首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84–90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84–86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.  相似文献   

2.
The protein chorismate mutase MtCM from Mycobacterium tuberculosis catalyzes one of the few pericyclic reactions known in biology: the transformation of chorismate to prephenate. Chorismate mutases have been widely studied experimentally and computationally to elucidate the transition state of the enzyme catalyzed reaction and the origin of the high catalytic rate. However, studies about substrate entry and product exit to and from the highly occluded active site of the enzyme have to our knowledge not been performed on this enzyme. Crystallographic data suggest a possible substrate entry gate, that involves a slight opening of the enzyme for the substrate to access the active site. Using multiple molecular dynamics simulations, we investigate the natural dynamic process of the product exiting from the binding pocket of MtCM. We identify a dominant exit pathway, which is in agreement with the gate proposed from the available crystallographic data. Helices H2 and H4 move apart from each other which enables the product to exit from the active site. Interestingly, in almost all exit trajectories, two residues arginine 72 and arginine 134, which participate in the burying of the active site, are accompanying the product on its exit journey from the catalytic site.  相似文献   

3.
The gene Rv1885c from the genome of Mycobacterium tuberculosis H37Rv encodes a monofunctional and secreted chorismate mutase (*MtCM) with a 33-amino-acid cleavable signal sequence; hence, it belongs to the *AroQ class of chorismate mutases. Consistent with the heterologously expressed *MtCM having periplasmic destination in Escherichia coli and the absence of a discrete periplasmic compartment in M. tuberculosis, we show here that *MtCM secretes into the culture filtrate of M. tuberculosis. *MtCM functions as a homodimer and exhibits a dimeric state of the protein at a concentration as low as 5 nM. *MtCM exhibits simple Michaelis-Menten kinetics with a Km of 0.5 +/- 0.05 mM and a k(cat) of 60 s(-1) per active site (at 37 degrees C and pH 7.5). The crystal structure of *MtCM has been determined at 1.7 A resolution (Protein Data Bank identifier 2F6L). The protein has an all alpha-helical structure, and the active site is formed within a single chain without any contribution from the second chain in the dimer. Analysis of the structure shows a novel fold topology for the protein with a topologically rearranged helix containing Arg134. We provide evidence by site-directed mutagenesis that the residues Arg49, Lys60, Arg72, Thr105, Glu109, and Arg134 constitute the catalytic site; the numbering of the residues includes the signal sequence. Our investigation on the effect of phenylalanine, tyrosine, and tryptophan on *MtCM shows that *MtCM is not regulated by the aromatic amino acids. Consistent with this observation, the X-ray structure of *MtCM does not have an allosteric regulatory site.  相似文献   

4.
The presence of exported chorismate mutases produced by certain organisms such as Mycobacterium tuberculosis has been shown to correlate with their pathogenicity. As such, these proteins comprise a new group of promising selective drug targets. Here, we report the high-resolution crystal structure of the secreted dimeric chorismate mutase from M. tuberculosis (*MtCM; encoded by Rv1885c), which represents the first 3D-structure of a member of this chorismate mutase family, termed the AroQ(gamma) subclass. Structures are presented both for the unliganded enzyme and for a complex with a transition state analog. The protomer fold resembles the structurally characterized (dimeric) Escherichia coli chorismate mutase domain, but exhibits a new topology, with helix H4 of *MtCM carrying the catalytic site residue missing in the shortened helix H1. Furthermore, the structure of each *MtCM protomer is significantly more compact and only harbors one active site pocket, which is formed entirely by one polypeptide chain. Apart from the structural model, we present evidence as to how the substrate may enter the active site.  相似文献   

5.
Chorismate mutase (CM), an essential enzyme at the branch-point of the shikimate pathway, is required for the biosynthesis of phenylalanine and tyrosine in bacteria, archaea, plants, and fungi. MtCM, the CM from Mycobacterium tuberculosis, has less than 1% of the catalytic efficiency of a typical natural CM and requires complex formation with 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase for high activity. To explore the full potential of MtCM for catalyzing its native reaction, we applied diverse iterative cycles of mutagenesis and selection, thereby raising kcat/Km 270-fold to 5 × 105 m−1s−1, which is even higher than for the complex. Moreover, the evolutionarily optimized autonomous MtCM, which had 11 of its 90 amino acids exchanged, was stabilized compared with its progenitor, as indicated by a 9 °C increase in melting temperature. The 1.5 Å crystal structure of the top-evolved MtCM variant reveals the molecular underpinnings of this activity boost. Some acquired residues (e.g. Pro52 and Asp55) are conserved in naturally efficient CMs, but most of them lie beyond the active site. Our evolutionary trajectories reached a plateau at the level of the best natural enzymes, suggesting that we have exhausted the potential of MtCM. Taken together, these findings show that the scaffold of MtCM, which naturally evolved for mediocrity to enable inter-enzyme allosteric regulation of the shikimate pathway, is inherently capable of high activity.  相似文献   

