) was more effective than that during the stance phase (L1); the most impressive changes in kinematic parameters were observed when combined delivery of stimulations to L1 and T11 was performed. With unilateral spinal stimulation, the amplitude of the angles in the hip, knee and/or ankle joints, the length of the transfer, and the height of the leg elevation increased in the ipsilateral leg. Similar but less pronounced changes were observed in the contralateral leg. A 10% increase in the duration of stimulation in the swing phase caused a change in the kinematic stepping parameters both in ipsilateral and contralateral legs. The maximum effect was observed when bilateral alternating stimulation was used. These data show that phasic transcutaneous electrical spinal cord stimulation, using a wide range of natural walking speeds, can be applied to control kinematic movement parameters.

  相似文献   

5.
The purpose of this study was to develop a method for identifying subject-specific passive elastic joint moment-angle relationships in the lower extremity, which could subsequently be used to estimate passive contributions to joint kinetics during gait. Twenty healthy young adults participated in the study. Subjects were positioned side-lying with their dominant limb supported on a table via low-friction carts. A physical therapist slowly manipulated the limb through full sagittal hip, knee, and ankle ranges of motion using two hand-held 3D load cells. Lower extremity kinematics, measured with a passive marker motion capture system, and load cell readings were used to compute joint angles and associated passive joint moments. We formulated a passive joint moment-angle model that included eight exponential functions to account for forces generated via the passive stretch of uni-articular structures and bi-articular muscles. Model parameters were estimated for individual subjects by minimizing the sum of squared errors between model predicted and experimentally measured moments. The model predictions closely replicated measured joint moments with average root-mean-squared errors of 2.5, 1.4, and 0.7 Nm about the hip, knee, and ankle respectively. We show that the models can be coupled with gait kinematics to estimate passive joint moments during walking. Passive hip moments were substantial from terminal stance through initial swing, with energy being stored as the hip extended and subsequently returned during pre- and initial swing. We conclude that the proposed methodology could provide quantitative insights into the potentially important role that passive mechanisms play in both normal and abnormal gait.  相似文献   

6.
The present study used synchronized motion analysis to investigate the activity of hip and trunk muscles during deep-water running (DWR) relative to land walking (LW) and water walking (WW). Nine healthy men performed each exercise at self-determined slow, moderate, and fast paces, and surface electromyography was used to investigate activity of the adductor longus, gluteus maxima, gluteus medius, rectus abdominis, oblique externus abdominis, and erector spinae. The following kinematic parameters were calculated: the duration of one cycle, range of motion (ROM) of the hip joint, and absolute angles of the pelvis and trunk with respect to the vertical axis in the sagittal plane. The percentages of maximal voluntary contraction (%MVC) of each muscle were higher during DWR than during LW and WW. The %MVC of the erector spinae during WW increased concomitant with the pace increment. The hip joint ROMs were larger in DWR than in LW and WW. Forward inclinations of the trunk were apparent for DWR and fast-paced WW. The pelvis was inclined forward in DWR and WW. In conclusion, the higher-level activities during DWR are affected by greater hip joint motion and body inclinations with an unstable floating situation.  相似文献   

7.
The human hip joint withstands high contact forces during daily activity and is therefore susceptible to injury and structural deterioration over time. Knowledge of muscle-force contributions to hip joint loading may assist in the development of strategies to prevent and manage conditions such as osteoarthritis, femoro-acetabular impingement and fracture. The main aim of this study was to determine the contributions of individual muscles to hip contact force in normal walking. Muscle contributions to hip contact force were calculated based on a previously published dynamic optimization solution for normal walking, which provided the time histories of joint motion, ground reaction forces, and muscle forces during the stance and swing phases of gait. The force developed by each muscle plus its contribution to the ground reaction force were used to determine the muscle’s contribution to hip contact force. Muscles were the major contributors to hip contact force, with gravitational and centrifugal forces combined contributing less than 5% of the total contact force. Four muscles that span the hip – gluteus medius, gluteus maximus, iliopsoas, and hamstrings – contributed most significantly to the three components of the hip contact force and hip contact impulse (integral of hip contact force over time). Three muscles that do not span the hip – vasti, soleus, and gastrocnemius – also contributed substantially to hip joint loading. These results provide additional insight into lower-limb muscle function during walking and may also be relevant to studies of cartilage degeneration and bone remodelling at the hip.  相似文献   

