首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kathleen Church 《Chromosoma》1976,58(4):365-376
Evidence is presented that chromosome ends are attached to the nuclear envelope prior to the formation of axial cores during early meiotic prophase in the grasshopper Brachystola magna. The attachment sites of distal and proximal chromosome ends are clustered in a small region of the inner nuclear envelope resulting in a classical bouquet arrangement of the chromosomes. Proximal ends are tightly clustered due to the presence of chromocenters. Distal chromosome ends are more widely scattered throughout the base of the bouquet. —Axial core formation can be initiated at chromosome ends or at internal chromosome sites. However, there is a preference for axial cores to form in distal chromosome regions rather than proximal regions during early meiotic prophase. — Virtually all of the nuclear pore complexes are located in the general vicinity of the chromosome attachment sites but each specific attachment site is surrounded by a small area of nuclear envelope which is devoid of pore complexes.  相似文献   

2.
Rapid chromosome movement during prophase of the first meiotic division has been observed in many organisms. It is generally concomitant with formation of the “meiotic chromosome bouquet,” a special chromosome configuration in which one or both chromosome ends attach to the nuclear envelope and become concentrated within a limited area. The precise function of the chromosomal bouquet is still not fully understood. Chromosome mobility is implicated in homologous chromosome pairing, synaptonemal complex formation, recombination, and resolution of chromosome entanglements. The basic mechanistic module through which forces are exerted on chromosomes is widely conserved; however, phenotypic differences have been reported among various model organisms once movement is abrogated. Movements are transmitted to the chromosome ends by the nuclear membrane-bridging SUN/KASH complex and are dependent on cytoskeletal filaments and motor proteins located in the cytoplasm. Here we review the recent findings on chromosome mobility during meiosis in an animal model system: the Caenorhabditis elegans nematode.  相似文献   

3.
Variation in chromosome number due to polyploidy can seriously compromise meiotic stability. In autopolyploids, the presence of more than two homologous chromosomes may result in complex pairing patterns and subsequent anomalous chromosome segregation. In this context, chromocenter, centromeric, telomeric and ribosomal DNA locus topology and DNA methylation patterns were investigated in the natural autotetraploid, Arabidopsis arenosa. The data show that homologous chromosome recognition and association initiates at telomeric domains in premeiotic interphase, followed by quadrivalent pairing of ribosomal 45S RNA gene loci (known as NORs) at leptotene. On the other hand, centromeric regions at early leptotene show pairwise associations rather than associations in fours. These pairwise associations are maintained throughout prophase I, and therefore likely to be related to the diploid-like behavior of A. arenosa chromosomes at metaphase I, where only bivalents are observed. In anthers, both cells at somatic interphase as well as at premeiotic interphase show 5-methylcytosine (5-mC) dispersed throughout the nucleus, contrasting with a preferential co-localization with chromocenters observed in vegetative nuclei. These results show for the first time that nuclear distribution patterns of 5-mC are simultaneously reshuffled in meiocytes and anther somatic cells. During prophase I, 5-mC is detected in extended chromatin fibers and chromocenters but interestingly is excluded from the NORs what correlates with the pairing pattern.  相似文献   

4.
At the leptotene stage of meiotic prophase in Locusta spermatocytes (2n=22 telocentric autosomes + X-chromosome), each chromosome forms an axial core. The 44 ends of the autosomal cores are all attached to the nuclear membrane in a small region opposite the two pairs of centrioles of the juxtanuclear mitochondrial mass. At later stages of meiotic prophase, the cores of homologous chromosomes synapse into synaptinemal complexes. Synapsis is initiated near the nuclear membrane, in the centromeric and the non-centromeric ends of the chromosomes. Homologous cores have their attachment points close together and some cores are co-aligned prior to synapsis. At subsequent stages of zygotene, the number of synaptinemal complexes at the membrane increases, while the number of unpaired axial cores diminishes. At pachytene, all 11 bivalents are attached to the membrane at both ends, so that there are 22 synaptinemal complexes at the membrane near the centrioles. Because each bivalent makes a complete loop, the configuration of the classic Bouquet stage is produced. The X-chromosome has a poorly defined single core at pachytene which also attaches to the nuclear membrane. These observations are based on consecutive serial sections (50 to 100) through the centriolar zone of the spermatocytes. Labeling experiments demonstrated that tritiated thymidine was incorporated in the chromatin of young spermatocytes prior to the formation of the axial cores at leptotene. It is concluded that premeiotic DNA synthesis is completed well in advance of pairing of homologous chromosomes, as marked by the formation of synaptinemal complexes.  相似文献   

