首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Objective: This study was designed to examine the effect of peroxisome proliferator‐activated receptor‐α (PPAR‐α) ligands on the inflammatory changes induced by the interaction between adipocytes and macrophages in obese adipose tissue. Methods and Procedures: PPAR‐α ligands (Wy‐14,643 and fenofibrate) were added to 3T3‐L1 adipocytes, RAW264 macrophages, or co‐culture of 3T3‐L1 adipocytes and RAW264 macrophages in vitro, and monocyte chemoattractant protein‐1 (MCP‐1) and tumor necrosis factor‐α (TNF‐α) mRNA expression and secretion were examined. PPAR‐α ligands were administered to genetically obese ob/ob mice for 2 weeks. Moreover, the effect of PPAR‐α ligands was also evaluated in the adipose tissue explants and peritoneal macrophages obtained from PPAR‐α‐deficient mice. Results: In the co‐culture of 3T3‐L1 adipocytes and RAW264 macrophages, PPAR‐α ligands reduced MCP‐1 and TNF‐α mRNA expression and secretion in vitro relative to vehicle‐treated group. The anti‐inflammatory effect of Wy‐14,643 was observed in adipocytes treated with macrophage‐conditioned media or mouse recombinant TNF‐α and in macrophages treated with adipocyte‐conditioned media or palmitate. Systemic administration of PPAR‐α ligands inhibited the inflammatory changes in adipose tissue from ob/ob mice. Wy‐14,643 also exerted an anti‐inflammatory effect in the adipose tissue explants but not in peritoneal macrophages obtained from PPAR‐α‐deficient mice. Discussion: This study provides evidence for the anti‐inflammatory effect of PPAR‐α ligands in the interaction between adipocytes and macrophages in obese adipose tissue, thereby improving the dysregulation of adipocytokine production and obesity‐related metabolic syndrome.  相似文献   

2.
3.
4.
Collagen‐induced arthritis (CIA) is an animal model for rheumatoid arthritis (RA). Lipopolysaccharide (LPS) is known to accelerate CIA; however, the pathogenetic mechanisms are not yet fully understood. In this study, type II collagen (CII)‐immunized mice were found to have marked increases in degree of expression of mRNA of inflammatory mediators such as tumor necrosis factor alpha (TNF‐α), interleukin (IL)‐1β, and macrophage inflammatory protein‐2 (MIP‐2) in their arthritic paws and of serum anti‐CII antibody concentration before the onset of arthritis induced by LPS injection. The gene expression was rapid and continuous after direct activation of nuclear factor κB. The amounts of mRNA of TNF‐α, IL‐1β, and MIP‐2, as well as of matrix metalloproteinases and the receptor activator of nuclear factor κB ligand, increased with the development of arthritis, correlated positively with clinical severity and corresponded with histopathological changes. Moreover, anti‐TNF‐α neutralizing antibody inhibited the development of LPS‐accelerated CIA and a single injection of recombinant mouse TNF‐α induced increases in anti‐CII antibody concentrations, suggesting TNF‐α may contribute to the development of arthritis by both initiation of inflammation and production of autoantibodies. These data suggest that exacerbation of RA by LPS is associated with rapid and continuous production of inflammatory mediators and autoantibodies.  相似文献   