8.
In this paper, an experimental analysis of overcoming obstacle in human walking is carried out by means of a motion capture system. In the experiment, the lower body of an adult human is divided into seven segments, and three markers are pasted to each segment with the aim to obtain moving trajectory and to calculate joint variation during walking. Moreover, kinematic data in terms of displacement, velocity and acceleration are acquired as well. In addition, ground reaction forces are measured using force sensors. Based on the experimental results, features of overcoming obstacle in human walking are ana- lyzed. Experimental results show that the reason which leads to smooth walking can be identified as that the human has slight movement in the vertical direction during walking; the reason that human locomotion uses gravity effectively can be identified as that feet rotate around the toe joints during toe-off phase aiming at using gravitational potential energy to provide propulsion for swing phase. Furthermore, both normal walking gait and obstacle overcoming gait are characterized in a form that can provide necessary knowledge and useful databases for the implementation of motion planning and gait planning towards overcoming obstacle for humanoid robots.  相似文献   

9.
Post-stroke individuals often exhibit abnormal kinematics, including increased pelvic obliquity and hip abduction coupled with reduced knee flexion. Prior examinations suggest these behaviors are expressions of abnormal cross-planar coupling of muscle activity. However, few studies have detailed the impact of gait-retraining paradigms on three-dimensional joint kinematics. In this study, a cross-tilt walking surface was examined as a novel gait-retraining construct. We hypothesized that relative to baseline walking kinematics, exposure to cross-tilt would generate significant changes in subsequent flat-walking joint kinematics during affected limb swing. Twelve post-stroke participants walked on a motorized treadmill platform during a flat-walking condition and during a 10-degree cross-tilt with affected limb up-slope, increasing toe clearance demand. Individuals completed 15 min of cross-tilt walking with intermittent flat-walking catch trials and a final washout period (5 min). For flat-walking conditions, we examined changes in pelvic obliquity, hip abduction/adduction and knee flexion kinematics at the spatiotemporal events of swing initiation and toe-off, and the kinematic event of maximum angle during swing. Pelvic obliquity significantly reduced at swing initiation and maximum obliquity in the final catch trial and late washout. Knee flexion significantly increased at swing initiation, toe-off, and maximum flexion across catch trials and late washout. Hip abduction/adduction was not significantly influenced following cross-tilt walking. Significant decrease in the rectus femoris and medial hamstrings muscle activity across catch trials and late washout was observed. Exploiting the abnormal features of post-stroke gait during retraining yielded desirable changes in muscular and kinematic patterns post-training.  相似文献   

10.
This study quantified and compared how the directional differences in arm swing affected mechanical and physiological parameters during forward and backward jumping. Seven subjects maximally performed three types of forward and backward squat jumps-no arm swing (FJ, BJ), forward arm swing (FJF, BJF), and backward arm swing (FJB, BJB) from a force platform. All performances were captured with a 3-D motion capture system. Electromyograms (EMGs) of the lower extremity muscles were obtained. Variables were calculated by combining kinematic and kinetic data. The jump displacement and center of mass velocity at take-off were significantly larger in FJF than in FJ or FJB and larger in BJB than in BJ or BJF, suggesting that the best performance was obtained by employing the same arm swing direction as a given jump direction. The total work by three lower and two upper extremity joints was significantly larger in FJF than in FJ or FJB and larger in BJB than in BJ or BJF. For the lower extremity joints, hip work was the greatest in FJF and BJB. The integrated EMG of the biceps femoris when the hip power was produced was significantly larger in FJF and BJB than under other conditions. These results suggest that if the arm swing direction is the same as a given jump direction, the activation level of the hip extensor is greater to counter large loads which make the hip joint flex during the push-off phase, which result in increased hip extension torque, power, and work.  相似文献   