5.
D. Motzko  A. Ruthmann 《Chromosoma》1990,99(3):212-222
The fate of intracellular membranes stained by the osmium ferricyanide (OsFeCN) procedure was followed from premeiotic interphase to interkinesis inDysdercus intermedius. During diakinesis the centrioles forming primary cilia attach temporarily with their proximal ends to the nuclear envelope which is stretched from pole to pole. Breakdown of the nuclear envelope is preceded by deep indentations with microtubules from growing asters. Vesicles of smooth endoplasmic reticulum which accumulate gradually in the course of prophase contribute to the ensheathment of the chromosomes with membranes. When the nuclear envelope breaks down, the polar parts of the formerly perinuclear membranes follow the ingrowth of the spindle microtubules towards the cell equator where the seven bivalents are arranged in a circle with the X1X2 sex chromosomes in the centre. The metaphase I spindle thus contains longitudinally oriented membranes between the poles, membranous envelopes around all chromosomes and radial connections from the autosomes to the sex chromosomes in the centre. At anaphase the homologues leave their common sheath and a microtubular stembody surrounded by membranes appears between the receding dyads. In the interkinetic nucleus the gonosomes are separated from the autosomes by a common membranous sheath which may be instrumental in their joint assignment to only one pole in the second meiotic division. Calcium sequestering sites visualized by oxalate precipitation are the Golgi lamellae and vesicles derived from them that surround the whole spindle body.  相似文献   

6.
Summary In budding yeast Saccharomyces cerevisiae, centromeres and telomeres are tethered to the nuclear envelope during premeiotic interphase. Immediately after cells enter meiotic prophase, chromosomes undergo global reorganization, including bouquet formation (telomere clustering), non-homologous centromere coupling, homologous pairing, and assembly/disassembly of synaptonemal complexes. These chromosome dynamics have been implicated in promoting pairing, synapsis, crossover DNA recombination and segregation between homologous chromosomes. This review discusses recent studies related to the role of small ubiquitin-like modifier (SUMO) modification in controlling the overall budding yeast chromosome dynamics during meiotic prophase. This article is dedicated to the 20th anniversary of the Institute of Molecular Biology, Academia Sinica. TFW is grateful to all teachers at IMB, including James C. Wang, Ru-Chih Huang, Ping-Chien Huang, Chung Wang, Henry Y. Sun, Jychian Chen, Ming-Zong Lai, Bon-Chu Chung, and Soo-Chen Cheng. We apologize to those whose work could not be cited due to the brevity of this contribution. TFW was supported by the Investigator Award from Academia Sinica and by the Ta-You Wu Award from the National Science Council, Taiwan.  相似文献   

7.
Centromeres at premeiotic interphase are clustered and situated in a small area of the nucleus opposite to the nuclear envelope associated heterochromatic masses. The centromeres may occur singly or they may associate to form a structure composed of 2 or more centromeres. Many centromere associations are nonhomologous. Interphase centromeres are not attached to the nuclear envelope. — At zygotene and pachytene centromeres are no longer clustered at one pole of the nucleus but rather are distributed throughout the nucleus. Premeiotic associations appear to be resolved prior to meiotic pairing. Only homologous centromere associations occur during zygotene and pachytene. There is no indication that premeiotic centromere associations are involved in prezygotene alignment of homologous chromosomes.  相似文献   