6.
Summary In extension of previous studies on the regulation of the aromatic amino acid pathway in blue-green and green algae the control of two branch-point enzymes, namely chorismate mutase and anthranilate synthetase has been studied. The activity of chorismate mutase in these organisms is effectively inhibited by l-tyrosine or l-phenylalanine. l-tryptophan, in contrast, proved to be a positive effector of the enzyme: in the absence of phenylalanine or tyrosine tryptophan slightly stimulated chorismate mutase activity; this stimulation was even brought about in the presence of excess phenylalanine or tyrosine, irrespective if the enzyme had been preincubated with these inhibitors or not. Tryptophan thus proved to completely revert the feedback inhibition of this enzyme by phenylalanine or tyrosine. Substrate saturation curves of chorismate mutase activity are hyperbolic in the presence of tryptophan and sigmoid in the presence of phenylalanine or tyrosine. In contrast to the enzymes of the green algae investigated, chorismate mutase activity of Anacystis nidulans, a member of the class of the blue-green algae was not affected by any of the aromatic amino acids.The activity of anthranilate synthetase, the second enzyme of the chorismic acid branch-point of the pathway was consistently inhibited by l-tryptophan in all the organisms tested. The results described here bear significance on the regulation of a multi-branched pathway the first enzyme of which is inhibited just by one endproduct.  相似文献   

7.
Qamra R  Prakash P  Aruna B  Hasnain SE  Mande SC 《Biochemistry》2006,45(23):6997-7005
Chorismate mutase catalyzes the first committed step toward the biosynthesis of the aromatic amino acids, phenylalanine and tyrosine. While this biosynthetic pathway exists exclusively in the cell cytoplasm, the Mycobacterium tuberculosis enzyme has been shown to be secreted into the extracellular medium. The secretory nature of the enzyme and its existence in M. tuberculosis as a duplicated gene are suggestive of its role in host-pathogen interactions. We report here the crystal structure of homodimeric chorismate mutase (Rv1885c) from M. tuberculosis determined at 2.15 A resolution. The structure suggests possible gene duplication within each subunit of the dimer (residues 35-119 and 130-199) and reveals an interesting proline-rich region on the protein surface (residues 119-130), which might act as a recognition site for protein-protein interactions. The structure also offers an explanation for its regulation by small ligands, such as tryptophan, a feature previously unknown in the prototypical Escherichia coli chorismate mutase. The tryptophan ligand is found to be sandwiched between the two monomers in a dimer contacting residues 66-68. The active site in the "gene-duplicated" monomer is occupied by a sulfate ion and is located in the first half of the polypeptide, unlike in the Saccharomyces cerevisiae (yeast) enzyme, where it is located in the later half. We hypothesize that the M. tuberculosis chorismate mutase might have a role to play in host-pathogen interactions, making it an important target for designing inhibitor molecules against the deadly pathogen.  相似文献   

8.
Allostery, where remote ligand binding alters protein function, is essential for the control of metabolism. Here, we have identified a highly sophisticated allosteric response that allows complex control of the pathway for aromatic amino acid biosynthesis in the pathogen Mycobacterium tuberculosis. This response is mediated by an enzyme complex formed by two pathway enzymes: chorismate mutase (CM) and 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS). Whereas both enzymes are active in isolation, the catalytic activity of both enzymes is enhanced, and in particular that of the much smaller CM is greatly enhanced (by 120-fold), by formation of a hetero-octameric complex between CM and DAH7PS. Moreover, on complex formation M. tuberculosis CM, which has no allosteric response on its own, acquires allosteric behavior to facilitate its own regulatory needs by directly appropriating and partly reconfiguring the allosteric machinery that provides a synergistic allosteric response in DAH7PS. Kinetic and analytical ultracentrifugation experiments demonstrate that allosteric binding of phenylalanine specifically promotes hetero-octameric complex dissociation, with concomitant reduction of CM activity. Together, DAH7PS and CM from M. tuberculosis provide exquisite control of aromatic amino acid biosynthesis, not only controlling flux into the start of the pathway, but also directing the pathway intermediate chorismate into either Phe/Tyr or Trp biosynthesis.  相似文献   