11.
Walking with increased ankle pushoff decreases hip muscle moments   总被引:1,自引:1,他引:0  
In a simple bipedal walking model, an impulsive push along the trailing limb (similar to ankle plantar flexion) or a torque at the hip can power level walking. This suggests a tradeoff between ankle and hip muscle requirements during human gait. People with anterior hip pain may benefit from walking with increased ankle pushoff if it reduces hip muscle forces. The purpose of our study was to determine if simple instructions to alter ankle pushoff can modify gait dynamics and if resulting changes in ankle pushoff have an effect on hip muscle requirements during gait. We hypothesized that changes in ankle kinetics would be inversely related to hip muscle kinetics. Ten healthy subjects walked on a custom split-belt force-measuring treadmill at 1.25m/s. We recorded ground reaction forces and lower extremity kinematic data to calculate joint angles and internal muscle moments, powers and angular impulses. Subjects walked under three conditions: natural pushoff, decreased pushoff and increased pushoff. For the decreased pushoff condition, subjects were instructed to push less with their feet as they walked. Conversely, for the increased pushoff condition, subjects were instructed to push more with their feet. As predicted, walking with increased ankle pushoff resulted in lower peak hip flexion moment, power and angular impulse as well as lower peak hip extension moment and angular impulse (p<0.05). Our results emphasize the interchange between hip and ankle kinetics in human walking and suggest that increased ankle pushoff during gait may help to compensate for hip muscle weakness or injury and reduce hip joint forces.  相似文献   

12.
Healthy walking is characterized by pronounced arm swing and axial rotation. Aging effects on gait speed, stride length and stride time variability have been previously reported, however, less is known about aging effects on arm swing and axial rotation and their relationship to age-associated gait changes during usual walking and during more challenging conditions like dual tasking. Sixty healthy adults between the ages of 30–77 were included in this study designed to address this gap. Lightweight body fixed sensors were placed on each wrist and lower back. Participants walked under 3 walking conditions each of 1 minute: 1) comfortable speed, 2) walking while serially subtracting 3’s (Dual Task), 3) walking at fast speed. Aging effects on arm swing amplitude, range, symmetry, jerk and axial rotation amplitude and jerk were compared between decades of age (30–40; 41–50; 51–60; 61–77 years). As expected, older adults walked slower (p = 0.03) and with increased stride variability (p = 0.02). Arm swing amplitude decreased with age under all conditions (p = 0.04). In the oldest group, arm swing decreased during dual task and increased during the fast walking condition (p<0.0001). Similarly, arm swing asymmetry increased during the dual task in the older groups (p<0.004), but not in the younger groups (p = 0.67). Significant differences between groups and within conditions were observed in arm swing jerk (p<0.02), axial rotation amplitude (p<0.02) and axial jerk (p<0.001). Gait speed, arm swing amplitude of the dominant arm, arm swing asymmetry and axial rotation jerk were all independent predictors of age in a multivariate model. These findings suggest that the effects of gait speed and dual tasking on arm swing and axial rotation during walking are altered among healthy older adults. Follow-up work is needed to examine if these effects contribute to reduced stability in aging.  相似文献   

13.
A three-dimensional dynamic simulation of walking was used together with induced position analysis to determine how kinematic conditions at toe-off and muscle forces following toe-off affect peak knee flexion during the swing phase of normal gait. The flexion velocity of the swing-limb knee at toe-off contributed 30 degrees to the peak knee flexion angle; this was larger than any contribution from an individual muscle or joint moment. Swing-limb muscles individually made large contributions to knee angle (i.e., as large as 22 degrees), but their actions tended to balance one another, so that the combined contribution from all swing-limb muscles was small (i.e., less than 3 degrees of flexion). The uniarticular muscles of the swing limb made contributions to knee flexion that were an order of magnitude larger than the biarticular muscles of the swing limb. The results of the induced position analysis make clear the importance of knee flexion velocity at toe-off relative to the effects of muscle forces exerted after toe-off in generating peak knee flexion angle. In addition to improving our understanding of normal gait, this study provides a basis for analyzing stiff-knee gait, a movement abnormality in which knee flexion in swing is diminished.  相似文献   