5.
Tumour necrosis factor (TNF)‐α induces cardiac metabolic disorder and mitochondrial dysfunction. Hydrogen sulphide (H2S) contains anti‐inflammatory and biological effects in cardiomyocytes. This study investigated whether H2S modulates TNF‐α‐dysregulated mitochondrial function and metabolism in cardiomyocytes. HL‐1 cells were incubated with TNF‐α (25 ng/mL) with or without sodium hydrosulphide (NaHS, 0.1 mmol/L) for 24 hours. Cardiac peroxisome proliferator‐activated receptor (PPAR) isoforms, pro‐inflammatory cytokines, receptor for advanced glycation end products (RAGE) and fatty acid metabolism were evaluated through Western blotting. The mitochondrial oxygen consumption rate and adenosine triphosphate (ATP) production were investigated using Seahorse XF24 extracellular flux analyzer and bioluminescence assay. Fluorescence intensity using 2′, 7′‐dichlorodihydrofluorescein diacetate was used to evaluate mitochondrial oxidative stress. NaHS attenuated the impaired basal and maximal respiration, ATP production and ATP synthesis and enhanced mitochondrial oxidative stress in TNF‐α‐treated HL‐1 cells. TNF‐α‐treated HL‐1 cells exhibited lower expression of PPAR‐α, PPAR‐δ, phosphorylated 5′ adenosine monophosphate‐activated protein kinase‐α2, phosphorylated acetyl CoA carboxylase, carnitine palmitoyltransferase‐1, PPAR‐γ coactivator 1‐α and diacylglycerol acyltransferase 1 protein, but higher expression of PPAR‐γ, interleukin‐6 and RAGE protein than control or combined NaHS and TNF‐α‐treated HL‐1 cells. NaHS modulates the effects of TNF‐α on mitochondria and the cardiometabolic system, suggesting its therapeutic potential for inflammation‐induced cardiac dysfunction.  相似文献   

6.
Objective: Recent studies suggested macrophages were integrated in adipose tissues, interacting with adipocytes, thereby exacerbating inflammatory responses. Persistent low‐grade infection by gram‐negative bacteria appears to promote atherogenesis. We hypothesized a ligand for toll‐like receptor 4 (TLR4), bacterial lipopolysaccharide (LPS), would further exaggerate macrophage‐adipocyte interaction. Research Methods and Procedures: RAW264.7 macrophage cell line and differentiated 3T3‐L1 preadipocytes were co‐cultured using transwell system. As a control, each cell was cultured independently. After incubation of the cells with or without Escherichia coli LPS, tumor necrosis factor (TNF)‐α and interleukin (IL)‐6 production was evaluated. Results: Co‐culture of macrophages and adipocytes with low concentration of Escherichia coli LPS (1 ng/mL) markedly up‐regulated IL‐6 production (nearly 100‐fold higher than that of adipocyte culture alone, p < 0.01), whereas TNF‐α production was not significantly influenced. This increase was partially inhibited by anti‐TNF‐α neutralizing antibody. Recombinant TNF‐α and LPS synergistically up‐regulated IL‐6 production in adipocytes. However, this increase did not reach the level of production observed in co‐cultures stimulated with LPS. Discussion: A ligand for TLR‐4 stimulates macrophages to produce TNF‐α. TNF‐α, thus produced, cooperatively up‐regulates IL‐6 production with other soluble factors secreted either from adipocytes or macrophages in these cells. Markedly up‐regulated IL‐6 would greatly influence the pathophysiology of diabetes and its vascular complications.  相似文献   

7.
Peroxisome proliferator‐activated receptors (PPARs) play a major role in metabolism and inflammatory control. Exercise can modulate PPAR expression in skeletal muscle, adipose tissue, and macrophages. Little is known about the effects of PPAR‐α in metabolic profile and cytokine secretion after acute exercise in macrophages. In this context, the aim of this study was to understand the influence of PPAR‐α on exercise‐mediated immune metabolic parameters in peritoneal macrophages. Mice C57BL/6 (WT) and PPAR‐α knockout (KO) were examined in non‐exercising control (n = 4) or 24 hours after acute moderate exercise (n = 8). Metabolic parameters (glucose, non‐esterified fatty acids, total cholesterol [TC], and triacylglycerol [TG]) were assessed in serum. Cytokine concentrations (IL‐1β, IL‐6, IL‐10, TNF‐α, and MCP‐1) were measured from peritoneal macrophages cultured or not with LPS (2.5 μg/mL) and Rosiglitazone (1 μM). Exercised KO mice exhibited low glucose concentration and higher TC and TG in serum. At baseline, no difference in cytokine production between the genotypes was observed. However, IL‐1β was significantly higher in KO mice after LPS stimulus. IL‐6 and IL‐1β had increased concentrations in KO compared with WT, even after exercise. MCP‐1 was not restored in exercised KO LPS group. Rosiglitazone was not able to reduce proinflammatory cytokine production in KO mice at baseline level or associated with exercise. Acute exercise did not alter mRNA expression in WT mice. Conclusion: PPAR‐α seems to be needed for metabolic glucose homeostasis and anti‐inflammatory effect of acute exercise. Its absence may induce over‐expression of pro‐inflammatory cytokines in LPS stimulus. Moreover, moderate exercise or PPAR‐γ agonist did not reverse this response.  相似文献   