8.
During early meiotic prophase chromosome ends become attached to the nuclear envelope, a process that is essential for faithful homologue pairing and segregation. The factors involved in this attachment are largely unknown. Here we investigated the possible involvement of telomere chromatin by using late generation (G5 and G6) Terc-/- mice. These mice lack telomerase activity and show progressive telomere shortening with increasing mouse generations. We show here that in meiotic chromosome ends of late generation Terc-/- mice telomeric TTAGGG repeats and the TRF1 telomere-binding protein are significantly reduced or below detection level. In spite of this, electron microscopy showed no apparent structural differences at the attachment sites of meiotic chromosomes to the nuclear envelope between wild-type and G6 Terc-/- meiocytes. These results suggest, as already shown in yeast, that most telomere chromatin is dispensable for proper attachment of mammalian meiotic chromosome ends to the nuclear envelope.  相似文献   

9.
Alterations in nuclear topology associated with meiotic chromosome pairing were studied in premeiotic cells and spermatocytes I of adult bovine males. To this end, we performed FISH with chromosome, pericentromeric satellite-DNA and telomere-specific probes in combination with immunostaining of synaptonemal complex proteins (SCP3, SCP1) on testis tissue sections. Nuclei of premeiotic cells (spermatogonia) exhibited a scattered telomere distribution while pericentromeres formed a few intranuclear clusters. We observed that the chromosome pairing process in cattle prophase I is preceded by repositioning of centromeres and telomeres to the nuclear periphery during preleptotene. Clustering of chromosome ends (bouquet formation) was observed during the transition from leptonema to zygonema and coincided with pairing of a sub-centromeric marker of bovine chromosomes 7. Dissolution of bouquet topology during zygonema left perinuclear telomeres scattered over the nuclear periphery at pachynema. SCP3 staining in frozen tissue sections revealed the appearance of this axial element protein in intranuclear aggregates during preleptotene, followed by extensive axial element formation during leptotene. Synapsis as revealed by SCP1 staining initiated peripherally at earliest zygotene, at this stage nuclei still contained numerous SCP3 clusters. Our observations reveal prominent non-homologous satellite-DNA associations in spermatogonia and indicate the conservation of topological features of the meiotic chromosome pairing process among mammals. The comparison of telomere dynamics in mouse and cattle prophase I suggests that a larger number of chromosomes prolongs the duration of the bouquet stage.  相似文献   

10.
Faithful chromosome segregation during meiosis I depends on the establishment of a crossover between homologous chromosomes. This requires induction of DNA double-strand breaks (DSBs), alignment of homologs, homolog association by synapsis, and repair of DSBs via homologous recombination. The success of these events requires coordination between chromosomal events and meiotic progression. The conserved SUN/KASH nuclear envelope bridge establishes transient linkages between chromosome ends and cytoskeletal forces during meiosis. In Caenorhabditis elegans, this bridge is essential for bringing homologs together and preventing nonhomologous synapsis. Chromosome movement takes place during synapsis and recombination. Concomitant with the onset of chromosome movement, SUN-1 clusters at chromosome ends associated with the nuclear envelope, and it is phosphorylated in a chk-2- and plk-2-dependent manner. Identification of all SUN-1 phosphomodifications at its nuclear N terminus allowed us to address their role in prophase I. Failures in recombination and synapsis led to persistent phosphorylations, which are required to elicit a delay in progression. Unfinished meiotic tasks elicited sustained recruitment of PLK-2 to chromosome ends in a SUN-1 phosphorylation–dependent manner that is required for continued chromosome movement and characteristic of a zygotene arrest. Furthermore, SUN-1 phosphorylation supported efficient synapsis. We propose that signals emanating from a failure to successfully finish meiotic tasks are integrated at the nuclear periphery to regulate chromosome end–led movement and meiotic progression. The single unsynapsed X chromosome in male meiosis is precluded from inducing a progression delay, and we found it was devoid of a population of phosphorylated SUN-1. This suggests that SUN-1 phosphorylation is critical to delaying meiosis in response to perturbed synapsis. SUN-1 may be an integral part of a checkpoint system to monitor establishment of the obligate crossover, inducible only in leptotene/zygotene. Unrepaired DSBs and unsynapsed chromosomes maintain this checkpoint, but a crossover intermediate is necessary to shut it down.  相似文献   