14.
It has historically been believed that the role of arm motion during walking is related to balancing. Arm motion during natural walking is distinguished in that each arm swing is with the motion of the opposing leg. Although this arm swing motion is generated naturally during bipedal walking, it is interesting to note that the arm swing motion is not necessary for stable walking. This paper attempts to explain the contribution of out-of-phase arm swing in human bipedal walking. Consequently, a human motion control methodology that generates this arm swing motion during walking is proposed. The relationship between arm swing and reaction moment about the vertical axis of the foot is explained in the context of the dynamics of a multi-body articulated system. From this understanding, it is reasoned that arm swing is the result of an effort to reduce the reaction moment about the vertical axis of the foot while the torso and legs are being controlled. This idea is applied to the generation of walking motion. The arm swing motion can be generated, not by designing and tracking joint trajectories of the arms, but by limiting the allowable reaction moment at the foot and minimizing whole-body motion while controlling the lower limbs and torso to follow the designed trajectory. Simulation results, first with the constraint on the foot vertical axis moment and then without, verify the relationship between arm swing and foot reaction moment. These results also demonstrate the use of the dynamic control method in generating arm swing motion.  相似文献   

15.
The purpose of the present study was to determine the day-to-day reliability in stride characteristics in rats during treadmill walking obtained with two-dimensional (2D) motion capture. Kinematics were recorded from 26 adult rats during walking at 8 m/min, 12 m/min and 16 m/min on two separate days. Stride length, stride time, contact time, swing time and hip, knee and ankle joint range of motion were extracted from 15 strides. The relative reliability was assessed using intra-class correlation coefficients (ICC(1,1)) and (ICC(3,1)). The absolute reliability was determined using measurement error (ME). Across walking speeds, the relative reliability ranged from fair to good (ICCs between 0.4 and 0.75). The ME was below 91 mm for strides lengths, below 55 ms for the temporal stride variables and below 6.4° for the joint angle range of motion. In general, the results indicated an acceptable day-to-day reliability of the gait pattern parameters observed in rats during treadmill walking. The results of the present study may serve as a reference material that can help future intervention studies on rat gait characteristics both with respect to the selection of outcome measures and in the interpretation of the results.  相似文献   

16.
Turning is a common locomotor task essential to daily activity; however, very little is known about the forces and moments responsible for the kinematic adaptations occurring relative to straight-line gait in typically developing children. Thus, the aims of this study were to analyse ground reaction forces (GRFs), ground reaction free vertical torque (TZ), and the lower-limb joint kinetics of 90° outside (step) and inside (spin) limb turns. Step, spin, and straight walking trials from fifty-four typically developing children were analysed. All children were fit with the Plug-in Gait and Oxford Foot Model marker sets while walking over force plates embedded in the walkway. Net internal joint moments and power were computed via a standard inverse dynamics approach. All dependent variables were statistically analysed over the entire curves using the mean difference 95% bootstrap confidence band approach. GRFs were directed medially for step turns and laterally for spin turns during the turning phase. Directions were reversed and magnitudes decreased during the approach phase. Step turns showed reduced ankle power generation, while spin turns showed large TZ. Both strategies required large knee and hip coronal and transverse plane moments during swing. These kinetic differences highlight adaptations required to maintain stability and reorient the body towards the new walking direction during turning. From a clinical perspective, turning gait may better reveal weaknesses and motor control deficits than straight walking in pathological populations, such as children with cerebral palsy, and could potentially be implemented in standard gait analysis sessions.  相似文献   

17.
The relationships between extrinsic forces acting at the knee and knee kinematics were examined with the purpose of identifying specific phases of the walking cycle that could cause abnormal kinematics in the anterior cruciate ligament (ACL) deficient knee. Intersegmental forces and moments in directions that would produce anterior-posterior (AP) translation, internal-external (IE) rotation and flexion-extension (FE) at the knee were compared with the respective translation and rotations of the tibia relative to the femur during four selected phases (heel strike, weight acceptance, terminal extension and swing) of the walking cycle. The kinematic changes associated with loss of the ACL occurred primarily during the terminal portion of swing phase of the walking cycle where, for the ACL deficient knee, the tibia had reduced external rotation and anterior translation as the knee extended prior to heel strike. The kinematic changes during swing phase were associated with a rotational offset relative to the contralateral knee in the average position of the tibia towards internal rotation. The offset was maintained through the entire gait cycle. The abnormal offsets in the rotational position were correlated with the magnitude of the flexion moment (balanced by a net quadriceps moment) during weight acceptance. These results suggest that adaptations to the patterns of muscle firing during walking can compensate for kinematic changes associated with the loss of the ACL. The altered rotational position would cause changes in tibiofemoral contact during walking that could cause the type of degenerative changes reported in the meniscus and the articular cartilage following ACL injury.  相似文献   