8.
Cardiomyocyte tumour necrosis factor α (TNF‐α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)‐induced cardiomyocyte TNF‐α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS‐induced TNF‐α production in a dose‐dependent manner. α1‐ adrenoceptor (AR) antagonist (prazosin), but neither β1‐ nor β2‐AR antagonist, abrogated the inhibitory effect of NE on LPS‐stimulated TNF‐α production. Furthermore, phenylephrine (PE), an α1‐AR agonist, also suppressed LPS‐induced TNF‐α production. NE inhibited p38 phosphorylation and NF‐κB activation, but enhanced extracellular signal‐regulated kinase 1/2 (ERK1/2) phosphorylation and c‐Fos expression in LPS‐treated cardiomyocytes, all of which were reversed by prazosin pre‐treatment. To determine whether ERK1/2 regulates c‐Fos expression, p38 phosphorylation, NF‐κB activation and TNF‐α production, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c‐Fos expression, p38 mitogen‐activated protein kinase (MAPK) phosphorylation and TNF‐α production, but not NF‐κB activation in LPS‐challenged cardiomyocytes. In addition, pre‐treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS‐induced TNF‐α production in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c‐Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNF‐α production and prevented LPS‐provoked cardiac dysfunction. Altogether, these findings indicate that activation of α1‐AR by NE suppresses LPS‐induced cardiomyocyte TNF‐α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF‐κB activation.  相似文献   

9.
In our previous study, lancemaside A isolated from Codonopsis lanceolata (family Campanulaceae) ameliorated colitis in mice. In this study, the anti‐inflammatory effects of lancemaside A was investigated in lipopolysaccharide (LPS)‐stimulated mice and their peritoneal macrophage cells. Lancemaside A suppressed the production of pro‐inflammatory cytokines, TNF‐α and IL‐1β, in vitro and in vivo. Lancemaside A also down‐regulated inducible nitric oxide synthase (iNOS) and cyclooxygenase‐2 (COX‐2), as well as the inflammatory mediators, nitric oxide (NO), and PGE2. Lancemaside A also inhibited the expression of IL‐1 receptor‐associated kinase‐4 (IRAK‐4), the phosphorylation of IKK‐β and IκB‐α, the nuclear translocation of NF‐κB and the activation of mitogen‐activated protein kinases in LPS‐stimulated peritoneal macrophages. Furthermore, lancemaisde A inhibited the interaction between LPS and TLR4, as well as IRAK‐4 expression in peritoneal macrophages. Based on these findings, lancemaside A expressed anti‐inflammatory effects by regulating both the binding of LPS to TLR4 on macrophages. J. Cell. Biochem. 111: 865–871, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Inflammation plays a major role in progression of rheumatoid arthritis, a disease treated with antagonists of tumor necrosis factor‐alpha (TNF‐α) and interleukin 1β (IL‐1β). New in vitro testing systems are needed to evaluate efficacies of new anti‐inflammatory biological drugs, ideally in a patient‐specific manner. To address this need, we studied microspheroids containing 10,000 human osteoarthritic primary chondrocytes (OACs) or chondrogenically differentiated mesenchymal stem cells (MSCs), obtained from three donors. Hypothesizing that this system can recapitulate clinically observed effects of anti‐inflammatory drugs, spheroids were exposed to TNF‐α, IL‐1β, or to supernatant containing secretome from activated macrophages (MCM). The anti‐inflammatory efficacies of anti‐TNF‐α biologicals adalimumab, infliximab, and etanercept, and the anti‐IL‐1β agent anakinra were assessed in short‐term microspheroid and long‐term macrospheroid cultures (100,000 OACs). While gene and protein expressions were evaluated in microspheroids, diameters, amounts of DNA, glycosaminoglycans, and hydroxiproline were measured in macrospheroids. The tested drugs significantly decreased the inflammation induced by TNF‐α or IL‐1β. The differences in potency of anti‐TNF‐α biologicals at 24 h and 3 weeks after their addition to inflamed spheroids were comparable, showing high predictability of short‐term cultures. Moreover, the data obtained with microspheroids grown from OACs and chondrogenically differentiated MSCs were comparable, suggesting that MSCs could be used for this type of in vitro testing. We propose that in vitro gene expression measured after the first 24 h in cultures of chondrogenically differentiated MSCs can be used to determine the functionality of anti‐TNF‐α drugs in personalized and preclinical studies. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1045–1058, 2018  相似文献   