11.
Mammalian telomeres consist of TTAGGG repeats, telomeric repeat binding factor (TRF), and other proteins, resulting in a protective structure at chromosome ends. Although structure and function of the somatic telomeric complex has been elucidated in some detail, the protein composition of mammalian meiotic telomeres is undetermined. Here we show, by indirect immunofluorescence (IF), that the meiotic telomere complex is similar to its somatic counterpart and contains significant amounts of TRF1, TRF2, and hRap1, while tankyrase, a poly-(ADP-ribose)polymerase at somatic telomeres and nuclear pores, forms small signals at ends of human meiotic chromosome cores. Analysis of rodent spermatocytes reveals Trf1 at mouse, TRF2 at rat, and mammalian Rap1 at meiotic telomeres of both rodents. Moreover, we demonstrate that telomere repositioning during meiotic prophase occurs in sectors of the nuclear envelope that are distinct from nuclear pore-dense areas. The latter form during preleptotene/leptotene and are present during entire prophase I.  相似文献   

12.
It is shown that in the temperature-sensitive yeast mutant (Saccharomyces cerevisiae) spo 11 at the restrictive temperature of 34 degrees C. (1) premeiotic DNA synthesis is nearly completely blocked; (2) the nucleus enters meiotic prophase indicated by the formation of axial cores and polysynaptonemal complexes; (3) the kinetic apparatus functions normally at meiosis I and II; (4) early spore formation occurs in nearly all cells but it is variable and all spores eventually degenerate. It is concluded that chromosome replication is not a prerequisite for the functions listed above. The apomictic yeast strain 4117 produces 2 diploid spores. It is shown that a diploid which produces 2-spored asci, synthesized from 4117, no. 5, and an adenine requiring strain (1) has a normal meiotic prophase with abundant synaptonemal complexes; (2) has only one meiotic spindle; (3) has spores which form red clones more frequently than normal or u.v.-treated vegetative cells form ade/ade red sectors through mitotic recombination. It is concluded that this apomictic yeast has maintained meiotic prophase, but that one of the two meiotic divisions is suppressed.  相似文献   

13.
The efficiencies of the induction of cytomixis in microsporogenesis by thermal stress are compared in tobacco (N. tabacum L.) and barley (H. distichum L.) It has been shown that different thermal treatment schedules (budding tobacco plants at 50°C and air-dried barley grains at 48°C) produce similar results in the species: the frequency of cytomixis increases, and its maximum shifts to later stages of meiosis. However, the species show differences in response. The cytomixis frequency increase in tobacco is more pronounced, and its maximum shifts from the zygotene–pachytene stages of meiotic prophase I to prometaphase–metaphase I. Later in the meiosis, aberrations in chromosome structure and meiotic apparatus formation typical of cytomixis are noted, as well as cytomixis activation in tapetum cells. Thermal stress disturbs the integration of callose-bearing vesicles into the callose wall. Cold treatment at 7°C does not affect cytomixis frequency in tobacco microsporogenesis. Incubation of barley seeds at 48°C activates cytomixis in comparison to the control, shifts its maximum from the premeiotic interphase to zygotene, and changes the habit of cytomictic interactions from pairwise contacts to the formation of multicellular clusters. Thermal treatment induces cytomictic interactions within the tapetum and between microsporocytes and the tapetum. However, later meiotic phases show no adverse consequences of active cytomixis in barley. It is conjectured that heat stress affects callose metabolism and integration into the forming callose wall, thereby causing incomplete closure of cytomictic channels and favoring intercellular chromosome migration at advanced meiotic stages.  相似文献   