18.
Many children with cerebral palsy walk with diminished knee extension during terminal swing, at speeds much slower than unimpaired children. Treatment of these gait abnormalities is challenging because the factors that extend the knee during normal walking, over a range of speeds, are not well understood. This study analyzed a series of three-dimensional, muscle-driven dynamic simulations to determine whether the relative contributions of individual muscles and other factors to angular motions of the swing-limb knee vary with walking speed. Simulations were developed that reproduced the measured gait dynamics of seven unimpaired children walking at self-selected, fast, slow, and very slow speeds (7 subjects×4 speeds=28 simulations). In mid-swing, muscles on the stance limb made the largest net contribution to extension of the swing-limb knee at all speeds examined. The stance-limb hip abductors, in particular, accelerated the pelvis upward, inducing reaction forces at the swing-limb hip that powerfully extended the knee. Velocity-related forces (i.e., Coriolis and centrifugal forces) also contributed to knee extension in mid-swing, though these contributions were diminished at slower speeds. In terminal swing, the hip flexors and other muscles on the swing-limb decelerated knee extension at the subjects’ self-selected, slow, and very slow speeds, but had only a minimal net effect on knee motions at the fastest speeds. Muscles on the stance limb helped brake knee extension at the subjects’ fastest speeds, but induced a net knee extension acceleration at the slowest speeds. These data—which show that the contributions of muscular and velocity-related forces to terminal-swing knee motions vary systematically with walking speed—emphasize the need for speed-matched control subjects when attempting to determine the causes of a patient's abnormal gait.  相似文献   

19.
Hip contact forces and gait patterns from routine activities.   总被引:35,自引:0,他引:35  
In vivo loads acting at the hip joint have so far only been measured in few patients and without detailed documentation of gait data. Such information is required to test and improve wear, strength and fixation stability of hip implants. Measurements of hip contact forces with instrumented implants and synchronous analyses of gait patterns and ground reaction forces were performed in four patients during the most frequent activities of daily living. From the individual data sets an average was calculated. The paper focuses on the loading of the femoral implant component but complete data are additionally stored on an associated compact disc. It contains complete gait and hip contact force data as well as calculated muscle activities during walking and stair climbing and the frequencies of daily activities observed in hip patients. The mechanical loading and function of the hip joint and proximal femur is thereby completely documented. The average patient loaded his hip joint with 238% BW (percent of body weight) when walking at about 4 km/h and with slightly less when standing on one leg. This is below the levels previously reported for two other patients (Bergmann et al., Clinical Biomechanics 26 (1993) 969-990). When climbing upstairs the joint contact force is 251% BW which is less than 260% BW when going downstairs. Inwards torsion of the implant is probably critical for the stem fixation. On average it is 23% larger when going upstairs than during normal level walking. The inter- and intra-individual variations during stair climbing are large and the highest torque values are 83% larger than during normal walking. Because the hip joint loading during all other common activities of most hip patients are comparably small (except during stumbling), implants should mainly be tested with loading conditions that mimic walking and stair climbing.  相似文献   

20.
Gait analysis in orthopaedic and neurological examinations is important; however, few studies assess gait variability at different walking speeds in patients with varying degrees of hip osteoarthritis. We aimed to clarify (1) how different controlled speeds and (2) various severities of hip osteoarthritis influence gait variability. Gait variability was described by the standard deviation (SD) of the spatial–temporal and mean standard deviation (MeanSD) of angular parameters. The spatial positions of the anatomical points for calculating gait parameters were determined in 20 healthy elderly controls and 20 patients with moderate and 20 patients with severe hip osteoarthritis with a zebris CMS-HS ultrasound-based motion analysis system at three walking speeds. The SD of the spatial–temporal and MeanSD of angular parameters of gait, which together describe gait variability, significantly depended on speed and osteoarthritis severity. The lowest variability in the gait was found near the self-selected walking speeds. Hip joint degeneration significantly worsened variability on the affected side, with non-affected joints and the pelvis compensating by increasing flexibility and adapting to step-by-step motions. Particular attention must be paid to improving gait stability and the reliability of limb movements in the presence of and increasing severity of osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号