11.
12.
Cadmium is one of the inflammation‐related xenobiotics and has been regarded as a potent carcinogen. Gardenia jasminoides Ellis (GJE) has been used to cure inflammation in Korean folk medicine for a long time. The purpose of present study is the inhibitory effect of glycoprotein isolated from GJE (27 kDa) on inflammation mechanism in cadmium chloride‐exposed ICR mice. We evaluated the activities of lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and thiobarbituric acid‐reactive substances (TBARS), activities of anti‐oxidative enzymes [superoxide dismutase (SOD) and gluthathione peroxidase (GPx)], activities of c‐Jun N‐terminal protein kinase (JNK), heat shock protein 27 (Hsp27), activator protein (AP)‐1, nuclear factor (NF)‐κB and expression of inflammation‐related mediators including tumor necrosis factor (TNF)‐α and interleukin (IL)‐6 in cadmium chloride‐exposed ICR mice using immunoblot analysis, EMSA and RT‐PCR. It notes that mice plasma was used to measure ALT, LDH, and TBARS after treatment with cadmium chloride alone or cadmium chloride under the pretreatment with GJE glycoprotein. Liver tissues were used to assess activities of anti‐oxidant enzymes, SAPK/JNK, Hsp27, AP‐1, NF‐κB, TNF‐α, and IL‐6 in this study. The results obtained from this study revealed that GJE glycoprotein (10 mg/kg) decreased the levels of LDH, ALT and TBARS, whereas increased the activity of hepatic anti‐oxidant enzymes (SOD and GPx) in cadmium chloride‐exposed ICR mice. Moreover, it decreased the activity of JNK/AP‐1, NF‐κB, Hsp27, and pro‐inflammatory cytokines (TNF‐α and IL‐6). Taken together, the results in this study suggest that GJE glycoprotein inhibits the expression of inflammation‐related cytokines (TNF‐α and IL‐6) in cadmium chloride‐exposed ICR mice. J. Cell. Biochem. 112: 694–703, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. Nitric oxide (NO) is a highly reactive nitrogen radical implicated in inflammatory responses. We investigated the signaling pathway involved in inducible nitric oxide synthase (iNOS) expression and NO production stimulated by TNF‐α in cultured myoblasts. TNF‐α stimulation caused iNOS expression and NO production in myoblasts (G7 cells). TNF‐α‐mediated iNOS expression was attenuated by integrin‐linked kinase (ILK) inhibitor (KP392) and siRNA. Pretreatment with Akt inhibitor, mammalian target of rapamycin (mTOR) inhibitor (rapamycin), NF‐κB inhibitor (PDTC), and IκB protease inhibitor (TPCK) also inhibited the potentiating action of TNF‐α. Stimulation of cells with TNF‐α increased ILK kinase activity. TNF‐α also increased the Akt and mTOR phosphorylation. TNF‐α mediated an increase of NF‐κB‐specific DNA–protein complex formation, p65 translocation into nucleus, NF‐κB‐luciferase activity was inhibited by KP392, Akt inhibitor, and rapamycin. Our results suggest that TNF‐α increased iNOS expression and NO production in myoblasts via the ILK/Akt/mTOR and NF‐κB signaling pathway. J. Cell. Biochem. 109: 1244–1253, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Epicardial adipose tissue (EAT) remodelling is closely related to the pathogenesis of atrial fibrillation (AF). We investigated whether metformin (MET) prevents AF‐dependent EAT remodelling and AF vulnerability in dogs. A canine AF model was developed by 6‐week rapid atrial pacing (RAP), and electrophysiological parameters were measured. Effective refractory periods (ERP) were decreased in the left and right atrial appendages as well as in the left atrium (LA) and right atrium (RA). MET attenuated the RAP‐induced increase in ERP dispersion, cumulative window of vulnerability, AF inducibility and AF duration. RAP increased reactive oxygen species (ROS) production and nuclear factor kappa‐B (NF‐κB) phosphorylation; up‐regulated interleukin‐6 (IL‐6), tumour necrosis factor‐α (TNF‐α) and transforming growth factor‐β1 (TGF‐β1) levels in LA and EAT; decreased peroxisome proliferator‐activated receptor gamma (PPARγ) and adiponectin (APN) expression in EAT and was accompanied by atrial fibrosis and adipose infiltration. MET reversed these alterations. In vitro, lipopolysaccharide (LPS) exposure increased IL‐6, TNF‐α and TGF‐β1 expression and decreased PPARγ/APN expression in 3T3‐L1 adipocytes, which were all reversed after MET administration. Indirect coculture of HL‐1 cells with LPS‐stimulated 3T3‐L1 conditioned medium (CM) significantly increased IL‐6, TNF‐α and TGF‐β1 expression and decreased SERCA2a and p‐PLN expression, while LPS + MET CM and APN treatment alleviated the inflammatory response and sarcoplasmic reticulum Ca2+ handling dysfunction. MET attenuated the RAP‐induced increase in AF vulnerability, remodelling of atria and EAT adipokines production profiles. APN may play a key role in the prevention of AF‐dependent EAT remodelling and AF vulnerability by MET.  相似文献   