14.
We have analyzed the progressive changes in the spatial distribution of telomeres during meiosis using three-dimensional, high resolution fluorescence microscopy. Fixed meiotic cells of maize (Zea mays L.) were subjected to in situ hybridization under conditions that preserved chromosome structure, allowing identification of stage-dependent changes in telomere arrangements. We found that nuclei at the last somatic prophase before meiosis exhibit a nonrandom, polarized chromosome organization resulting in a loose grouping of telomeres. Quantitative measurements on the spatial arrangements of telomeres revealed that, as cells passed through premeiotic interphase and into leptotene, there was an increase in the frequency of large telomere-to-telomere distances and a decrease in the bias toward peripheral localization of telomeres. By leptotene, there was no obvious evidence of telomere grouping, and the large, singular nucleolus was internally located, nearly concentric with the nucleus. At the end of leptotene, telomeres clustered de novo at the nuclear periphery, coincident with a displacement of the nucleolus to one side. The telomere cluster persisted throughout zygotene and into early pachytene. The nucleolus was adjacent to the cluster at zygotene. At the pachytene stage, telomeres rearranged again by dispersing throughout the nuclear periphery. The stagedependent changes in telomere arrangements are suggestive of specific, active telomere-associated motility processes with meiotic functions. Thus, the formation of the cluster itself is an early event in the nuclear reorganizations associated with meiosis and may reflect a control point in the initiation of synapsis or crossing over.  相似文献   

15.
Mitosis in Boergesenia forbesii (Harvey) Feldman was studied by immunofluorescence microscopy using anti-β–tubulin, anti-γ–tubulin, and anti-centrin antibodies. In the interphase nucleus, one, two, or rarely three anti-centrin staining spots were located around the nucleus, indicating the existence of centrioles. Microtubules (MTs) elongated randomly from the circumference of the nuclear envelope, but distinct microtubule organizing centers could not be observed. In prophase, MTs located around the interphase nuclei became fragmented and eventually disappeared. Instead, numerous MTs elongated along the nuclear envelope from the discrete anti-centrin staining spots. Anti-centrin staining spots duplicated and migrated to the two mitotic poles. γ–Tubulin was not detected at the centrioles during interphase but began to localize there from prophase onward. The mitotic spindle in B. forbesii was a typical closed type, the nuclear envelope remaining intact during nuclear division. From late prophase, accompanying the chromosome condensation, spindle MTs could be observed within the nuclear envelope. A bipolar mitotic spindle was formed at metaphase, when the most intense staining of γ-tubulin around the centrioles could also be seen. Both spindle MT poles were formed inside the nuclear envelope, independent of the position of the centrioles outside. In early anaphase, MTs between separating daughter chromosomes were not detected. Afterward, characteristic interzonal spindle MTs developed and separated both sets of the daughter chromosomes. From late anaphase to telophase, γ-tubulin could not be detected around the centrioles and MT radiation from the centrioles became diminished at both poles. γ-Tubulin was not detected at the ends of the interzonal spindle fibers. When MTs were depolymerized with amiprophos methyl during mitosis, γ-tubulin localization around the centrioles was clearly confirmed. Moreover, an influx of tubulin molecules into the nucleus for the mitotic spindle occurred at chromosome condensation in mitosis.  相似文献   

16.
Thymidine-H3 of high specific activity was used to study the distribution of labeled chromatids during meiotic divisions in spermatocytes of a species of grasshopper (Orthoptera). The distribution is regularly semiconservative as has been shown previously for mitosis, i.e., all chromatids are labeled after incorporation of thymidine-H3 into DNA at premeiotic interphase. If incorporation occurs at the interphase preceding this one, the chromosomes arrive at meiotic divisions with the equivalent of one chromatid of each homologue labeled. Chromatid exchanges occur at a frequency which is very nearly that predicted on the assumption that each chiasma represents an exchange between homologous chromatids. However, the exchanges are randomly distributed among chromosomes in a size group, whereas chiasmata are not. A quantitative analysis of the frequency and pattern of exchanges indicates that most of these result from breakage and reciprocal exchange between homologous chromatids. Sister chromatid exchanges are much less frequent and may be limited to premeiotic stages.  相似文献   