9.
The regulatory properties of chorismate mutase, its cellular localization and isoenzyme pattern were investigated in 23 yeast species. All yeasts contained only a single form of the enzyme, which is localized exclusively in the cytosol. The enzyme activity from all sources was activated 3-(Rhodotorula aurantiaca) to 185-fold (Candida maltosa) by tryptophan. The tryphtophan concentration, which was necessary to obtain half maximum velocity was determined to be between 2 (Pichia guilliermondii) and 95 M (Yarrowia lipolytica). Ten yeast species possessed an enzyme that was inhibited by both phenylalanine and tyrosine. The chorismate mutase from four strains was inhibited only by tyrosine and the enzyme from two species was inhibited by phenylalanine alone. The enzyme inhibition by phenylalanine and tyrosine was completely reversed by tryptophan. Six enzyme sources were not inhibited and theY. lipolytica chorismate mutase was slightly activated by both amino acids.  相似文献   

10.
Several regulated enzymes involved in aromatic amino acid synthesis were studied in Bacillus subtilis and B. licheniformis with reference to organization and control mechanisms. B. subtilis has been previously shown (23) to have a single 3-deoxy-d-arabinoheptulosonate 7-phosphate (DAHP) synthetase but to have two isozymic forms of both chorismate mutase and shikimate kinase. Extracts of B. licheniformis chromatographed on diethylaminoethyl (DEAE) cellulose indicated a single DAHP synthetase and two isozymic forms of chorismate mutase, but only a single shikimate kinase activity. The evidence for isozymes has been supported by the inability to find strains mutant in these activities, although strains mutant for the other activities were readily obtained. DAHP synthetase, one of the isozymes of chorismate mutase, and one of the isozymes of shikimate kinase were found in a single complex in B. subtilis. No such complex could be detected in B. licheniformis. DAHP synthetase and shikimate kinase from B. subtilis were feedback-inhibited by chorismate and prephenate. DAHP synthetase from B. licheniformis was also feedback-inhibited by these two intermediates, but shikimate kinase was inhibited only by chorismate. When the cells were grown in limiting tyrosine, the DAHP synthetase, chorismate mutase, and shikimate kinase activities of B. subtilis were derepressed in parallel, but only DAHP synthetase and chorismate mutase were derepressible in B. licheniformis. Implications of the differences as well as the similarities between the control and the pattern of enzyme aggregation in the two related species of bacilli were discussed.  相似文献   

11.
Tobacco, rice, carrot and tomato tissue cultures were grown in liquid media containing l-phenylalanine or l-tyrosine, or both together. The addition of these amino acids increased their respective cellular levels (4–20 fold), but did not lower the level of chorismate mutase, an enzyme in the biosynthetic pathway of phenylalanine and tyrosine. These results indicate that the biosynthesis of phenylalanine and tyrosine in cultured plant cells is not regulated by repression of the synthesis of chorismate mutase by phenylalanine or tyrosine.  相似文献   

12.
In the biosynthetic pathway of aromatic amino acids of Brevibacterium flavum, ratios of each biosynthetic flow at the chorismate branch point were calculated from the reaction velocities of anthranilate synthetase for tryptophan and chorismate mutase for phenylalanine and tyrosine at steady state concentrations of chorismate. When these aromatic amino acids were absent, the ratio was 61, showing an extremely preferential synthesis of tryptophan. The presence of tryptophan at 0.01 mM decreased the ratio to 0.07, showing a diversion of the preferential synthesis to phenylalanine and tyrosine. Complete recovery by glutamate of the ability to synthesize the Millon-positive substance in dialyzed cell extracts confirmed that tyrosine was synthesized via pretyrosine in this organism. Partially purified prephenate aminotransferase, the first enzyme in the tyrosine-specific branch, had a pH optimum of 8.0 and Km’s of 0.45 and 22 mM for prephenate and glutamate, respectively, and its activity was increased 15-fold by pyridoxal-5-phosphate. Neither its activity nor its synthesis was affected at all by the presence of the end product tyrosine or other aromatic amino acids. The ratio of each biosynthetic flow for tyrosine and phenylalanine at the prephenate branch point was calculated from the kinetic equations of prephenate aminotransferase and prephenate dehydratase, the first enzyme in the phenylalanine-specific branch. It showed that tyrosine was synthesized in preference to phenylalanine when phenylalanine and tyrosine were absent. Furthermore, this preferential synthesis was diverted to a balanced synthesis of phenylalanine and tyrosine through activation of prephenate dehydratase by the tyrosine thus synthesized. The feedback inhibition of prephenate dehydratase by phenylalanine was proposed to play a role in maintaining a balanced synthesis when supply of prephenate was decreased by feedback inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP*) synthetase, the common key enzyme. Overproduction of the end products in various regulatory mutants was also explained by these results.  相似文献   