16.
Induction of tumour necrosis factor‐α (TNF‐α) expression leads to myocardial depression during sepsis. However, the underlying molecular mechanisms are not fully understood. The aim of this study was to investigate the role of Rac1 in TNF‐α expression and cardiac dysfunction during endotoxemia and to determine the involvement of phosphoinositide‐3 kinase (PI3K) in lipopolysaccharide (LPS)‐induced Rac1 activation. Our results showed that LPS‐induced Rac1 activation and TNF‐α expression in cultured neonatal mouse cardiomyocytes. The response was inhibited in Rac1 deficient cardiomyocytes or by a dominant‐negative Rac1 (Rac1N17). To determine whether PI3K regulates Rac1 activation, cardiomyocytes were treated with LY294002, a PI3K selective inhibitor. Treatment with LY294002 decreased Rac1 activity as well as TNF‐α expression stimulated by LPS. Furthermore, inhibition of PI3K and Rac1 activity decreased LPS‐induced superoxide generation which was associated with a significant reduction in ERK1/2 phosphorylation. To investigate the role of Rac1 in myocardial depression during endotoxemia in vivo, wild‐type and cardiomyocyte‐specific Rac1 deficient mice were treated with LPS (2 mg/kg, i.p.). Deficiency in Rac1 significantly decreased myocardial TNF‐α expression and improved cardiac function during endotoxemia. We conclude that PI3K‐mediated Rac1 activation is required for induction of TNF‐α expression in cardiomyocytes and cardiac dysfunction during endotoxemia. The effect of Rac1 on TNF‐α expression seems to be mediated by increased NADPH oxidase activity and ERK1/2 phosphorylation.  相似文献   