17.
A recent study shows that a short isoform of a mammalian nuclear lamin is important for homologous chromosome interactions during meiotic prophase in mice.Meiosis is the specialized cell division process required for sexual reproduction. As cells enter meiotic prophase, a relatively long period preceding the two chromosome divisions, nuclei and chromosomes undergo remodeling to promote interactions between homologous chromosomes. Each chromosome must find and identify its unique partner within the volume of the nucleus, a process that obviously involves large-scale chromosome movements.Over 100 years ago, cytological analysis of meiotic cells revealed a unique chromosome configuration termed the meiotic ''bouquet'', in which chromosome ends seem to be attached to the nuclear periphery, frequently in a tight cluster. The presence of the bouquet was found to coincide with the stage during which homologous chromosomes undergo pairing and synapsis. This was the first indication that interactions between the chromosomes and the nuclear envelope might be important for meiotic pairing. More recent analysis in diverse model systems has revealed that the bouquet is a consequence of interactions between chromosomes and cytoskeletal elements - microtubules or actin cables - via a protein bridge that spans the nuclear envelope. A study recently published in PLOS Genetics [1] has shed further light on the role of the nuclear lamina in meiotic progression by studying the role of a meiosis-specific isoform of a nuclear lamin protein.In metazoans the nuclear envelope is fortified by the nuclear lamina, a meshwork of intermediate filament proteins (lamins) and associated proteins that underlies the inner nuclear membrane. The lamina confers structural rigidity to nuclei and also interacts with a wide variety of nucleoplasmic, transmembrane and chromosome-associated proteins. The composition of the lamina in metazoans shows tissue-specific variability and developmental regulation. Most differentiated mammalian cells express both A-type lamins (lamins A and C, which are generated by alternative splicing of the LMNA gene) and B-type lamins (encoded by two different genes), whereas some invertebrates express only a single lamin protein. Stem cells typically lack A-type lamins, which are also dispensable for early development in mice.Among the nuclear envelope components that interact with lamins are LINC (linker of nucleoskeleton and cytoskeleton) complexes. These versatile networks involve a pair of SUN/KASH proteins that bridge both membranes of the nuclear envelope. SUN domain proteins traverse the inner membrane, with their amino termini projecting into the nucleus and their SUN domains in the lumen between the two membranes. Their partners have membrane-spanning regions adjacent to their carboxy-terminal KASH domains, short peptides that bind to the SUN domains. Using a variety of interaction modules, LINC complexes create connections between nuclear structures such as the lamina or chromosomes and cytoskeletal elements such as actin filaments or microtubules. Throughout the eukaryotes, they have essential roles in diverse processes, including the positioning and migration of nuclei within cells and anchorage of centrosomes to the nuclear envelope. During meiosis, specific LINC complexes are recruited to interact with chromosomes through the expression of meiosis-specific proteins that bind to telomeres or, less frequently, to other specialized loci [2]. These connections, probably in conjunction with meiosis-specific modifications to the cytoskeleton and motor proteins, lead to large-scale chromosome motions that facilitate homologous chromosome pairing. These movements involve dramatic motion of the LINC proteins within the nuclear membrane, sometimes involving movements of up to several micrometers that occur within a few seconds [3]. This stands in sharp contrast to the behavior of some of the same protein complexes in somatic or premeiotic cells, in which they show highly constrained motion and minimal turnover [3].In the new PLOS Genetics study [1], groups led by Manfred Alsheimer and Ricardo Benavente, both of the University of Würzburg, have now engineered a disruption of an exon in the mouse LMNA gene that is specific to the meiotic isoform lamin C2 to generate C2-deficient mice (C2-/- mice). These collaborators have previously provided important insights into the regulation and functions of cell-type specific lamin isoforms, particularly during meiosis. Using antibodies, they characterized the lamin isoforms present in rat spermatocytes [4]. Immunolocalization revealed that a truncated isoform of lamin C (lamin C2) was localized in a patchy pattern along the nuclear envelope, along with a short B-type lamin (lamin B3) [4]. Because these short isoforms lack domains implicated in interactions between lamin subunits, they and others proposed that these proteins might form a more flexible network. This idea was supported by experiments in which meiosis-specific lamin C2 was ectopically expressed in fibroblasts and found to be more mobile within the nuclear envelope than full-length lamin C [5]. Expression of lamin C2 also resulted in aberrant localization of Sun1 in these cells. The collaborators also demonstrated that spermatogenesis was disrupted in Lmna-/- mice, although oocyte meiosis was not obviously perturbed [6]. Although defects in meiosis-specific processes were observed in the knockout mice, it was not possible to rule out an indirect effect of lamin depletion in somatic cells on meiosis in spermatocytes, prior to the new study.An important feature of the new research [1] is that the C2-/- mice show normal expression of all other A-type lamins. The C2-/- males recapitulate the meiotic failure seen in Lmna-/- mice. Nevertheless, their chromosomes frequently fail to synapse and they engage in heterologous associations or show aberrant telomere-telomere interactions; all of these defects are rare in wild-type spermatocytes. As a result of extensive apoptosis and failure of sperm maturation, the males are completely infertile. However, females are fertile, despite some evidence for pairing defects in C2-/- oocytes.These sex-specific differences in the effects of lamin C2 loss are somewhat surprising. They could in part reflect differential implementation of meiotic checkpoints, which cull defective spermatocytes more ruthlessly than oocytes [7]. However, analysis of homologous pairing and synapsis in the C2-/- mutant mice also revealed more severe defects in males. Both male and female mice lacking Sun1 protein are completely sterile and show synaptic failure during meiotic prophase [8]. This suggests that LINC-mediated chromosome dynamics are essential for homolog interactions during meiosis in both sexes. The milder defects caused by loss of lamin C2 in both male and female meiosis suggest that it has a less direct role in mediating chromosome movement than Sun1. This is consistent with the idea that expression of short lamin isoforms during meiosis acts primarily to increase the mobility of proteins within the nuclear envelope, relative to somatic cells. It seems likely that the dynamics of pairing, synapsis and recombination differ dramatically between spermatocytes, which are produced continually during the adult life of the male, and oocytes, which undergo meiotic prophase during fetal development. Such differences might render male meiosis more sensitive to changes in nuclear envelope organization or dynamics.The modifications made to the mouse nuclear envelope during meiosis are likely to be conserved in concept, if not in detail, in other taxa. As mentioned above, the isoforms and expression patterns of lamin proteins have diverged rapidly among the metazoa, as have the structures and functions of LINC complexes. For example, amphibians lack lamin C (and lamin C2), suggesting that its meiotic role in mammals is a recent innovation. Furthermore, the mouse Sun1 protein has a C2H2 zinc finger lacking in primate orthologs, which might suggest that it has evolved a distinct way to connect with meiotic chromosomes. It is thus not currently clear which aspects of meiotic lamina remodeling in mice can be extrapolated to other species.In Caenorhabditis elegans, meiotic chromosome dynamics are probably mediated by post-translational modification of the amino-terminal (nucleoplasmic) domain of sun-1 [9]. It is not yet known how this modification contributes to the function of the meiotic LINC complex. Direct observation has indicated that the motion of LINC complexes within the nuclear envelope becomes much less constrained as cells enter meiosis [3]. Phosphorylation of sun-1 may weaken interactions between the LINC complexes and the lamina to increase their mobility within the nuclear envelope, and/or promote interactions between LINC complexes to create high load-bearing aggregates of these proteins necessary to drive chromosome movement. It is not currently known whether the lamina itself is modified in C. elegans meiotic nuclei, but it is easy to imagine that phosphorylation could also be used to tweak protein-protein interactions within the lamina to optimize its properties during meiosis and other specialized cellular processes. It is likely that metazoans have evolved a wide range of mechanisms to modify their nuclear envelopes to meet the special demands of meiotic prophase.Homologous chromosome pairing remains one of the most mysterious aspects of meiosis. This new work in mice [1] adds an important piece of the puzzle by illuminating how the nuclear lamina can be modified to facilitate meiotic chromosome dynamics. To understand this process will clearly require looking beyond the chromosomes, and even beyond the nucleus, to the cellular networks connected by LINC complexes.  相似文献   