13.
The chorismate mutase and prephenate dehydratase genes of phenylalanine producing Corynebacterium glutamicum K38, which is resistant to p-fluorophenylalanine and m-fluorophenylalanine, were cloned into plasmid pCE53 in C. glutamicum KY9456, which lacks chorismate mutase and prephenate dehydratase. One of the resultant plasmids, pCmB4, contained a 9.4kb BamHI DNA fragment inserted into the unique BamHl site of pCE53. Plasmid pCmB4 complemented a phenylalanine and tyrosine double auxotroph of C. glutamicum KY9456. Introduction of pCmB4 into C. glutamicum RRL5 resulted in an about ten times increase in chorismate mutase activity. C. glutamicum K38 carrying the plasmid accumulated 19.0mg/ml of phenylalanine (50% increase over the yield of K38).  相似文献   

14.
Chorismate mutase of Brevibacterium flavum, a common enzyme in phenylalanine and tyrosine biosynthesis, was separted into two different component, A and B, with molecular weights of 250,000 and 25,000, respectively, by ammonium sulfate fractionation or gel-filtration. Both components were essential for the enzymatic activity. In the presence of the reaction substrate, chorismate, the two components associated reversibly to give an active enzyme complex with a molecular weight of 320,000. Binding sites of the feedback inhibitors, phenylalanine and tyrosine, on the enzyme were localized on component A as determined by hybridization experiments with the wild-type and mutant components. Tyrosine repressed the synthesis of component B much more strongly than that of component A, while phenylalanine did not show any significant repressive effect on either component. The wild-type strain No. 2247 had four times more component A than component B. Elution patterns in gel, DEAE-cellulose or hydroxyapatite column chromatography as well as the disc-gel electrophoretic pattern of chorismate mutase component A and 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthetase activities completely overlapped, suggesting the presence of a bifunctional protein having the two activities. In accord with this suggestion, chorismate mutase as well as DAHP synthetase was insensitive to feedback inhibition by phenylalanine and tyrosine in all the 3-fluorophenylalanine-resistant mutants tested that excreted both phenylalanine and tyrosine. All the phenylalanine and tyrosine double auxotrophs defective in chorismate mutase lacked component B but not A.  相似文献   

15.
3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first step in the biosynthesis of a number of aromatic metabolites. Likely because this reaction is situated at a pivotal biosynthetic gateway, several DAHPS classes distinguished by distinct mechanisms of allosteric regulation have independently evolved. One class of DAHPSs contains a regulatory domain with sequence homology to chorismate mutase-an enzyme further downstream of DAHPS that catalyzes the first committed step in tyrosine/phenylalanine biosynthesis-and is inhibited by chorismate mutase substrate (chorismate) and product (prephenate). Described in this work, structures of the Listeria monocytogenes chorismate/prephenate regulated DAHPS in complex with Mn(2+) and Mn(2+) + phosphoenolpyruvate reveal an unusual quaternary architecture: DAHPS domains assemble as a tetramer, from either side of which chorismate mutase-like (CML) regulatory domains asymmetrically emerge to form a pair of dimers. This domain organization suggests that chorismate/prephenate binding promotes a stable interaction between the discrete regulatory and catalytic domains and supports a mechanism of allosteric inhibition similar to tyrosine/phenylalanine control of a related DAHPS class. We argue that the structural similarity of chorismate mutase enzyme and CML regulatory domain provides a unique opportunity for the design of a multitarget antibacterial.  相似文献   

16.
We have identified new lead candidates that possess inhibitory activity against Mycobacterium tuberculosis H37Rv chorismate mutase by a ligand-based virtual screening optimized for lead evaluation in combination with in vitro enzymatic assay. The initial virtual screening using a ligand-based pharmacophore model identified 95 compounds from an in-house small molecule database of 15,452 compounds. The obtained hits were further evaluated by molecular docking and 15 compounds were short listed based on docking scores and the other scoring functions and subjected to biological assay. Chorismate mutase activity assays identified four compounds as inhibitors of M. tuberculosis chorismate mutase (MtCM) with low K(i) values. The structural models for these ligands in the chorismate mutase binding site will facilitate medicinal chemistry efforts for lead optimization against this protein.  相似文献   