17.
High mobility group box‐1 (HMGB‐1) is a DNA binding nuclear protein and pro‐inflammatory cytokine. The box A domain of HMGB‐1 (rHMGB‐1A) exerts an anti‐inflammatory effect, inhibiting wild‐type HMGB‐1 (wtHMGB‐1). In this study, HMGB‐1A was evaluated as an siRNA carrier with anti‐inflammatory effects. HMGB‐1A was expressed and purified by consecutive nickel chelate chromatography, cationic exchange chromatography, and polymixin B chromatography. Purified rHMGB‐1A demonstrated an anti‐inflammatory effect, reducing tumor necrosis factor‐α (TNF‐α) in wtHMGB‐1 or lipopolysaccharide (LPS) activated macrophages. In gel retardation assay, rHMGB‐1A formed a stable complex with siRNA at or above a 1:2 weight ratio (siRNA:rHMGB‐1A). A heparin competition assay showed that an siRNA/rHMGB‐1A complex released siRNA more easily than an siRNA/polyethylenimine (PEI, 25 kDa) complex. Luciferase siRNA/rHMGB‐1A reduced firefly luciferase expression at a similar level as luciferase siRNA/PEI complex. Furthermore, TNF‐α siRNA/rHMGB‐1A synergistically reduced TNF‐α expression in LPS activated macrophages. Therefore, rHMGB‐1A may be useful as an siRNA carrier with anti‐inflammatory effects in siRNA therapy for various inflammatory diseases. J. Cell. Biochem. 113: 122–131, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

18.
19.
Sodium salicylate (NaSal) is a nonsteroidal anti‐inflammatory drug. The putative mechanisms for NaSal's pharmacologic actions include the inhibition of cyclooxygenases, platelet‐derived thromboxane A2, and NF‐κB signaling. Recent studies demonstrated that salicylate could activate AMP‐activated protein kinase (AMPK), an energy sensor that maintains the balance between ATP production and consumption. The anti‐inflammatory action of AMPK has been reported to be mediated by promoting mitochondrial biogenesis and fatty acid oxidation. However, the exact signals responsible for salicylate‐mediated inflammation through AMPK are not well‐understood. In the current study, we examined the potential effects of NaSal on inflammation‐like responses of THP‐1 monocytes to lipopolysaccharide (LPS) challenge. THP‐1 cells were stimulated with or without 10 ug/mL LPS for 24 h in the presence or absence of 5 mM NaSal. Apoptosis was measured by flow cytometry using Annexin V/PI staining and by Western blotting for the Bcl‐2 anti‐apoptotic protein. Cell proliferation was detected by EdU incorporation and by Western blot analysis for proliferating cell nuclear antigen (PCNA). Secretion of pro‐inflammatory cytokines (TNF‐α, IL‐1β, IL‐6) was determined by enzyme‐linked immunosorbent assay (ELISA). We observed that the activation of AMPK by NaSal was accompanied by induction of apoptosis, inhibition of cell proliferation, and increasing secretion of TNF‐α and IL‐1β. These effects were reversed by Compound C, an inhibitor of AMPK. In addition, NaSal/AMPK activation inhibited LPS‐induced STAT3 phosphorylation, which was reversed by Compound C treatment. We conclude that AMPK activation is important for NaSal‐mediated inflammation by inducing apoptosis, reducing cell proliferation, inhibiting STAT3 activity, and producing TNF‐α and IL‐1β.  相似文献   

20.
Periodontitis is associated with development of diabetes mellitus. Although lipopolysaccharide (LPS) of Porphyromonas gingivalis (Pg), a major pathogen of periodontitis, may lead the progression of diabetes complications, the precise mechanisms are unclear. We, therefore, investigated the effects of β‐carotene on production of Pg LPS‐induced inflammatory cytokines in human monocytes cultured high glucose (HG) condition. THP‐1 cells were cultured under 5.5 mM or 25 mM glucose conditions, and cells were stimulated with Pg LPS. To investigate the productivity of TNF‐α, IL‐6, and MCP‐1, cell supernatants were collected for ELISA. To examine the effects of NF‐kB signals on cytokine production, Bay11‐7082 was used. HG enhanced Pg LPS‐induced production of TNF‐α, IL‐6, and MCP‐1 via NF‐kB signals in THP‐1. β‐carotene suppressed the enhancement of the Pg LPSinduced cytokine production in THP‐1 via NF‐κB inactivation. Our results suggest that β‐carotene might be a potential anti‐inflammatory nutrient for circulating Pg LPS‐mediated cytokine production in diabetic patients with periodontitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号