18.
Chromosome pairing in meiotic prophase is a prerequisite for the high fidelity of chromosome segregation that haploidizes the genome prior to gamete formation. In the budding yeast Saccharomyces cerevisiae, as in most multicellular eukaryotes, homologous pairing at the cytological level reflects the contemporaneous search for homology at the molecular level, where DNA double-strand broken ends find and interact with templates for repair on homologous chromosomes. Synapsis (synaptonemal complex formation) stabilizes pairing and supports DNA repair. The bouquet stage, where telomeres have formed a transient single cluster early in meiotic prophase, and telomere-promoted rapid meiotic prophase chromosome movements (RPMs) are prominent temporal correlates of pairing and synapsis. The bouquet has long been thought to contribute to the kinetics of pairing, but the individual roles of bouquet and RPMs are difficult to assess because of common dependencies. For example, in budding yeast RPMs and bouquet both require the broadly conserved SUN protein Mps3 as well as Ndj1 and Csm4, which link telomeres to the cytoskeleton through the intact nuclear envelope. We find that mutants in these genes provide a graded series of RPM activity: wild-type>mps3-dCC>mps3-dAR>ndj1Δ>mps3-dNT = csm4Δ. Pairing rates are directly correlated with RPM activity even though only wild-type forms a bouquet, suggesting that RPMs promote homologous pairing directly while the bouquet plays at most a minor role in Saccharomyces cerevisiae. A new collision trap assay demonstrates that RPMs generate homologous and heterologous chromosome collisions in or before the earliest stages of prophase, suggesting that RPMs contribute to pairing by stirring the nuclear contents to aid the recombination-mediated homology search.  相似文献   