17.
Chorismate mutase CM-1, an isozyme that is inhibited by phenylalanine and tyrosine and activated by tryptophan was purified 1200-fold from etiolated mung bean seedlings with a final yield of 18–20%. Loss of activity was rapid in highly purified preparations but was reduced by the addition of bovine serum albumin. Enzyme activity was unaffected by thiol-alkylating agents, reducing agents, EDTA, or divalent cations.The enzyme displayed pH-sensitive, positive homotrophic cooperativity toward chorismate with greatest cooperativity at the pH optimum of the tryptophan-free enzyme (pH 7.2–7.4) and least cooperativity at the pH optimum of the enzyme fully activated with tryptophan (pH 7.0). Activation by tryptophan reduced the Km for the enzyme, and modified the sigmoid substrate saturation kinetics to a rectangular hyperbola. Feedback inhibition by the end product amino acids phenylalanine and tyrosine was not additive but revealed heterotrophic cooperativity with chorismate. Tyrosine (Ki = 31 μM) was a slightly more effective inhibitor than phenylalanine (Ki = 37 μM) at 1 mm chorismate. Tryptophan at equimolar concentration antagonized the feedback inhibition by phenylalanine and tyrosine. The latter two, however, at higher concentrations reversed the tryptophan activation in a noncompetitive fashion with respect to either tryptophan or chorismate. The enzyme was responsive only to the l-isomers of the amino acids. The results indicate a primary role for chorismate mutase CM-1 from mung bean in the regulation of the synthesis of phenylalanine and tyrosine for protein synthesis.  相似文献   

18.
We have isolated the tryptophan auxotrophic mutant strain, PK101, of Pichia guilliermondii. This strain is not defective in any of the tryptophan biosynthetic enzymes, but its chrismate mutase, an enzyme of the phenylalanine-tyrosine biosynthesis, is changed. In comparison with the wild type chorismate mutase, the enzyme of PK101 is characterized by a complete loss of sensitivity to l-phenylalanine inhibition and to a considerable loss of sensitivity to l-tryptophan activation. Furthermore, the chorismate mutase activity of the mutant is more than 7-fold higher in the absence of l-tryptophan than in the wild type. The PK101 enzyme is also changed in the pH optimum and in some kinetic constants. We found an increased intracellular pool of both phenylalanine and tyrosine and a reduced contents of tryptophan in the mutant cells. Our genetic data indicate that the mutant phenotype is dominant over the wild type.  相似文献   

19.
Root-knot nematodes are obligate plant parasites that alter plant cell growth and development by inducing the formation of giant feeder cells. It is thought that nematodes inject secretions from their esophageal glands into plant cells while feeding, and that these secretions cause giant cell formation. To elucidate the mechanisms underlying the formation of giant cells, a strategy was developed to clone esophageal gland genes from the root-knot nematode Meloidogyne javanica. One clone, shown to be expressed in the nematode's esophageal gland, codes for a potentially secreted chorismate mutase (CM). CM is a key branch-point regulatory enzyme in the shikimate pathway and converts chorismate to prephenate, a precursor of phenylalanine and tyrosine. The shikimate pathway is not found in animals, but in plants, where it produces aromatic amino acids and derivative compounds that play critical roles in growth and defense. Therefore, we hypothesize that this CM is involved in allowing nematodes to parasitize plants.  相似文献   

20.
Naturally occurring variants of the enzyme chorismate mutase are known to exist that exhibit diversity in enzyme structure, regulatory properties, and association with other proteins. Chorismate mutase was not annotated in the initial genome sequence of Mycobacterium tuberculosis (Mtb) because of low sequence similarity between known chorismate mutases. Recombinant protein coded by open reading frame Rv1885c of Mtb exhibited chorismate mutase activity in vitro. Biochemical and biophysical characterization of the recombinant protein suggests its resemblance to the AroQ class of chorismate mutases, prototype examples of which include the Escherichia coli and yeast chorismate mutases. We also demonstrate that unlike the corresponding proteins of E. coli, Mtb chorismate mutase does not have any associated prephenate dehydratase or dehydrogenase activity, indicating its monofunctional nature. The Rv1885c-encoded chorismate mutase showed allosteric regulation by pathway-specific as well as cross-pathway-specific ligands, as evident from proteolytic cleavage protection and enzyme assays. The predicted N-terminal signal sequence of Mtb chorismate mutase was capable of functioning as one in E. coli, suggesting that Mtb chorismate mutase belongs to the AroQ class of chorismate mutases. It was evident that Rv1885c may not be the only enzyme with chorismate mutase enzyme function within Mtb, based on our observation of the presence of chorismate mutase activity displayed by another hypothetical protein coded by open reading frame Rv0948c, a novel instance of the existence of two monofunctional chorismate mutases ever reported in any pathogenic bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号