19.
Meiotic chromosome segregation requires homologue pairing, synapsis, and crossover recombination, which occur during meiotic prophase. Telomere-led chromosome motion has been observed or inferred to occur during this stage in diverse species, but its mechanism and function remain enigmatic. In Caenorhabditis elegans, special chromosome regions known as pairing centers (PCs), rather than telomeres, associate with the nuclear envelope (NE) and the microtubule cytoskeleton. In this paper, we investigate chromosome dynamics in living animals through high-resolution four-dimensional fluorescence imaging and quantitative motion analysis. We find that chromosome movement is constrained before meiosis. Upon prophase onset, constraints are relaxed, and PCs initiate saltatory, processive, dynein-dependent motions along the NE. These dramatic motions are dispensable for homologous pairing and continue until synapsis is completed. These observations are consistent with the idea that motions facilitate pairing by enhancing the search rate but that their primary function is to trigger synapsis. This quantitative analysis of chromosome dynamics in a living animal extends our understanding of the mechanisms governing faithful genome inheritance.  相似文献   

20.
Chromosome and granule movements in meiotic prophase and prometaphase have been studied by time-lapse cinemicrography in live spermatocytes of the house cricket, Acheta domesticus. Chromosome movements in prophase cells, up to one hour or more before breakdown of the nuclear envelope, are described. These movements are frequent but saltatory; are based mostly at chromosome ends but also at kinetochores; occur in very intimate association with the inside of the nuclear envelope; are directed towards and away from the extranuclear centres (centrioles); tend weakly to accumulate bivalents round the two centres and reach a velocity of 0.65 m/sec. Saltatory movements in granules associated with extranuclear asters are remarkably similar in basic characteristics to the intranuclear chromosome movements. Surprisingly, the chromosome movements (and those of granules) are reversably blocked by colcemid (but not lumi-colcemid), and yet occur in the apparent absence of an intranuclear microtubule array. The movements cease at or shortly after breakdown of the nuclear envelope. However, kinetochore movements in very early prometaphase are similar in velocity and other respects to prophase movements; later prometaphase movements are clearly slower, and those of anaphase very much slower still. — The prophase movements suggest a two component model for motion: a non-microtubule, linear force producer together with microtubules with a skeletal, orientational role. Arguably, both these components are also necessary for chromosome movements in prometaphase and anaphase.This paper is dedicated to Dr. Sally Hughes-Schrader, whose beautiful work in mantids clearly presaged the existence of chromosome movements in late prophase of meiosis; and whose enthusiasm over chromosome movements in general it was my pleasure to share during my stay at Duke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号